金属基质对结晶聚合物加工的影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高聚物结晶在工艺和实验中往往处在与金属基质接触的状态,基质的性质将会影响其结晶过程。本文以流变实验为主要的实验手段,结合差示扫描量热仪(DSC)测量、偏光显微镜观察,表面能测量技术等为辅助实验方法,研究了金属基质对高聚物材料的静态结晶和剪切诱导结晶的影响。研究发现,无论是采用高密度聚乙烯(HDPE)还是等规聚丙烯(iPP),样品在铝和不锈钢基质中的静态结晶的速度都是不相同的,在铝基质中的结晶速率均快于在不锈钢基质中的结晶速率,且随着等温结晶温度的升高,结晶速率的差别增大。在HDPE的结晶实验中我们发现,样品在不锈钢基质中等温结晶的样品所能达到的结晶程度低于在铝基质上结晶的样品,此外,HDPE在不锈钢基质上结晶时,达到液固转变点所需的时间要长于铝基质,且达到转变点时出现的屈服模量值也低于在铝板上结晶的HDPE样品。因此,样品在铝和不锈钢基质中的结晶机理可能不相同。在对iPP的等温结晶传热仿真计算中,发现基质的导热能力并非造成结晶速率区别的主要因素。实验发现,铝和不锈钢基质使熔体在靠近基质壁面处发生了异相成核,晶核在结晶过程的早期生成并生长,形成横晶并深入熔体内部(在1300C时横晶层厚度约为0.2mm),从而影响整个iPP样品的结晶。由于不锈钢和铝基质的表面自由能不同,造成的界面处熔体的异相成核能力不同(铝基质的表面自由能高于不锈钢基质在铝基, iPP/铝基质的界面成核能力较强),从而导致了iPP样品在铝和不锈钢基质中的整体结晶速率的区别。实验中,我们还发现,在DSC的等温结晶过程中,由于采用的铝制坩埚的表面能较高, iPP的薄片样品受界面结晶影响,得到的结晶曲线主要反映的是界面结晶。
     在iPP的剪切诱导结晶实验中,我们发现,样品在铝和不锈钢基质上的结晶速率也不相同,在铝基质上的结晶速率大于不锈钢基质。iPP过冷熔体流变曲线的间距依赖现象表明,在等温结晶发生前,基质对iPP过冷熔体进行的预剪切过程中易发生壁面滑移现象,滑移程度和基质的表面自由能密切相关。样品在表面自由能较高的铝基质上的滑移程度较小,因此在相同表观剪切速率下熔体的实际剪切速率较大,剪切所形成的晶核密度较大,从而使得结晶速率高于不锈钢基质中的结晶速率。通过偏光显微镜观测实验,我们得到了iPP在铝基质上的实际剪切功和晶核密度的关系。实验结果表明,iPP样品的晶核密度随剪切功的增加而增大,在低剪切速率下,这种关系和剪切速率无关,但在高剪切速率下,剪切功相同时,剪切速率越大,样品剪切诱导所生成的晶核密度越大。
Concerning the fact that polymers often crystallize in contact with metal substrates in industrial production and experiment, the substrates effect on both static isothermal crystallization and shear induced crystallization of polymers is studied using rotational rheometer as well as polarized optical observation, differential scanning calorimetry measurements (DSC), et al. It is found that the static crystallization rate of either high density polyethylene (HDPE) or isotatic polypropylene (iPP) in contact with aluminum substrates is different with the sample in contact with stainless steel substrates, and samples in aluminum substrates are crystallizing faster than those in steel substrates. This difference becomes bigger at higher crystallization temperatures. In HDPE crystallization experiments, it is found that the degree of crystallinity of HDPE is higher in aluminum substrates than in steel substrates. and the time spent for reaching the Liquid/Solid-transformation point is shorter for aluminum plates; also. there is variety in yield value of storage modulus at the transformation point between these substrates. Therefore, it is indicated that the mechanism of crystallization of HDPE in aluminum and steel substrates should be different. The numerical simulation considering uniform bulk phase transition and latent heat conduction in isothermal crystallization of iPP shows that the substrate's ability to remove the latent heat is not the dominant factor to cause the difference in crystallization rate. Transcrystallization zone, in which the heterogeneous nucleus density is controlled by the surface energy of substrate, was observed to grow towards the bulk with the thickness of about0.2mm for iPP to affect the global crystallization behavior, with the surface energy of aluminum higher than stainless steel. As a consequence, the DSC measurements mainly gives the crystallization curves of surface crystallization rather than the bulk crystallization due to the large surface-to-volume ratio of the specimen and the aluminum pan used which is a high surface energy substrate.
