1,3-二硫杂环戊烯-2-硫酮-4,5-二巯基配合物的制备、三阶非线性光学和磁学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机金属配位化合物由于其结构的多变性和独特性,在不对称催化、多孔气体吸附、光学、电学、磁学等方面具有良好的应用前景和重要的应用价值,是当今配位化学、材料学和生命科学研究的热点之一。而在诸多有机配体之中,1,3-二硫杂环戊烯-2-硫酮-4,5-二巯基(DMIT)具有良好的π共轭结构,从而有利于电子在分子间的转移,传导和交换过程。自从该配体于1975年被首次合成以来,相关金属DMIT配合物的物理性质报导已经超过300篇,而且涉及的领域也十分广泛,如超导、半导体、有机分子磁体、非线性光学材料等。本论文以合成新型配合物,发现新物理性质,探讨性能与固态结构关系为目的,利用DMIT配体与过渡金属离子以及各种阳离子组装成一系列配合物。对得到的配合物进行了光谱表征,基本物化性能测试,结构解析,并对其非线性光学和磁学性质进行了研究。
     研究内容概要如下:
     1.适用于全光开关的配合物设计合成以及三阶非线性光学性质研究
     适用于全光开关器件的材料要求具有大的三阶非线性折射系数、快的响应速度、低的吸收、低的光传输损耗以及高的物理化学稳定性和热稳定性,易于加工并可形成波导全光原型器件。本论文致力于探索和研究具有高三阶非线性光学效应和超快响应速度的三阶非线性光学材料,针对全光开关对材料三阶非线性光学性质的要求,从材料分子结构的研究出发,探讨了影响材料三阶非线性光学性质的各项因素。通过改变配合物外界阳离子和中心金属离子,利用DMIT的高度离域的π电子体系,成功合成了一系列基于Hg(dmit)2、Mn(dmit)2和Cd(dmit)2的配合物,并对这些配合物进行了基本物化表征和三阶非线性光学性质的研究。
     本论文选用激光z扫描方法来研究DMIT配合物的非线性光学性质。实验中采用532nm,20ps脉冲激光照射样品。在研究中发现了一种在蓝绿光通信领域有潜在应用的Cd-DMIT配合物(TBA)2[Cd(dmit)2](TBA=四丁基铵)。利用显微结晶研究了该化合物在不同溶剂中的结晶形貌,并通过溶剂蒸发法自发成核结晶获得了小体块单晶。闭孔Z扫描测试归一化曲线显示出典型的中心对称图样,这表明该材料对于532nm,20ps脉冲激光无非线性吸收。经计算,其三阶非线性折射率和二阶分子超极化率分别为9.409×10-18m2/W和2.774×10-30esu,都大于同类化合物1个数量级以上。结果表明,(TBA)2[Cd(dmit)2]具有三阶非线性折射率大、非线性吸收系数小及响应速度快的特点,在全光开关器件的应用中具有潜在的价值。
     2. DMIT配合物的磁性研究
     采用大分子阳离子烷基三苯基膦设计合成了两种Ni-DMIT配合物:(乙基三苯基膦)[Ni(dmit)2](?)(?)(丙基三苯基膦)Ni(dmit)2]。并对其进行了基本物化表征和X射线单晶衍射的测试。结构分析表明配合物中可能有着较强的磁相互作用。为了研究物质的磁性,本论文做了变温磁化率和电子顺磁共振测试。两种配合物都表现出反常规的磁化率-温度曲线,表明该类化合物在磁有序结构,但这种曲线又并非典型原子磁体的磁性曲线,需要采用分子磁学方法来进行解释。根据化合物的结构,确立自旋模型,对两种物质的磁性进行了分析。结果在(丙基三苯基膦)[Ni(dmit)2]中发现了磁四聚体的存在,这是在DMIT配合物中较为少见的一类磁有序结构,这也是采用常规合成方法首次报道的磁四聚体。
     综上所述,本论文通过分子设计和晶体工程方面制备了一系列DMIT配合物材料,并选择性地对部分材料进行子三阶非线性光学学性质和磁性研究研制出了种在全光开关领域具有潜在应用价价的材料和种反铁磁四聚体材料。
Organometallics are a series of compounds that possess good application value and prospects in asymmetric catalysis, porous gas adsorption, optics, electronics and magnetism because of their structural diversities and uniqueness. It is one of the most popular topics in current coordination chemistry, material science and bioscience. Among many organic ligands,1,3-dithiol-2-thioxo-4,5-dithiolate (DMIT) possesses a good π-conjugated structure, which greatly facilitates the charge-transferring, electron-conducting and spin-exchanging. Since it is first synthesized in1975, more than300papers have been reported concerning the physical properties of DMIT complexes. Meanwhile, the research fields these reports involve are very extensive, including superconductor, semiconductor, organic molecule magnets and nonlinear optical (NLO) materials. The dissertation aims at synthesizing novel coordination compounds, discovering new physical properties and investigating structure-property relationships, and makes use of DMIT ligand, transition metals and various counter-cations to assembly a series of complexes. The obtained complexes are characterized by spectroscopic analyses, elementary physicochemical tests and X-ray crystallographic studies, with their NLO and magnetic properties particularly and deeply investigated. The main research contents are summarized as follows:
     1. Design and synthesis of complexes for all-optical switching applications and investigations of third-order NLO properties
