气候变化对流域径流的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不断增多的观测资料进一步证实大气中温室气体浓度增加所引起的全球性气候变化已成为全球性环境的主要问题之一。气候变化对水文水资源系统将产生重要影响,其中以融雪作为径流主要补给水源的地区,受气候变化的影响更为显著。以灌溉农业为典型特征的加州中央谷地地区是世界著名的高效农业产区,其灌溉用水严重依赖于内华达山脉冰雪融水,全球变暖和区域性气候变化对该地区水资源系统将产生显著影响。定量评价气候变化对水文水资源系统的影响是实现未来水资源可持续开发利用的基础工作,其对认知特定区域水文过程的演变规律,保障圣华金河流域水资源合理开发,维持加州中部谷地地区农业可持续发展具有重要意义。鉴于此,本文选取位于美国加州内华达山脉西侧的圣华金河上游源区五个子流域为对象,在构建流域水循环模型的基础上,采用增量情形及GCM降尺度方法对该地区在未来气候变化情形下的水文响应过程进行研究,主要研究结果如下:
     (1)圣华金河流域上游地区水文气象要素变化特征分析。结合滑动t检验、Mann-Kendall、Spearman、Yamamoto检验和小波变换等方法,对研究区域水文气象要素的变化趋势、突变点及变化的周期性进行分析检验,初步判断研究区域降水、气温、径流等主要水文气象要素的变化特征。结果显示,在研究时间段内气温总体呈现较为明显的增长趋势,年均气温倾斜率达到0.71℃/10a,其中冬季气温呈现显著的上升趋势。降水未发生显著的年及季节性变化。存在夏季径流减少而春季径流增加,整体径流过程呈现提前的趋势。分析表明,该地区于1986年左右发生水文气象要素的突变,并存在9-12年及19-22年的变化周期,该变化过程与影响北美洲西部地区主要气候特征的北太平洋年代际涛动(NPO)周期较为一致,表明大气环流过程是影响加州地区气候变化的主要因素,全球大气环流过程的变化将会对该地区气候产生重要影响。
     (2)流域尺度水文模型的构建及其适应性检验。以流域水文模型HSPF为基础,深入分析模型结构和原理的基础上,构建水文气象及地理数据库,利用人机联合参数率定方法,对模型参数进行率定,并对模型参数的敏感性进行分析。结果表明,湿球温度、融雪系数、日地下水消退常数、壤中流退水系数和饱和导水率为较为敏感参数,对流域的径流过程影响较大。通过模型的率定得到校准期年径流量模拟值和观测值差值变化范围为9.23%至-18.65%,验证期年径流差值变化从9.59%至11.69%。逐月流量在校准期及验证期内模型的EC值分别为0.86和0.97,相关系数分别为0.906和0.97。校准及验证期内该地区逐日流量的EC值分别为0.771和0.882,对应的R2值分别为0.83和0.897,统计检验结果表明逐日流量校准和验证期无显著性差异。经验证模型较好的反映了该地区典型的地中海式气候及山地气候特征,总体预测精度达到了检验要求,对研究区域具有较好的适应性,可以满足预测需要。
     (3)未来加州气候变化时空分布特征及降尺度研究。对未来气候变化情形下,加州气温及降水量的变化趋势及不同区域的变化特征进行分析研究,结果表明,未来加州增温趋势较为一致,而降水量的模拟结果无显著变化趋势。加州沿海山区气温变化较为缓和,内华达山脉地区及加州东北部地区气温变化较为显著。降水量的变化波动性较大,敏感区域主要集中在加州西北部沿海地区,内华达山脉北部及加州南部沿海地区。基于全球气候模式(GCM)通过降尺度方法分析结果显示,圣华金河源区域日平均气温的实测值和模拟值拟合结果较为理想,模型模拟期内站点日均气温平均确定性系数为0.97,受到内华达山脉地区特殊的地形条件及气象条件等因素影响,降水量的模拟结果统计相关性较弱,平均确定性系数约为0.76。A2情景下未来4个时期(2030s,2050s,2070s,2090s)的平均气温变化分别为+1.6℃、+2.1℃、+3.7℃和4.2℃;B1情景下未来4个时期的平均气温变化分别为+1.0℃、+1.7℃、+2.3℃和+3.4℃,夏季日平均气温在两种情景下变化较为显著,其中A2情景下未来4个时期夏季日平均气温变化分别为+2.9℃、+3.8℃、+4.7℃和+5.6℃,B1情景下分别为+1.2℃、+1.4℃、+3.6℃和+4.6℃,而冬季次之,春季和秋季变化相对较小。
     (4)定量分析未来气候变化对圣华金河上游源区径流变化过程的影响。利用确定的加州未来气候变化情形,耦合HSPF流域水文模型研究未来气候变化对流域径流的影响。通过分析得出增量情景下年均径流量变化区间的大致范围为-43.7%至+16.8%。若其他因素保持不变,气温上升将引起径流变化为-23.7%至-8.3%。在A2、B1情形下,未来径流量变化范围为-32.3%至+19.7%,A2情形下径流量减小趋势大于B1情形。径流的逐月变化分析表明,5-9月份径流存在下降趋势,1-4月份及11-12月份径流量存在不同程度的上升趋势。在各气候变化分析情形下,冬春季径流主要呈现增加趋势,而夏季径流呈现下降趋势,秋季径流变化程度较为缓和。在增量情形下,降水不变气温上升将引起的径流中心(CT值)分别向前移动16-45天。保持气温不变降水量的变化将导致CT值的变化仅为1-4天。B1排放情形下模拟结果显示CT值分别提前13-20天,而A2排放情形下CT值分别提前34-38天,其中降雨量变化引起CT值变化仅为2-4天,表明气温升高为影响径流过程的主要因素。通过对比分析表明,在21世纪中期圣华金河流域上游地区暖干气候特征将会较为明显,年径流存在减少的趋势,干湿季变化特征更加显著,径流的季节性变化增强,径流过程将显著提前。