     The crystallization rate difference in aluminum and steel substrates is also observed in shear induced crystallization of iPP. Boundary slip at the interface between iPP and substrate, which also strongly depends on the surface energy of substrates, is found during the pre-shearing of supercooled iPP melt according to the gap dependence of rheological curves. With slip length smaller in aluminum substrates than in steel substrates, the real shear rate exerted to the melt is higher in aluminum substrates upon the same apparent shear rate reported by the rheometer. As a result, the shear induced nucleus desnsity is higher for iPP melts in aluminum plates, and so is the crystallization rate. With polarized optical observation, change of shear induced nucleus density of iPP melts with shear work applied is obtained in our experiments, which shows that the nucleus density of iPP melts is higher with higher shear works. However, at higher shear rates, the nucleus density also depends on the shear rates applied.
引文
[1]J.D. Hoffman, J.I. Lauritzen Jr., J. Res. Natl. Bur. Stand.1961,65A,297-336
    [2]J.D. Hoffinan, G.T. Davis, J.I. Lauritzen Jr., Treatise on Solid State Chemistry, New York: Plenum Press,1976, Vol.3,497-614
    [3]J.D. Hoffman, Regime III crystallization in melt-crystallized polymers:the variable cluster model of chain folding, Polymer,1983,24:3-26
    [4]J.D. Hoffman, R.L. Miller, Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited:theory and experiment, Polymer,1997,38: 3151-3212
    [5](a) M. Avrami, Kinetics of phase change. I general theory, J. Chem. Phys.1939,7: 1103-1112. (b) M. Avrami, Kinetics of phase change. Ⅱ transformation-time relations for random distribution of nuclei, J. chem.. phys.1940,8:212-224. (c) M. Avrami, Granulation, phase Change, and Micro structure kinetics of phase change. Ⅲ, J. Chem. Phys.1941,9:177-184
    [6]A.N. Kolmogoroff, On the Statistical Theory of Metal Crystallization, Izv. Akad. Nauk SSSR, Ser. Math.1937,1:355
    [7]G. Strobl, Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme, Progress in Polymer Science,2006,31: 398-442
    [8]G. Strobl, The Physics of Polymers:Concepts for Understanding Their Structures and Behaviors. Berlin Heidelberg:Springer-Verlag,2007
    [9]G. Strobl, T.Y. Cho, Growth kinetics of polymer crystals in bulk, The European Physical Journal E:Soft Matter and Biological Physics,2007,23:55-65
    [10]G. Strobl, From the melt via mesomorphic and granular crystalline layers to lamellar crystallites:A major route followed in polymer crystallization, The European Physical Journal E:Soft Matter and Biological Physics,2000,3:165-183
    [11]Q. Fu, B. Heck, G. Strobl, Y. Thomann, A temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene):Transition from chain-folded to chain-extended crystallization, Macromolecules,2001,34: 2502-2511
    [12]T. Ozawa, Kinetics of non-isothermal crystallization, Polymer,1971,12: 150-158
    [13](a) F.J. Padden, H.D. Keith, Spherulitic crystallization in polypropylene, Journal of Applied Physics,1959,30:1479-1484. (b) F.J. Padden, H.D. Keith, Evidence for a second crystal form of polypropylene, Journal of Applied Physics,1959,30: 1485-1488. (c) F.J. Padden, H.D. Keith, Crystallization in thin films of isotactic polypropylene, Journal of Applied Physics,1966,37:4013-4020. (d) F.J. Padden, H.D. Keith, Mechanism for lamellar branching in isotatic polypropylene, Journal of Applied Physics,1973,44:1217-1223.