     For realization of all-optical switching devices, the following material requirements have to be met:large third order nonlinear refractive coefficient, fast response time, low absorption and optical transmission loss, high physicochemical stability and thermal stability and processability to form original all-optical switching waveguide device. This dissertation is devoted to the exploration and investigation of third-order NLO materials with high third-order NLO effects and ultra-fast response time. According to material requirements of all-optical switchings, multiple factors influencing the third-order NLO properties of materials were probed and discussed from the molecular structures of the material. A series of complexes based on Hg(dmit)2, Mn(dmit)2and Cd(dmit)2were successfully synthesized by changing counter-cations and central metal ions and using highly delocalized π-electron system. Elementary physicochemical characterizations and third-order NLO studies are performed on these complexes.
     Z-scan technique was selected for the NLO property studies using a532nm,20ps laser pulse irradiation. A complex of (TBA)2[Cd(dmit)2](TBA=tetrabutylammonium) which could be of potential interests in all-optical switching applications at blue-green light band has been discovered. Micro-crystallization morphology was used to study crystallization tendency in different solvents. A small bulk single-crystal was obtained through solvent evaporation and spontaneous nucleation. Closed-aperture shows a typical central-symmetric profile, which indicates no nonlinear absorption. The magnitude of third-order nonlinear refraction index n2and the second order molecular hyperpolarizability γ are9.409×10-18m2/W and2.774×10-30esu, respectively, both of which are much larger than analogous compounds. The high nonlinear refraction coefficient and extremely low nonlinear absorption coefficient, combined with the fast response time, suggests that this material could be a potential candidate for application as all-optical switching devices.
     2. Magnetic studies of DMIT complexes
     Two Ni-DMIT complexes:(ethyl-triphenylphosphate)[Ni(dmit)2] and (propyl-triphenylphosphate)[Ni(dmit)2] were designed and synthesized using large cations alkyl-triphenylphosphates. Elementary physicochemical characterizations and single crystal X-ray diffractions have been performed on these two salts. Structural analyses indicate strong magnetic interactions within polymers. To investigate the magnetic properties, variable-temperature magnetic measurements and electron paramagnetic resonance were carried out. Both salts exhibit unusual susceptibility-temperature curves, which suggest magnetic-orders in the compounds. Since these curves have no typical shapes of atom-based magnets, molecular magnetism strategies are needed to explain the phenomenon. Based on the crystal structures, spin models were established and the magnetic properties were analyzed. It turns out that a magnetic tetramer is observed in (propyl-triphenylphosphate)[Ni(dmit)2], which is quite rarely seen in DMIT complexes. This is also the first example of Ni(dmit)2tetramers obtained by regular metathetical reactions.