The growing observations further confirmed that the global climate change caused byincrease in the concentration of greenhouse gases in the atmosphere has become one of themain problems of the global environment. Global climate change will have a major impact onhydrology and water resources systems, places which as in snowmelt-dominated runoff aremore significantly affected by climate change. Irrigated agriculture is a typical feature of theCalifornia Central Valley region,which is one of the world's famous and efficient agriculturalproduction areas, irrigation water is heavily dependent on the Sierra Nevada snowmelt, globalwarming and regional climate change will be a significant impact on the area of waterresources systems. The quantitative evaluation of the impact of climate change on hydrologyand water resources systems is the basic work for the sustainable development and utilizationof water resources in the future. It is of great significant to the evolution of specific cognitiveregional hydrological processes, rational development and protection of water resources in theSan Joaquin River Basin, and maintaining the Central Valley of California regionalagricultural sustainable development. In view of this point, we select five sub-basins of SanJoaquin River located in the west side of the Sierra Nevada Mountains of California, on thebasis of building a water cycle model, sensitivity analysis scenarios and GCM downscalingscenarios was build to evaluate hydrological response to the future climate change, In the casestudy, the main findings are as follows:
     (1) Hydrometeorological factor variation analysis of San Joaquin River watershedupstream region Combined moving-t test, Mann-Kendall, Spearman, Yamamoto test andwavelet transform method to analysis the trend, mutation, and periodical of thehydrometeorological elements in this region. The results show more obvious growth trend ofoverall temperature in the study period, the average annual temperature ramp rate is0.71℃/10a, and showed a significant upward trend in winter temperatures. Significant annual andseasonal changes in precipitation did not occur. While summer runoff reduction or increase inspring runoff, the overall runoff presented in advance during its process. By the statistical analysis, hydrometeorological elements of mutations occurred at around1986in the region,and there are changes in periodical of9-12years and19-22years. Because of North PacificDecadal Oscillation(NPO) climatic characteristics affect the western region of the Americas,atmospheric circulation process is a major factor in affecting California regional climatechange, global atmospheric circulation changes in the process will have a major impact on theregion's climate.