    [14]R.J. Samuels, R.Y. Yee, Characterization of the structure and organization of β-form crystals in type III and type IV isotatic polypropylene spherulities, Journal of Polymer Science,1972, A-2,10:385-432
    [15]J. Varga, J. Kargar-Kocsis, Rules of supermolecular structure formation in sheared isotatic polypropylene melts, Journal of Polymer Science:Part B:Polymer Physics,1996,34:657-670
    [16]C. Marco, M.A. Gomez, G. Ellis, J.M. Arribas, Journal of Applied Polymer Science,2002,86:531-539
    [17]K. Cho, D.N. Saheb, H. Yang, B. Kang, J. Kim, S. Lee, Memory effect of locally ordered a-phase in the melting and phase transformation behavior of β-isotactic polypropylene,2003,44:4053-4059
    [18]R.H. Somani, B.S. Hsiao, A. Nogales, Structure development during shear flow-induced crystallization of iPP:In-situ small-angle X-ray scattering study, Macromolecules,2001,34:5902-5909
    [19]R.H. Somani, B.S. Hsiao, A. Nogales, Structure development during shear flow induced crystallization of iPP:In-situ wide-angle X-ray Diffraction study, Macromolecules,2001,34:5902-5909
    [20]A.J. Lovinger, J.O. Chua, C.C. Gryte, Studies on the a and β forms of isotactic polypropylene by crystallization in a temperature gradient, Journal of Polymer Science: Polymer Physics Edition,1977,641-656
    [21]H. Li, S. Jiang, J. Wang, D. Wang, S. Yan, Optical microscopic study on the morphologies of isotactic polypropylene induced by its homogeneity fibers, Macromolecules,2003,36:2802-2807
    [22]H. Li, X. Zhang, X. Kuang, J. Wang, D. Wang, L. Li, S. Yan, A scanning electron microscopy study on the morphologies of isotactic polypropylene induced by its own fibers, Macromolecules,2004,37:2847-2853
    [23]H. Li, S. Yan, Surface-Induced Polymer Crystallization and the Resultant Structures and Morphologies, Macromolecules,2011,44:417-428
    [24]K. Cho, D. Kim, S Yoon, Effect of Substrate Surface Energy on Transcrystalline Growth and Its Effect on Interfacial Adhesion of Semicrystalline Polymers, Macromolecules,2003,36:7652-7660
    [25]H. Ishida, P. Bussi, Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites, Macromolecules,1991,24: 3567-3577
    [26]X. Sun, H. Li, X. Zhang, J. Wang, D. Wang, S. Yan, Shear-Induced Interfacial Structure of Isotactic Polypropylene (iPP) in iPP/Fiber Composites, Macromolecules, 2006,39:1087-1092
    [27]J.L Thomason, A.A. Van Rooyen, Transcrystallized interphase in thermoplastic composites, Part I:Influence of fibre type and crystallization temperature. J. Mater. Sci.,1992,27:889-896
    [28]C. Wang, C.R. Liu, Transcrystallization of polypropylene composites:nucleating ability of fibers, Polymer,1999,40:289-298
    [29]C. Wang, F.H. Liu, W.H. Huang, Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix, polymer,2011,52:1326-1336
    [30]B. Wunderlich, Macromolecular Physics, New York: Academic Press,1976, Vol. 2, Chapter 5
    [31]J. Binsbergen, Polym. Sci. Polym. Phys. Ed.,1973,11:117-135
    [32]N. Billon, V. Henaff, E. Pelous, J.M. Haudin, Transcrystallinity Effects in High-Density Polyethylene. I. Experimental Observations in Differential Scanning Calorimetry Analysis, Journal of applied polymer science,2002,86:725-733
    [33]N. Billon, V. Henaff, J.M. Haudin, Transcrystallinity Effects in High-Density Polyethylene. Ⅱ. Determination of Kinetics Parameters, Journal of applied polymer science,2002,86:734-742
    [34]Y. Ogino, H. Fukushima, N. Takahashi, G. Matsuba, K. Nishida, T. Kanaya, Crystallization of Isotatic Polypropylene under Shear Flow Observed in a Wild Spatial Scale, Macromolecules,2006,39:7617-7625
    [35]A. Cowking, J.G. Rider, A. Keller, I.L. Hay, A study on the orientation effects in polyethylene in the light of crystalline texture. Ⅲ. On the effect of applied stress on the molecular and textural orientation, J. Naterials Sci.,1968,3:646-654
    [36]A. Keller, Polymer crystals, Reports Prog. Phys,1968,31:623-704
    [37]J.N. Hay, A. Keller, A study on the orientation effects in polyethylene in the light of crystalline texture. Ⅱ. Correlation of the molecular orientation with that of the textural elements, J. Materials Sci.,1967,2:538-558
    [38]M.J. Hill, A. Keller, On the hairdressing of shish-kebabs, Colloid Polym. Sci., 1980,258:1023-1037
    [39]A. Elmoumni, H.H.Winter, J. Waddon, Correlation of Material and Processing Time Scales with Structure Development in Isotactic Polypropylene Crystallization, Macromolecules,2003,36:6453-6461
    [40]H. Janeschitz-Kriegl, E. Ratajski, M. Stadlbauer, Flow as an effective promotor of nucleation in polymer melts:a quantitative evaluation, Rheol. Acta.,2003,42: 355-364
    [41]J. van Meerveld, G.W.M. Peters, M. Hutter, Towards a rheological classification of flow induced crystallization experiments of polymer melts, Rheol. Acta.,2004,44: 119-134