     In summary, in this dissertation a series of DMIT materials have been prepared through molecular designing and crystal engineering, and their third-order NLO and magnetic properties have also been selectively studied. One compound as a potential candidate in all-optical switching and an anti-ferromagnetic tetramer based on DMIT have been discovered.
引文
[1]徐志固现代配位化学化,化学工业出版社,1987
    [2]P. Day. Organic-inorganic layer compounds:physical properties and chemical reactions, Philos. Trans. R. Soc. Lond. A,1985,314:145-158.
    [3]J. A. McCleverty. Metal 1,2-dithiolene and related complexes, Prog. Inorg. Chem. 1968,10:49-221.
    [4]M. Arca, M. C. Aragoni.1,2-dithiolene ligands and related selenium and tellurium compounds, Handbook of Chalcogen Chemistry,2007:797-830.
    [5]C. Faulmann, P. Cassoux. Dithiolene Chemistry:Synthesis, Properties, and Applications, Progress in Inorganic Chemistry, Wiley, Chichester,2004,52,399.
    [6]A. T. Coomber, D. Beljonne, R. H. Friend, J. K. Bredas, A. Charlton, N. Robertson, A. E. Underhill, M. Kurmoo, P. Day. Intermolecular interactions in the molecular ferromagnetic NH4Ni(mnt)2·H2O, Nature,1996,380:144
    [7]U. T. Mueller-Westerhoff. Comprehensive Coordination Chemistry, Pergamon, Oxford,1987.
    [8]B. J. Coe. Non-Linear Optical Properties of Metal Complexes, in Comprehensive Coordination Chemistry Ⅱ, in:J. A. McCleverty, T. J. Meyer (Eds), Elsevier-Pergamon, Oxford,2004,9:621-687.
    [9]J. M. Tunney, J. McMaster, C. D. Garner. Comprehensive Coordination Chemistry Ⅱ, in:J. A. McCleverty, T. J. Meyer (Eds.), Elsevier-Pergamon, Oxford,2004,8: 459.
    [10]T. Nakamura, T. Akutagawa, K. Honda, A. E. Underhill, A. T. Coomber, R. H. Friend. A molecular metal with ion-conducting channels, Nature,1998,394: 159-162.
    [11]T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S.-I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators, Nature Mater.2009,8:342-347.
    [12]H. Tanaka, Y. Okano, H. Kobayashi, W. Suzuki, A. Kobayashi. A Three-Dimensional Synthetic Metallic Crystal Composed of Single-Component Molecules, Science,2001,291:285-287.
    [13]S. Curreli, P. Deplano, C. Faulmann, A. Ienco, C. Mealli, M. L. Mercuri, L. Pilia, G. Pintus, A. Serpe, E. F. Trogu. Electronic factors affecting second-order NLO properties:case study of four different push-pull bis-dithiolene nickel complexes, 2004,43:5069-5079.
    [14]G. Steimecke, R. Kirmse, E. Hoyer. Dimercapto-isotrithion - ein neuer, ungesattigter 1,2-Dithiolatligand, Z. Chem.1975,15:28-29.
    [15]M. Bousseau, L. Valade, J. P. Legros, P. Cassoux, M. Garbauskas, L. V. Interrante. Highly conducting charge-transfer compounds of tetrathiafulvalene and transition metal-"dmit" complexes, J. Am. Chem. Soc.1986,108:1908-1916.
    [16]P. Cassoux. Molecular (super)conductors derived from bis-dithiolate metal complexes, Coord. Chem. Rev.1999,185-186:213-232.
    [17]T. Akutagawa, T. Nakamura. [Ni(dmit)2] salts with supramolecular cation structure, Coord. Chem. Rev.2000,198:297-311.
    [18]C. L. Zhan, W. Xu, D. Q. Zhang, D. H. Li, Z. Z Lu, Y. X. Nie, D. B Zhu. Z-scan investigation of fifth-order optical nonlinearity induced by saturable-absorption from (TBA)2Ni(dmit)2:application for optical limiting, J. Mater. Chem.2002,12: 2945-2948.