     (2) Watershed scale hydrological model construction and its adaptive testing. Based ondepth analysis of the HSPF model structure and its main principles, build ahydro-meteorological and geographical database, utilized man-machine joint parametercalibration method to calibrate the model parameters, and evaluated the sensitivity of themodel parameter. The results show that subsided constant wet bulb temperature, snowmeltcoefficient, daily groundwater recession rate, soil retreat coefficient and saturated hydraulicconductivity were more sensitive parameter, which has a greater impact on watershed runoffprocess. The annual runoff difference during the calibration period varied from9.23%to-18.65%, and varies from9.59to11.69%in the verification period. EC values of the monthlyflow in the calibration and verification period model were0.86and0.97, and the correlationcoefficient were0.906and0.97, respectively. During the calibration and validation period, ECvalues of daily flow were0.771and0.882, corresponding R2value of0.83and0.897,respectively, the statistical test results showed that the daily flow calibration and validationperiod no significant differences. Model better reflects the typical Mediterranean climate andmountain climate characteristics, overall prediction accuracy of the inspection requirements ofthe study area has good adaptability to meet projected needs.
     (3) The spatial and temporal characteristics of climate change in California and itsdownscaling. the variation of temperature and precipitation trends in the future in the differentregions was analyzed, the results show that the warming trend in the future is more consistent,but no significant changes in trends in precipitation simulation results. California’s coastalmountain will have moderate temperature changes, and more significant change in the SierraNevada, and the Northeast region. Changes in precipitation volatile, sensitive areas are mainlyconcentrated in the northwest coastal areas, the north Sierra Nevada Mountains and along thesouthern coast of California. By downscaling methods based on global climate model (GCM)analysis showed that the headwater area of San Joaquin average daily temperatures measuredvalues and simulation values fitting well, the average daily temperature average coefficient ofthe model simulation period is0.97, but because of factors subject to special areas of theSierra Nevada terrain conditions and weather conditions, the simulation results of theprecipitation statistics weak correlation, the average coefficient is approximately0.76. In the A2scenario, the average temperature change in the next four periods (2030s,2050s,2070s,2090s) are+1.6℃,+2.1℃,+3.7℃and4.2℃; In the B1scenario, the average temperaturechanges are+1.0℃,+1.7℃,+2.3℃and+3.4℃, the average temperature in summer is themost significant changes under the two scenarios, during next four periods, the summeraverage temperature changes were+2.9℃,+3.8℃,+4.7℃and+5.6℃in the A2scenario,and+1.2℃,+1.4℃,+3.6℃. and+4.6℃for B1scenarios respectively, the second forchanges is in winter, spring and fall relatively with small changes.
     (4) Quantitative analysis of the future impact of climate change on the headwater regionof the San Joaquin River. Using the identified future climate change situation in California,coupled HSPF hydrological model to study the impact of future climate change on watershedrunoff. The incremental scenarios analyzed result showed that annual runoff change intervalsapproximate range from-43.7%to16.8%. If other factors are held constant, risingtemperatures will cause runoff change of-23.7%to-8.3%. In the case of A2, B1, futurechanges in runoff range from-32.3%to19.7%。In A2case, runoff decreases trend is greaterthan B1For month-to-month analysis May to September runoff existence a downward trend,from January to April and November-December month runoff showing an upward trend. Inthe case of seasonal analysis, winter and spring runoff is mainly characterized by anincreasing trend, while the downward trend in summer runoff, with moderate degree ofchange in the fall. In sensitivity analysis cases, under the same circumstances, risingtemperatures caused by runoff (CT value) were moved forward16-45days. Maintain constanttemperatures, precipitation changes lead to changes in CT value is only1-4days. In B1emission scenarios, simulation results show that CT values were13-20days in advance, andin the case A2emission CT values were34-38days in advance, and the rainfall changescaused by changes in CT value is only2-4days, rising temperatures affecting the main factorsof the runoff process. Analysis showed that by contrast, warm and dry climatic characteristicsof the San Joaquin River basin header region in the mid-21st century will be more obvious,which will causing the decreasing trend of annual runoff, the variation of the wet and dryseason is more significant, the seasonal change of runoff enhanced runoff process andsignificant advance in runoff process.
引文
Abbott, M B, Bathurst, J C, Cunge, J A, O'Connell, P E, Rasmussen, J1986. An introduction to theEuropean hydrological system--System Hydrologique European. Journal of Hydrology,87(1-2),45-59.
    Agnew, M D, Palutikof, J P2006. Impacts of short-term climate variability in the UK on demand fordomestic and international tourism. Climate Research,31(1),109-120.
    Aguado, E, Cayan, D, Riddle, L, Roos, M1992. Climatic fluctuations and the timing of west coaststreamflow. Journal of Climate,5(12),1468-1483.