    [42]O.O. Mykhaylyk, P. Chambon, R.S. Graham, J.P.A. Fairclough, P.D. Olmsted, A.J. Ryan, The Specific Work of Flow as a Criterion for Orientation in Polymer Crystallization, Macromolecules,2008,41:1901-1904
    [43]J. Boon, G. Challa, D.W. Van Krevelen, Crystallization kinetics of isotactic polystyrene. I. Spherulitic growth rate, Journal of Polymer Science Part A-2,1968,6: 1791-1801
    [44]J. Boon, G. Challa, D.W. Van Krevelen, Crystallization kinetics of isotactic polystyrene. Ⅱ. Influence of thermal history on number of nuclei, Journal of Polymer Science Part A-2,1968,6:1835-1851
    [45]F. Van Antwerpen, D.W. Van Krevelen, Influence of crystallization temperature, molecular weight, and additives on the crystallization kinetics of poly(ethylene terephthalate), Journal of Polymer Science:Polymer Physics Edition,1972,10: 2423-2435
    [46]H. Janeschitz-Kriegl, G. Eder, M. Stadlbauer, E. Ratajski, A Thermodynamic Frame for the Kinetics of Polymer Crystallization under Processing Conditions, Monatshefte fur Chemie,2005,136:1119-1137
    [47]E. Ratajski, H. Janeschitz-Kriegl, How to determine high growth speeds in polymer crystallization, Collid Polymer Science,1996,274:938-951
    [48]H. Janeschitz-Kriegl, E. Ratajski, H. Wippel, The physics of athermal nuclei in polymer crystallization, Collid Polymer Science,1999,277:217-226
    [49]G. Eder, H. Janeschitz-Kriegl, Processing of polymers 5:Crystallization, Mater. Sci. Technol 1997,18:269-342
    [50]G. Hauser, J. Schmidtke, G. Strobl, The Role of Co-Units in Polymer Crystallization and Melting:New Insights from Studies on Syndiotactic Poly(propene-co-octene), Macromolecules,1998,31:6250-6258
    [51]B. Heck, S. Siegenfuhr, G. Strobl, R. Thomann, A law controlling polymer recrystallization showing up in experiments on s-polypropylene, polymer,2007,48: 1352-1359
    [52]B. Heck, T. Hugel, M. Iijima, E. Sadiku, G. Strobl, Steps in the transition of an entangled polymer melt to the partially crystalline state, New Journal of Physics,1999, 1:17.1-17.29
    [53]J. Schmidtke, G. Strobl, T. Thurn-Albrecht, A Four-State Scheme for Treating Polymer Crystallization and Melting Suggested by Calorimetric and Small Angle X-ray Scattering Experiments on Syndiotactic Polypropylene, Macromolecules,1997, 30,5804-5821
    [54]B. Chu, B.S. Hsiao. Small-Angle X-ray Scattering of polymers, Chem. Rev., 2001,101:1727-1761
    [55]吴其晔,巫静安,高分子材料流变学,高等教育出版社,2002
    [56]T.W. Haas, B. Maxwell, Effects of shear stress on the crystallization of linear polyethylene and polybutene-1,1969,9:225-241
    [57]R.I. Tanner, F. Qi, A comparison of some models for describing polymer crystallization at low deformation rates, Journal of Non-Newtonian Fluid Mechanics, 2005,127:131-141
    [58]E. Wassner, R.D. Maier Shear-induced crystallization of polypropylene melts, ⅩⅢth International Congress on Rheology, Cambridge,2000
    [59]Q. Chen, Y.R. Fan, Q. Zheng, A novel approach to rheological, characterization for the gelation in polymer crystallization, Chin. J. Polym. Sci.,2005,23(4):423-434
    [60]陈青,范毓润,李文春,郑强,HDPE等温结晶中液—固转变的流变特性,高等学校化学学报,2006,27(2):365~368
    [61]Q. Chen, Y.R. Fan, Q. Zheng, Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene, Rheol. Acta.,2006,46:305-316
    [62]J.W Teh, H.P Blom, A. Rudin, A Study on the Crystallization Behavior of Polypropylene, Polyethylene, and Their Blends by Dynamic Mechanical and Thermal Methods, Polymer,1994,35:1680-1687
    [63]Y.P. Khanna, Rheological Mechanism and Overview of Nucleated Crystallization Kinetics, Macromolecules,1993,26:3639-3643
    [64]Y.G. Lin, D.T. Mallin, J.C.W. Chien, H.H. Winter, Dynamic mechanical measurement of crystallization-induced gelation in thermoplastic elastomeric poly(propylene), Macromolecules,1991,24 (4):850-854
    [65]K. Boutahar, C. Carrot, J. Guillet, Polypropylene during crystallization from the elt as a model for the rheology of molten-filled polymers, Journal of Applied Polymer Science,1996,60(1):103-114
    [66]K. Boutahar, C. Carrot, J. Guillet, Crystallization of Polyolefins from Rheological Measurements-Relation between the Transformed Fraction and the Dynamic Moduli, Macromolecules,1998,31:1921-1929
    [67]E. Piorkowska, A. Galeski, Influence of the liberation of heat of fusion on the temperature near the crystallization front in polymers, Polymer,1992,33:3985-3989
    [68]E. Piorkowska, Thermal Effects Due to Polymer Crystallization, Journal of Applied Polymer Science,1997,66:1015-1028
    [69]王福军,计算流体动力学分析-CFD软件原理与应用,北京:清华大学出版社,2004
    [70]T. Young, An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society London,1805,95:65-87.