    [19]X. Q. Wang, Q. Ren, H. L. Fan, J. W. Chen, Z. H. Sun, T. B. Li, X. T. Liu, G. H. Zhang, D. Xu, W. L. Liu. Preparation, crystal structure, spectrographic characterization, thermal and third order nonlinear optical properties of benzyltriethylamine bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickel(Ⅲ), J. Crystal Growth,2010,312:2206-2214.
    [20]K. Mukai, D. Shiba, K. Mukai, K. Yoshida, H. Hisatou, K. Ohara, Y. Hosokoshi, N. Azuma. Magnetic semiconductors:Molecular materials based on alkyl-pyridinium-substituted verdazyl radical cations and Ni(dmit)2 anion, Polyhedron,2005,24:2513-2521.
    [21]S. Nishihara, T. Akutagawa, T. Hasegawa, S. Fujiyama, T. Nakamura, T. Nakamura. Two Polymorphs of (Anilinium)(18-Crown-6)[Ni(dmit)2]:Structure and Magnetic Properties, J. Solid State Chem.2002,168:661-667.
    [22]J. A. Smith, J.-R. Galan-Mascaros, R. Clerac, K. R. Dunbar. {Mn(OH2)2[Mn(bpym)(OH2)]2[Fe(CN)6]2}。:a two-dimensional ferrimagnet with a partial cubane motif, Chem. Commun.2000:1077-1078.
    [23]D. Visinescu, C. Desplanches, I. Imaz, V. Bahers, R. Pradhan, F. A. Villamena, P. Guionneau, J. P. Sutter. Evidence for increased exchange interactions with 5d compared to 4d metal ions. Experimental and theoretical insights into the ferromagnetic interactions of a series of trinuclear [{M(CN)8}3-/NiⅡ] compounds (M= MoⅤorWⅤ),J. Am. Chem. Soc.2006,128:10202-10212.
    [24]Y. Song, P. Zhang, X.-M. Ren, X.-F. Shen, Y.-Z. Li, X.-Z. You. Octacyanometallate-Based Single-Molecule Magnets:CoⅡ9MⅤ6(M=W, Mo), J. Am. Chem. Soc.2005,127:3708-3709.
    [25]张道鹏.氰根桥联异金属配合物的合成、晶体结构与磁性研究,博士学位论文,2010
    [26]P. Deplano, L. Pilia, D. Espa, M. L. Mercuri, A. Serpe. Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores:Structure/property relationship, Coord. Chem. Rev.2010,254: 1434-1447.
    [27]C. S. Winter, C. A. S. Hill, A. E. Underhill. Near resonance optical nonlinearities in nickel dithiolene complexes, Appl. Phys. Lett,1991,58:107-109
    [28]S. Nakamura, K. Tajima, Y. Sugimoto, Experimental inverstigation on highspeed switching characteristics of a novel symmetric Mach-Zehnder alloptical switch, Appl. Phys. Lett.,1994,65:283-285.
    [29]S. Nakamura, Y. Ueno, T. Kazuhito. Ultrafast (200-fs switching,1.5-Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization discriminating symmetric Mach-Zehnder all-optical switch, IEEE Photonic. Tech. L.,1998,10(11):1575-1577.
    [30]J. Leuthold, P. A. Besse, E. Gamper, M. Dulk, S. Fischer, G. Guekos, H. Melchior. All-optical Mach-Zehnder interferometer wavelength converters and switches with integrated data-and control-signal separation scheme, J. Lightwave Technol.,1999, 17(6):1056-1066.
    [31]R J. Runser, D. Zhou, C. Coldwell, B C. Wang, P. Toliver, K. L. Deng, I. Glesk, P. Prucnal. Interferometric ultrafast SOA-based optical switches:From devices to applications, Opt. Quant. Electron.,2001,33:841-874.
    [32]F. Ebisawa, M. Hoshino, K. Sukegawa. Self-holding photochromic polymer Mach-Zehnder optical switch, Appl. Phys. Lett.,1994,65:2919-2921.