    AQUA TERRA Consultants and HydroQual, I2001. Modeling Nutrient Loads to Long Island Soundfrom Connecticut Watersheds, and Impacts of Future Buildout and Management Scenarios. Prepared forConnecticut Department of Environmental Protection, Hartford, CT.
    Barnett, T P, Adam, J C, Lettenmaier, D P2005. Potential impacts of a warming climate on wateravailability in snow-dominated regions. Nature,438(17),303-309.
    Bergman, M J, Green, W, Donnangelo, L J2002. Calibration of storm loads in the South Prongwatershed, Florida, using BASINS/HSPF. Journal of the American Water Resources Association,38(5),1423-1436.
    Bergstr m, S.1992. The HBV model: Its structure and applications: SMHI.
    Bicknell, B R, Imhoff, J C, Kittle, J L, Jobes, T H, Donigian, A S.2001. Hydrological SimulationProgram–FORTRAN (HSPF) Version12, User's Manual. Mountain View, CA: Aqua Terra Consultants.
    Bultot, F, Dupriez, G L1976. Conceptual hydrological model for an average-sized catchment area, I.Concepts and relationships. Journal of Hydrology,29(3-4),251-272.
    Bumash, R J E, Ferrai, R L, McGuire, R A1973. A generalized streamflow simulation system. JointFed. State River Forecast Center Report, Sacramento, California, USA.
    Burges, S J1986. Trends and directions in hydrology. Water Resources Research,22(9),1-5.
    Cayan, D R, Riddle, L G, Aguado, E1993. The influence of precipitation and temperature on seasonalstreamflow in California. Water Resources Research,29(4),1127-1140.
    Cayan, D R, Kammerdiener, S A, Dettinger, M D, Caprio, J M, Peterson, D H2001. Changes in theonset of spring in the Western United States. Bulletin of the American Meteorological Society,82(3),399-415.
    Cayan, D R, Luers, A L, Hanemann, M, Franco, G, Croes, B.2006. Scenarios of climate change inCalifornia: an overview. Sacramento CA: California Climate Change Center.
    Cayan, D R, Luers, A L, Franco, G, Hanemann, M, Croes, B, Vine, E2008a. Overview of theCalifornia climate change scenarios project. Climatic Change,87,1-6.
    Cayan, D R, Maurer, E P, Dettinger, M D, Tyree, M, Hayhoe, K2008b. Climate change scenarios forthe California region. Climatic Change,87(Suppl1), S21-S42.
    Chang, M.2006. Forest Hydrology: An Introduction to Water and Forests. Boca Raton, FL: CRCPress.
    Chen, Y D, McCutcheon, S C, Carsel, R F, Donigian, A S J, Cannell, J R, Craig, J P1995. Validationof HSPF for the water balance simulation of the Upper Grande Ronde watershed, Oregon, USA. IAHS
    Cramer, W, Bondeau, A, Woodward, F I, Prentice, I C, Betts, R A, Brovkin, V, Cox, P M, Fisher, V,Foley, J A, Friend, A D2001. Global response of terrestrial ecosystem structure and function to CO2andclimate change: results from six dynamic global vegetation models. Global Change Biology,7(4),357-373.
    Crawford, N H, Linsley, R K1963. A conceptual model of the hydrologic cycle. IAHS Publication no,63,573-587.
    Crawford, N H, Linsley, R K1966. Digital Simulation in Hydrology Stanford Watershed Model.
    Crawford, N H.1999. Hydrologic Journal-Snowmelt Calibration: www.hydrocomp.com.
    Cubash, U, Meehl, G A, Boer, G J, Stouffer, R J, Dix, M, Noda, C A, Senior, C A, Raper, S, Yap, K S2001. Projections of future change. Climate Change.
    Delworth, T L, Broccoli, A J, Rosati, A, Stouffer, R J, Balaji, V, Beesley, J A, Cooke, W F, Dixon, K W,Dunne, J, Dunne, K A2006. GFDL's CM2global coupled climate models. Part I: Formulation andsimulation characteristics. Journal of Climate,19(5),643-674.
    Dettinger, M D, Cayan, D R1995. Large-scale atmospheric forcing of recent trends toward earlysnowmelt runoff in California. Journal of Climate,8(3),606-623.