    [71]R.N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 1936,28:988-994
    [72]A.B.D. Cassie, Contact angles, Discuss. Faraday Soc,1948.3:11-16
    [73]N.A. Patankar, On the modeling of Hydrophobic Contact Angles on Rough Surface, Langmuir,2003,19:1249-1253
    [74]N.A. Patankar, Hysteresis with Regard to Cassie and Wenzel States on Superhydrophobic Surfaces, Langmuir,2010,26,7498-7503
    [75]L. Barbieri, E. Wagner, P. Hoffmann, Water Wetting Transition Parameters of Perfluorinated Substrates with Periodically Distributed Flat-Top Microscale Obstacles, Langmuir,2007,23:1723-1734
    [76]吴承伟,马国军,周平,流体流动的边界滑移问题研究进展,力学进展,2008,38,3:265~282
    [77]S.Q. Wang, S. Ravindranath, P.E. Boukany, Homogeneous Shear, Wall Slip, and Shear Banding of Entangled Polymeric Liquids in Simple-Shear Rheometry:A Roadmap of Nonlinear Rheology, Macromolecules,2011,44:183-190
    [78]H. Hervet, L. Leger, Flow with slip at the wall: from simple to complex fluids, Comptes Rendus Physique,2003,4:241-249
    [79]P.G. de Gennes, Viscometric flows of tangled polymers, CR Acad. Sci. Paris B 288,1979,219-220
    [80]S.R. Javier, A.A. Lynden, Interfacial slip violations in polymer solutions:Role of microscale surface roughness, Langmuir,2003,19:3304-3312
    [81]王克俭,周持兴,考虑壁面滑移的Z-W流变模型及其应用,高分子通报, 2003,1:8-17
    [82]Y.X. Zhu, S. Granick, No-slip boundary condition swithes to partial slip when fluid contains surfactant, Langmuir,2002,18:10058-10063
    [83]C.H. Choi, K.J.A. Westin, K.S. Breuer, Apparent slip flows in hydrophilic and hydrophobic microchannels, Physics of Fluids,2003,15:2897-2902
    [84]O.I. Vinogradova, G.E. Yakubov, Dynamic effects on force measurements.2. Lubrication and the atomic force microscope, Langmuir,2003,19:1227-1234
    [85]E. Bonaccurso, M. Kappl, H.J. Butt, Hydrodynamic force measurements: boundary slip of hydrophilic surfaces and electrokinetic effects, Physical Review Letters,2002,88:076103
    [86]J.H.J. Cho, B.M. Law, F. Rieutord, Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces, Physical Review Letters,2004,92:166102
    [87]L. Leger, Friction mechanism and interfacial slip at fluid-solid interfaces, Journal of Physics:Condensed Matter,2003,15:S19-S29
    [88]E. Bonaccurso, H.J. Butt, V.S.J. Craig, Surface roughness and hydrodynamic boundary slip pf a Newtonian fluid in a completely wetting system, Physical Review Letters,2003,90:144501
    [89]K. Watanabe, Y. Udagawa, H. Udagawa, Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall, Journal of Fluid Mechanics,1999, 381:255-238
    [90]C.H. Choi, C.J. Kim, Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface, Physical Review Letters,2006,96:066001
    [1]J. Schmiditke, G. Strobl, T. Thurn-Albrecht, A Four-State Scheme for Treating Polymer Crystallization and Melting Suggested by Calorimetric and Small Angle X-ray Scattering Experiments on Syndiotactic Polypropylene, Macro molecules,1997. 30:5804-5821
    [2]B. Heck, T. Hugel, M. Lijima, E. Sadiku, G. Strobl, Steps in the transition of an entangled polymer melt to the partially crystalline state, New Journal of Physics,1999, 1:17.1-17.29
    [3]C. Carrot, J. Guillet, K. Boutahar, Rheological behavior of a semi-crystalline polymer during isothermal crystallization,1993,32:566-574
    [4]K. Boutahar, C. Carrot, J. Guillet, Crystallization of Polyolefins from Rheological Measurements-Relation between the Transformed Fraction and the Dynamic Moduli, Macromolecules,1998,31:1921-1929
    [5]Y.P. Khanna, Rheological Mechanism and Overview of Nucleated Crystallization Kinetics, Macromolecules,1993,26:3639-3643
    [6]Q. Chen, Y.R. Fan, Q. Zheng, Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene, Rheol. Acta.,2006,46:305-316
    [7]G. Eder, H. Janeschitz-Kriegl, Processing of polymers 5:Crystallization, Mater. Sci. Technol.,1997,18:269-342
    [8]H. Janeschitz-Kriegl, G. Eder, M. Stadlbauer, E. Ratajski, A Thermodynamic Frame for the Kinetics of Polymer Crystallization under Processing Conditions, Monatshefte fur Chemie,2005,136:1119-1137