    [33]C. S. Winter, S. N. Oliver, J. D. Rush, C. A. S. Hill, A. E. Underhill. Large third-order optical nonlinearities of nickel-dithiolene-doped polymethyl -methacrylate, J. Appl. Phys.,1992,71:512-514.
    [34]C. S. Winter, S. N. Oliver, R. J. Manning, J. D. Rush, C. A. S. Hill, A. E. Underhill. Nonlinear optical studies of nickel dithiolene complexes, J. Mater. Chem.,1992,2: 443-447.
    [35]S. F. Wang, W. T. Huang, T. Q. Zhang, H. Yang, Q. H. Gong, Y. Okuma, M. Horikiri, Y F. Miura. Third-order nonlinear optical properties of didodecyl-dimethylammonium-Au(dmit)2, Appl. Phys. Lett.,1999,75(13):1845-1847.
    [36]J. Dai, G. Q. Bian, X. Wang, Q. F. Xu, M. Y. Zhou. A New Method to Synthesize Unsymmetrical Dithiolene Metal Complexs of 1,3-Dithiole-2-thione-4,5-dithiolate for Third-Order Nonlinear Optical Applications, J. Am. Chem. Soc., 2000,122:11007-11008.
    [37]Z. R. Sun, M. H. Tong, H. P. Zeng, L. G. Ding, Z. G. Wang, Z. Z. Xu, J. Dai, G Q Bian. Optical limiting response in a unsymmetrical dithiolene metal complex (Me4N)2[Zn(dmit)(Sph)2], Chem. Phys. Lett.,2001,342(3-4):323-327.
    [38]C. M. Liu, D. Q. Zhang, Y. L. Song, C. L. Zhan, Y. L. Li, D. B. Zhu. Synthesis, crystal structure and third-order nonlinear optical behavior of a novel dimeric mixed-ligand zinc(Ⅱ) complex of 1,3-dithiole-2-thione-4,5-dithiolate, Eur. J Inorg. Chem.,2002,7:1591-1594.
    [39]董书攀,宋秀昆.对潜光通信简介,现代通信,2003,7:32.
    [40]奚小明.蓝绿激光对潜通信综述,中国科技信息,2007,22:326.
    [41]林潇,孙博鹏.固体全光开关及前景展望研究,中国科技纵横,2012,19:22.
    [42]G. Matsubayashi, K. Takahashi, T. Tanaka. X-ray crystal structure of bis(N-ethylpyridinium) bis[4,5-dimercapto-1,3-dithiole-2-thionato(2-)]cuprate(Ⅱ) and electrical properties of its oxidized salts, J. Chem. Soc. Dalton Trans.1988: 967-972.
    [43]T. Nakamura, A. E. Underhill, A. T. Coomber, R. H. Friend, H. Tajima, A. Kobayashi, H. Kobayashi. Structure and physical properties of the tetraphenylphosphonium-[Ni(dmit)2]3 (dmit= 2-thioxo-1,3-dithiol-4,5-dithiolate) salt, Inorg. Chem.1995,34:870-876.
    [44]A. E. Pullen, H. L. Liu, D. B. Tanner, K. A. Abboud, J. R. Reynolds. Electrocrystallization, X-ray structure and electronic properties of the dmit-based salt [MePh3P][Ni(dmit)2]3, J. Mater. Chem.1997,7:377-380.
    [45]H. Imai, T. Otsuka, T. Naito, K. Awaga, T. Inabe. M(dmit)2 Salts with Nitronyl Nitroxide Radical Cations (M=Ni and Au, dmit= 1,3-Dithiol-2-thione-4,5-dithiolate). Nonmagnetic Single-Chain Formation vs Antiferromagnetic Spin-Ladder-Chain Formation of M(dmit)2, J. Am Chem. Soc. 1999,121:8098-8103.
    [46]M. Troyer, H. Tsunetsugu, D. Wurtz. Thermodynamics and spin gap of the Heisenberg ladder calculated by the look-ahead Lanczos algorithm, Phys. Rev. B, 1994,50:13515-13527.