    Dettinger, M D, Cayan, D R, Meyer, M K, Jeton, A E2004. Simulated hydrologic responses to climatevariations and change in the Merced, Carson, and American River basins, Sierra Nevada, California,1900-2099. Climatic Change,62(1-3),283-317.
    Dettinger, M D2005a. From climate-change spaghetti to climate-change distributions for21st CenturyCalifornia. San Francisco Estuary and Watershed Science,3(1).
    Dettinger, M D2005b. From climate-change spaghetti to climate-change distributions for21st CenturyCalifornia. San Francisco Estuary and Watershed Science,3(1), Article4.
    Dibike, Y B, Coulibaly, P2005. Hydrologic impact of climate change in the Saguenay watershed:comparison of downscaling methods and hydrologic models. Journal of Hydrology,307(1),145-163.
    Doherty, J.2002. PEST: model-independent parameter estimation user manual. Washington DC:Watermark.
    Donigian, A S, Davis, H H1978. User's Manual for Agricultural Runoff Management(ARM)Model.Athens, GA: U.S. Environmental Protection Agency, pp.173Donigian AS Jr, Davis HH Jr..
    Donigian, A S, Imhoff, J C, Bicknell, B R, Kittle, J L.1984. Application guide for the HydrologicalSimulation Program-FORTRAN. Athens, GA: Environmental Research Laboratory, U.S. EnvironmentalProtection Agency.
    Donigian, J, A.S., Love., J T2002. The Connecticut Watershed Model-A Tool for BMP ImpactAssessment in Connecticut. Presented at WEF-Watershed2002, February23-27,2002. Ft. Lauderdale,FL. CD-ROM Proceedings.
    Duell, L F W1994. The sensitivity of northern Sierra Nevada streamflow to climate change. Journal ofthe American Water Resources Association,30(5),841-859.
    Ficklin, D L, Luo, Y, Luedeling, E, Zhang, M2009. Climate change sensitivity assessment of a highlyagricultural watershed using SWAT. Journal of Hydrology,374(1-2),16-29.
    Fontaine, T A, Jacomino, V M F1997. Sensitivity Analysis of Simulated Contaminated SedimentTransport. Journal of the American Water Resources Association,33(2),313-326.
    Fowler, H J, Blenkinsop, S, Tebaldi, C2007. Linking climate change modeling to impacts studies:recent advances in downscaling techniques for hydrological modeling. International Journal of Climatology,27(12),1547-1578.
    Frederick, K D, Schwarz, G E1999. Socioeconomic Impacts of Climate Change on U.S. WaterSupplies. Journal of the American Water Resources Association,35(6),1563-1583.
    Freeman, G J.2002. Looking for recent climatic trends and patterns in California's Central Sierra.Pacific Grove, CA PACLIM.
    Freeze, R A, Cherry, J A1979. Groundwater,604pp. Prentice-Hall, Englewood Cliffs, NJ.
    Gleick, P H1986. Methods for evaluating the regional hydrologic impacts of global climatic changes.Journal of Hydrology,88(1-2),97-116.
    Gleick, P H1987. Regional hydrologic consequences of increases in atmospheric carbon dioxide andother trace gases. Climatic Change,10(2),137-160.
    Haeberli, W, Beniston, M1998. Climate change and its impacts on glaciers and permafrost in the Alps.Ambio,258-265.
    Hay, S I, Cox, J, Rogers, D J, Randolph, S E, Stern, D I, Shanks, G D, Myers, M F, Snow, R W2002.Climate change and the resurgence of malaria in the East African highlands. Nature,415(6874),905-909.
    Hayhoe, K, Cayan, D, Field, C B, Frumhoff, P C2004. Emissions pathways, climate change, andimpacts on California. National Acad Sciences,101,,12422-12427.
    Huber-Lee, A, Yates, D, Purkey, D, Yu, W, Runkle, B2003. Water, climate, food, and environment inthe Sacramento Basin. Contribution to the project ADAPT-Adaptation strategies to changing environments,Stockholm Environment Institute. Boston, MA.
    Hughes, T P, Baird, A H, Bellwood, D R, Card, M, Connolly, S R, Folke, C, Grosberg, R,Hoegh-Guldberg, O, Jackson, J B C, Kleypas, J2003. Climate change, human impacts, and the resilienceof coral reefs. science,301(5635),929-933.