    [9]J. Wang, Q. Dou, S. Wu, X. Chen, Influence of the amount of salts of rosin acid on the nonisothermal crystallization, morphology, and properties of isotactic polypropylene, Polymer Engineering & Science,2007,47:889-897
    [10]G. Eder, H. Janeschitz-Kriegl, Stefan problem and polymer processing. Polymer Bulletin,1984,11:93-98
    [11]E. Piorkowska, Thermal Effects Due to Polymer Crystallization. Journal of Applied Polymer Science,1998,66(6):1015-1028
    [12]H. Li, S. Yan, Surface-Induced Polymer Crystallization and the Resultant Structures and Morphologies, Macro molecules,2011,44:417-428
    [13]K. Cho, D. Kim, S Yoon, Effect of Substrate Surface Energy on Transcrystalline Growth and Its Effect on Interfacial Adhesion of Semicrystalline Polymers, Macromolecules,2003,36:7652-7660
    [14]H. Ishida, P. Bussi, Surface induced crystallization in ultrahigh-modulus polyethylene fiber-reinforced polyethylene composites, Macromolecules,1991,24: 3567-3577
    [15]C. Wang, C.R. Liu, Transcrystallization of polypropylene composites:nucleating ability of fibers, Polymer,1999,40:289-298
    [16]C. Wang, F.H. Liu, W.H. Huang, Electro spun-fiber induced transcrystallization of isotactic polypropylene matrix, polymer,2011,52:1326-1336
    [17]J.W Teh, H.P Blom, A Rudin, A Study on the Crystallization Behavior of Polypropylene, Polyethylene, and Their Blends by Dynamic Mechanical and Thermal Methods, Polymer,1994,35:1680-1687
    [18]Q. Chen, Y.R Fan, Q. Zheng, A novel approach to rheological, characterization for the gelation in polymer crystallization, Chin. J. Polym. Sci.,2005,23(4):423-434
    [19]陈青,范毓润,李文春,郑强,HDPE等温结晶中液—固转变的流变特性,高等学校化学学报,2006,27(2):365~368
    [20]A. Elmoumni, H.H.Winter, J. Waddon, Correlation of Material and Processing Time Scales with Structure Development in Isotactic Polypropylene Crystallization, Macromolecules,2003,36 (17):6453-6461
    [21]S. Vleeshouwers, H.E.H. Meijier, A rheological study of shear induced crystallization, Rheological Acta,1996,35:391-399
    [22]C.Y.M. Tung PJ. Dynes, Relationship between viscoelastic properties and gelation in thermosetting systems, Journal of Applied Polymer Science,1982,27: 569-574
    [23]H.H. Winter, Can the gel point of a cross-linking polymer be detected by G'-G" crossover? Polymer Engineering & science,1987,31:683-697
    [24]K. Te Nijenhuis, H.H. Winter, Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution, Macromolecules,1989,22:411-414
    [25]F. Chambon, H.H. Winter, Linear viscoelasticity at gel point of a crosslinking PDMS with imbalance stoichimetry, J. Rheol., 1987,31:683-697
    [26]L.A. Utrack, Two-Phase Polymer Systems, Hanser, Munich,1991
    [1]W. Stocker, M. Schumacher, S. Graff, A. Thierry, J. Wittmann, B. Lotz, Epitaxial crystallization and AFM investigation of a frustrated polymer structure:isotactic poly (propylene), β phase, Macro molecules,1998,31:807-814
    [2]Y.J. Park, S.J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K.J. Kim, C. park, Ordered Ferroelectric PVDF-TrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory, Macromolecules,2008,41:8648-8654
    [3]K. Cho, D. Kim, S. Yoon, Effect of substrates surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers, Macromolecules,2003,36:7652-7660
    [4]H. Schonhorn, Heterogeneous nucleation of polymer melts on high-energy surfaces. Ⅱ. Effect of substrate on morphology and wettability, Macromolecules, 1968,1:145-151
    [5]N. Billon, V. Henaff, E. Pelous, J.M. Haudin, Transcrystallinity Effects in High-Density Polyethylene.I. Experimental Observations in Differential Scanning Calorimetry Analysis, Journal of Applied Polymer Science,2002,86:725-733
    [6]C. Wang, C.R. Liu, Transcrystallization of polypropylene composites:nucleating ability of fibers, Polymer,1999,40:289-298
    [7]C. Wang, F.H. Liu, W.H. Huang, Electrospun-fiber induced transcrystallization of isotactic polypropylene matrix, Polymer,2011,52:1326-1336