    [47]T. Akutagawa, T. Hasegawa, T. Nakamura, T. Inabe. Supramolecular cation assemblies of hydrogen-bonded (NH4+/NH2NH3+)(crown ether) in [Ni(dmit)2]-based molecular conductors and magnets, J. Am. Chem. Soc.2002, 124:8903-8911.
    [48]J. L. Bredas, C. Adant, P. Tackx, A. Persoons. Third-Order Nonlinear Optical Response in Organic Material:Theoretical and Experimental Aspects, Chem. Rev., 1994,94:243-278.
    [49]G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, C. T. Seaton. Third-Order Nonlinear Integrated Optics, J. Lightwave Tech.,1988,6(6):953-970
    [50]石顺祥,陈国夫,赵卫,刘继芳.非线性光学.西安电子科技大学出版社,第版,2003.
    [51]肖定全,王民.晶体物理学.
    [52]赵圣之非线性光学,山东大学出版社,2007
    [53]E. A. Mclean, L. Sica, A. J. Glass. Interferometric observation of absorption induced index change associated with thermal blooming, Appl. Phys. Lett.,1969, 13(3):369-371.
    [54]E. S. Bliss, D. R. Speck, W. W. Simmons. Direct interferometeric measurements of the nonlinear index coefficient in laser materials, Appl. Phys. Lett,1974,25(12): 728-730.
    [55]M. J. Moran, C. Y. She, R. L. Carman. Interferometric measurements of nonlinear refractive-index coefficient relative to CS2 in laser-system-related materials, IEEE J. Quantum Elect.,1975, QE-11(6):259-263.
    [56]D. Millan, M. J. Weber. Measurement of nonlinear refractive-index coefficients using time-resolved interferometry:Application to optical materials for high-power neodymium lasers, J. Appl. Phys.,1976,47(6):2497-2501.
    [57]G. R. Olbright, N. Peyghambarian. Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSe1-x-doped glasses, Appl. Phys. Lett.,1986,48(18): 1184-1186.
    [58]W. E. Williams, M. J. Soileau, E. W. Van Stryland. Optical switching and n2 measurements in CS2, Opt. Commun.,1984,50(4):256-260.
    [59]A. Owyoung. Ellipse rotations studies in laser host materials, IEEE J. Quantum Elect.,1973, QE-9(11):1064-1069.
    [60]N. Morita, T. Tokizaki, T. Yajima. Time-delayed four-wave mixing using incoherent light for observation of ultrafast population relaxation, J. Opt. Soc. Am. B,1987,4(8):1269-1275.
    [61]S. R. Friberg, P. W. Smith. Nonlinear optical glasses for ultrafast optical switches, IEEE J. Quantum Elect.,1987, QE-23(12):2089-2094.
    [62]P. D. Maker, R. W. Terhune. Study of optical effects due to an induced polarization third order in the electric field strength, J. Phys. Rev.,1965,137:A801-A818.
    [63]M. Sheik-bahae, A. A. Said, E. W. Van Stryland. High-sensitivity, single beam n2 measurements, Opt. Lett.,1989,14:955-957.
    [64]M. Sheik-bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland. Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Elect.,1990, QE-26:760-769.
    [65]M. Sheik-bahae, J. Wang, R. Desalvo. Measurement of nondegenerate nonlinearities using a two-colour Z-scan, Opt. Lett.,1992,17:258-260.
    [66]J. Wang, M. Sheik-bahae, A. A. Said, D. J. Hagan, E. W. Van Stryland. Time-resolved Z-scan measurements of optical nonlinearities, J. Opt. Soc. Am. B, 1994,11:1009-1017.
    [67]P. Chen, I. V. Tomov, P. M. Rentzepis, M. Nakashima, J. F. Roach. A two dimensional Z-scan method for the measurement of optical nonlinear effects, SPIE, 1997,3146:160-169.
    [68]X. Q. Wang, H. L. Fan, Q. Ren, J. Sun, T. B. Li, G. H. Zhang, D. Xu. Preparation, spectrographic characterization, thermal, second and third order nonlinear optical properties of 4,5-bis(foroylsulfanyl)-1,3-dithiole-2-thione, Laser Phys.2009,19: 1858-1866.
    [69]X. Q. Wang, D. Xu, Q. Ren, G. H. Zhang, X. B. Sun, X. Q. Hou, W. F. Guo, H. Lu. Preparation, single crystal growth and characterization of bis(tetrabutylammonium)bis(4,5-dithiolato-1,3-dithiole-2-thione)copper, Cryst. Res. Technol.2007,42:349-355.
    [70]X. Q. Wang, Q. Ren, J. Sun, H. L. Yang, T B. Li, H. L. Fan, G. H. Zhang, D. Xu, J. H. Zhao. Preparation, physicochemical and third order nonlinear optical properties of bis(tetrabutylammonium)bis(2-thioxo-1,3-dithiole-4,5-dithiolato)mercurate(Ⅱ), Cryst. Res Technol.2009,44:657-668
    [71]A. Bravais, Etudes Crystallographiques. Academie des Sciences, Paris,1913.
    [72]J. D. H. Donnay, D. Harker. A new law of crystal morphology extending the law of Bravais, Am. Mineral,1937,22:463-470.
    [73]P. E. Werner, L. Eriksson, M. Westdahl. TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries, J. Appl. Cryst.1985,18:367-370.
    [74]J. Zhai, C. H. Huang, T. X. Wei, L. B. Gan, H. Cao. The photoelectric conversion and second harmonic generation properties of the transition metal-containing complexes [(CH3)2N C6H4-CH=CH-C5H4N-C18H37]2M(dmit)2 (M=Cd, Ni), Polyhedron,1999,18:1513-1518.
    [75]K. I. Pokhodnya, C. Faulmann, I. Malfant, R. Andreu-Solano, P. Cassoux, A. Mlayah, D. Smirnov, J. Leotin Infrared and Raman properties of [M(dmit)2] (M=Ni, Pd) based compounds, Synth. Met.1999,103:2016-2019.
    [76]T. N. Zinenko, V A. Starodub, A. R. Kazachkov. Metal isotrithionedithiolates as synthetic metals, J. Russ. Coord. Chem.2003,29:400-407.
    [77]G. B. Ferreira, N. M. Comerlato, J. L. Wardell, E. Hollauer, Vibrational spectra of bis(dmit) complexes of main group metals:IR, Raman and Ab Initio calculations, J. Braz. Chem. Soc.2004,15:951-963
    [78]黄昆.固体物理学第一版,高等教育出版社,1988
    [79]关振铎,张中太,焦金生.无机材料物理性能,清华大学出版社,1992
    [80]P. B. Chapple, J. Staromlynska, J. A. Hermann, T. J. Mckay. Single-beam Z-scan: measurement techniques and analysis, J. Nonlin. Opt. Phys. Mat.1997,6: 253-293.
    [81]M. Yin, H. P. Li, S. H. Tang, W. Ji. Determination of nonlinear absorption and refraction by single Z-scan method, Appl. Phys. B,2000,70:587-591.
    [82]X. D. Liu, S. L. Guo, H. T. Wang, L. T. Hou. Theoretical study on the closed-aperture /Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption, Opt. Commun.2001,197:431-437.
    [83]G. Yang, W. T. Wang, L. Yan, H. B. Lu, G. Z. Yang, Z. H. Chen, Z-scan determination of the large third-order optical nonlinearity of Rh:BaTiO3 thin films deposited on MgO substrates, Opt. Commun.2002,209:445-449.
    [84]X. B Sun, Q. Ren, X. Q. Wang, G. H. Zhang, H. L. Yang, L. Feng, D. Xu, Z. B. Liu, Nonlinear optical properties of [(CH3)4N]Au(dmit)2 using Z-scan technique, Chin. Phys.2006,15:2618-2622.
    [85]X. Q. Wang, Q. Ren, F. J. Zhang, W. F. Guo, X. B. Sun, J. Sun, H. L. Yang, G H. Zhang, X. Q. Hou, D. Xu, Preparation, characterization, thermal and third-order nonlinear optical properties of bis(tetraethylammonium)bis(2-thioxo-1,3-dithiole-4,5-dithiolato)cuprate(Ⅱ), Mater. Res. Bull.2008,43:2342-2353.