    [8]H. Quan, Z.M. Li, M.B. Yang, R. Huang, On transcrystallinity in semi-crystalline polymer composites, Composites Science and Technology,2005,65:999-1021
    [9]J. Varga, J. Karger-Kocsis, Rules of supermolecular structure formation in sheared isotactic polypropylene melts, Journal of Polymer Science:Part B:Polymer Physics,1996,34:657-670
    [10]Y. Yuryev, P. Wood-Adams, Effect of surface nucleation on isothermal crystallization kinetics:theory, simulation and experiment, Polymer,2011,52: 708-717
    [11]N.J. Hallab, K.J. Bundy, K. O'Connor, R.L. Moses, J.J. Jacobs, Evaluation of Metallic and Polymeric Biomaterial Surface Energy and Surface Roughness Characteristics for Directed Cell Adhesion, Tissue Engineering,2001,7:55-71
    [12]F.M. Fowkes, Attractive forces at interfaces, Industrial & Engineering Chemistry,1964,56:40-52
    [13]J.M. Schakenraad, H.J. Busscher, C.R. H. Wildevuur. J. Arends, J Biomedical Materials Research,1986,20:773-784
    [14]Y.P. Khanna, Rheological mechanism and overview of nucleated crystallization kinetics, Macromolecules,1993,26:3639-3643
    [15]K. Boutahar, C. Carrot, J. Guillet, Polypropylene during Crystallization from the Melt as a Model for the Rheology of Molten-Filled Polymers, Journal of Applied Polymer Science,1996,60:103-114
    [16]K. Boutahar, C. Carrot, J. Guillet, Crystallization of Polyolefins from Rheological Measurements-Relation between the Transformed Fraction and the Dynamic Moduli, Macromolecules,1998,31:1921-1929
    [17]Q. Chen, Y.R. Fan, Q. Zheng, Rheological scaling and modeling of shear-enhanced crystallization rate of polypropylene, Rheol. Acta.,2006,46: 305-316
    [18]J. Menczel, J. Varga, Influence of nucleating agents on crystallization of polypropylene, Journal of Thermal Analysis,1983,28:161-174
    [19]E. Piorkowska, Thermal Effects Due to Polymer Crystallization. Journal of Applied Polymer Science,1998,66(6):1015-1028
    [20]H. Janeschitz-Kriegl, E. Ratajski, H. Wippel, The physics of athermal nuclei in polymer crystallization, Colloid Polymer Science,1999,277:217-226
    [21]A. Kolmogoroff, Izv Akad Nauk SSSR, Ser Math 1937,1:355-360
    [22]B. Wunderlich, Macro molecular Physics, Academic Press: New York,1976,2: Chapter 5
    [23]B.W. Cherry, Polymer Surfaces, Cambridge University Press:London,1981
    [24]R.J. Roe, Surface tension of polymer liquids, Journal of Physical Chemistry, 1968,72:2013-2017
    [25]Q. Zhao, Y. Liu, C. Wang, S. Wang, H. Muller-Steinhagen, Effect of surface free energy on the adhesion of biofouling and crystalline fouling,2005,60:4858-4865
    [26]G Eder, H. Janeschitz-Kriegl, Processing of polymers 5:Crystallization, Mater. Sci. Technol 1997,18:269-342
    [27]J. Varga, J. Kargar-Kocsis, Rules of supermolecular structure formation in sheared isotatic polypropylene melts, Journal of Polymer Science:Part B:Polymer Physics,1996,34:657-670
    [28]R. Nowacki, B. Monasse, E. Piorkowska, A. Galeski, J.M. Haudin, Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear, Polymer,2004,45:4877-4892
    [29]J. Varga, G.W. Ehrenstein, Formation of β-modification of isotatic polypropylene in its late stage of crystallization, Polymer,1996,37:5959-5963
    [1]吴承伟,马国军,周平,流体流动的边界滑移问题研究进展,力学进展,2008,38,3:265~282
    [2]S.Q. Wang, S. Ravindranath, RE. Boukany, Homogeneous Shear, Wall Slip, and Shear Banding of Entangled Polymeric Liquids in Simple-Shear Rheometry: A Roadmap of Nonlinear Rheology, Macromolecules,2011,44:183-190
    [3]J. van Meerveld, G.W.M. Peters, M. Hiitter, Towards a rheological classification of flow induced crystallization experiments of polymer melts, Rheol. Acta.,2004,44: 119-134
    [4]O.O. Mykhaylyk, P. Chambon, R.S. Graham, J.P.A. Fairclough, P.D. Olmsted, A.J. Ryan, The Specific Work of Flow as a Criterion for Orientation in Polymer Crystallization, Macromolecules,2008,41:1901-1904