    [86]Bruker, SHELXTL, Version 5.1, Bruker AXS Inc., Madison, WI, USA,1997.
    [87]R. G. Pearson. Acids and Baes, Science 1966,151:172-177.
    [88]H. L. Yang, X. Q. Wang, Q. Ren, G. H. Zhang, X. B. Sun, L. Feng, S. F. Wang, Z. W. Wang, Study on the third-order nonlinear optical properties of bis(tetrabutylammonium) bis(1,3-dithiole-2-thione-4,5-dithiolato)cadium, Opt. Commun.2005,256:256-260.
    [89]E. Zavoisky. Relaxation of liquid solutions for perpendicular fields, J. Phys. USSR 1945,9:211-216.
    [90]Bruker, in:APEX2. Version2.0-2Bruker AXS Inc., Madison, Wisconsin, USA, 2005.
    [91]G M. Sheldrick. in:SHELXS97 and SHELXL97, Programs for Crystal Structure and Refinement University of Gottingen, Germany,1997.
    [92]A. K. Galwey, M. E. Brown. Thermal Decomposition of Ionic Solids:Chemical Properties and Reactivities, Elsevier Science B.V.1999, p322.
    [93]B. G. Miller, D. A. Tillman. Combustion Engineering Issues for Solid Fuel Systems, Elsevier Inc.2008, p92.
    [94]P.G Jeffery. Chemical Methods of Rock Analysis, Pergamon Press,1975-Nature, p348.
    [95]B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, S. Alvarez. Covalent radii revisited, Dalton Trans.2008:2832-2838.
    [96]F. H. Allen, O. Kennard, D. G Watson, L. Brammer, A. G Orpen, R. Taylor. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds, J. Chem., Soc. Perkin Trans.1987,2:S1-19.
    [97]M. Fujiwara, R. Kato. Unique structural and physical properties of Ni(dmit)2 anion radical salts characterized by short Te...S contacts (dmit 1,3-dithiole-2-thione-4,5-dithiolate), J. Chem. Soc., Dalton Trans.2002: 3763-3770.
    [98]W. F. Guo, W. T. Yu, X Q. Wang, G H. Zhang, D. Xu. Butyltriphenylphosphonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickelate(Ⅲ), Acta Crystallogr. Sect. E 2006,62:m 1419-1421.
    [99]Y. L. Wang, B. Y. Guo, G. C. Jiang, X. T. Zhao, Y. F. Wang, J. J. Zheng, L. Ma. Synthesis, Characterization and Crystal Structure of Tetraphenylphosphonium Bis(2-thioxo-1,3-dithiole-4,5-dithiolato)-Nickelate Acetone Solvate Crystal, J. Chem. Cryst.2011,41:312-315.
    [100]K. Mukai, N. Senba, T. Hatanaka, H. Minakuchi, K. Ohara, M. Taniguchi, Y Misaki, Y. Hosokoshi, K. Inoue, N. Azuma, Molecular Paramagnetic Semiconductor Crystal Structures and Magnetic and Conducting Properties of the Ni(dmit)2 Salts of 6-Oxoverdazyl Radical Cations (dmit l,3-Dithiol-2-thione-4,5-dithiolate), lnorg. Chem.2004,43:566-576.
    [101]O. Kahn. Molecular Magnetism, VCH Publishers, Inc.:New York,1993, Chapter 6.
    [102]G. V. Rubenacker, J. E. Drumheller, K. Emerson, R. D. Willett. Magnetic susceptibility of ((CH3)3NH2)Cu4Br10 chains of stacked linear tetramers, J. Magn. Magn. Mater.1986,54:1483-1484.
    [103]徐元植.实用电子磁共振波谱学——基本原理和实际应用,科学出版社,2008
    [104]A. Abragam, B. Bleaney. Electron Paramagnetic Resonance of Transition Ions, 1986, Chapter 9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700