    [5]A.W Phillips, A. Bhatia, P.W. Zhu, G. Edward, Shish Formation and relaxation in sheared isotactic polypropylene containing nucleating particles, Macromolecules, 2011,44:3517-3528
    [6]B. Shen, Y. Liang, C.G. Zhang, C.C. Han, Shear-induced crystallization at polymer-substrate interface: the slippage hypothesis, Macromolecules,2011,44: 6919-6927
    [7]X. Li, S.Q. Wang, Nonlinear rheological behabior of diphenylmethylvinyl silicone gum: an example of homogeneous shear, Rheo Acta,2010,49:89-94
    [8]S. Ravindranath, S.Q. Wang, M. Olechnowicz, R.P. Quirk, Banding in simple steady shear of entangled polymer solution, Macromolecules,2008,41:2663-3670
    [9]Y.T. Hu, Steady-state shear banding in entangled polymers? Journal of Rheology, 2010,54:1307-1323
    [10]A. Yoshimura, P.K. Prud'Homme, Wall slip correction for couette and parallel disk viscometers, Journal of Rheology,1988,32:53-67
    [11]Y. Chen, D.M. Kalyon, E. Bayramli, Effects of surface roughness and the chemical structure of materials of construction on wall slip behavior of linear low density polyethylene in capillary flow, Journal of Applied Polymer Science,1993,50: 1169-1177
    [12]J.L. White, M.H. Han, N. Nakajima, R. Brzoskowski, The influence of materials of construction on biconical rotor and capillary measurements of shear viscosity of rubber and its compounds and considerations of slippage, Journal of Rheology,1991, 35:167-189
    [13]D.J. Henson, M.E. Mackay, Effect of gap on the viscosity of monodisperse polystyrene melts: Slip effects, Journal of Rheology,1995,39:359-373
    [1]B. Shen, Y. Liang, C.G. Zhang, C.C. Han, Shear-induced crystallization at polymer-substrate interface:the slippage hypothesis, Macromolecules,2011,44: 6919-6927
    [2]H. Janeschitz-Kriegl, E. Ratajski, H. Wippel, The physics of athermal nuclei in polymer crystallization, Colloid Polymer Science,1999,277:217-226
    [3]A. Elmoumni, H.H.Winter, J. Waddon, Correlation of Material and Processing Time Scales with Structure Development in Isotactic Polypropylene Crystallization, Macromolecules,2003,36:6453-6461
    [4]H. Janeschitz-Kriegl, E. Ratajski, M. Stadlbauer, Flow as an effective promotor of nucleation in polymer melts:a quantitative evaluation, Rheol. Acta.,2003,42: 355-364
    [5]J. van Meerveld, G.W.M. Peters, M. Hutter, Towards a rheological classification of flow induced crystallization experiments of polymer melts, Rheol. Acta.,2004,44: 119-134
    [6]O.O. Mykhaylyk, P. Chambon, R.S. Graham, J.P.A. Fairclough, P.D. Olmsted, A.J. Ryan, The Specific Work of Flow as a Criterion for Orientation in Polymer Crystallization, Macromolecules,2008,41:1901-1904
    [7]A. Jabbarzadeh, R.I. Tanner, Flow-Induced crystallization: unraveling the effects of shear rate and strain, Macromolecules,2010,43:8136-8142
    [8]Y.P. Khanna, Rheological Mechanism and Overview of Nucleated Crystallization Kinetics, Macromolecules,1993,26:3639-3643
    [9]A. Yoshimura, P.K. Prud'Homme, Wall slip correction for couette and parallel disk viscometers, Journal of Rheology,1988,32:53-67
    [10]D.J. Henson, M.E. Mackay, Effect of gap on the viscosity of monodisperse polystyrene melts:Slip effects, Journal of Rheology,1995,39:359-373
    [11]吴其哗,巫静安,高分子材料流变学,高等教育出版社,2002
    [12]P.E. Boukany, P. Tapadia, S.Q. Wang, Interfacial stick-slip transition in simple shear of entangled melts, Journal of Rheology,2006,50:641-654
    [13]G. Massey, H. Hervet, L. Leger, Investigation of the slip transition at the melt polymer interface, Europhysics Letters,1998,43:83-88
    [14]V. Mhetar, L.A. Archer, Slip in entangled polymer melts,1. General fearures. Macromolecules,1998,31:8607-8616
    [15]P.P. Drda, S.Q. Wang, Stick-Slip transition at polymer melt/solid interface. Physical review letters,1995,75:2698-2701
    [16]V. Mhetar, L.A. Archer, Slip in entangled polymer melts.2. Effect of surface treatment, Macromolecules,1998,31,8617-8622

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700