    Hydrocomp, I, Consultants, A T1996. Modifications to HSPF for High Water Table and WetlandsConditions in South Florida. Prepared for the South Florida Water Management District, West Palm Beach,FL.
    IPCC2007. Climate change2007: The scientific basis. Contribution of Working Group I to the ForthAssessment Report of the Intergovernmental Panel on Climate Change. In:[Solomon, S., D. Qin, M.Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)], ed. Cambridge, UnitedKingdom: Cambridge University Press, p.1009.
    James, L D, Burges, S J1982. Selection, calibration, and testing of hydrologic models. Hydrologicmodeling of small watersheds,437-472.
    Jeton, B E, Dettinger, M D, Smith, J L1996. Potential Effects of Climate Change on Streamflow,Eastern and Western Slopes of the Sierra Nevada, California and Nevada. U.S. Geological SurveyWater-Resources Investigations. Sacramento, CA, p.49.
    Kahya, E, Dracup, J A1993. US Streamflow Patterns in Relation to the El Nifio/Southern Oscillation.Water Resources Research,29,2491-2503.
    Kim, J2005. A projection of the effects of the climate change induced by increased CO2on extremehydrologic events in the Western U.S. Climatic Change,68(1/2),153-168.
    Knowles, N, Cayan, D R2002a. Potential effects of global warming on the Sacramento/San Joaquinwatershed and the San Francisco estuary. Geophysical Research Letters,29(1891),38-31-38-34.
    Knowles, N, Cayan, D R2002b. Potential effects of global warming on the Sacramento/San Joaquinwatershed and the San Francisco estuary. GEOPHYSICAL RESEARCH LETTERS,29(18),38-31.
    Knowles, N, Cayan, D R2004. Elevational dependence of projected hydrologic changes in the SanFrancisco estuary and watershed. Climatic Change,62(1),319-336.
    Biondi, F, Gershunov, A, Cayan, D R2001. North Pacific decadal climate variability since1661.JOURNAL OF CLIMATE,14(1),5-10.
    Latif, M, Barnett, T P1996. Decadal climate variability over the North Pacific and North America:Dynamics and predictability. JOURNAL OF CLIMATE,9(10),2407-2423.
    Mantua, N J, Hare, S R2002. The Pacific decadal oscillation. Journal of Oceanography,58(1),35-44.
    Rogers, J C1981. The North Pacific Oscillation. Journal of Climatology,1(1),39-57.
    Knowles, N, Dettinger, M D, Cayan, D R2006. Trends in snowfall versus rainfall in the westernUnited States. Journal of Climate,19(18),4545-4559.
    Laroche, A, Gallichaud, J, Lagace, R, Pesant, A1996. Simulating Atrazine Transport with HSPF in anAgricultural Watershed. ASCE Journal of Environmental Engineering,6,122-128.
    Lenihan, J M, Drapek, R, Bachelet, D, Neilson, R P2003. Climate change effects on vegetationdistribution, carbon, and fire in California. Ecological Applications,13(6),1667-1681.
    Lenihan, J M, Bachelet, D, Neilson, R P, Drapek, R2008. Response of vegetation distribution,ecosystem productivity, and fire to climate change scenarios for California. Climatic Change,87,215-230.
    Lettenmaier, D P, Gan, T Y1990. Hydrologic sensitivities of the Sacramento-San Joaquin River Basin,California, to global warming. Water Resources Research,26(1),69-86.
    Lettenmaier, D P1991. Sheer (1991),“Climatic Sensitivity of California Water Resource”. Journal ofWater Resource Planning and Management,117,108-125.
    Leung, L R, Ghan, S J1999. Pacific Northwest climate sensitivity simulated by a regional climatemodel driven by a GCM. Part II:2×CO2simulations. Journal of Climate,12(7),2031-2053.
    Linsley, R K1943. A Simple Procedure for the Day-to-Day Forecasting of Runoff from Snowmelt.Transactions of the American Geophysical Union,111,62-67.
    Ludwig, R, May, I, Turcotte, R, Vescovi, L, Braun, M, Cyr, J, Fortin, L G, Chaumont, D, Biner, S,Chartier, I2009. The role of hydrological model complexity and uncertainty in climate change impactassessment. Advances in Geosciences,21,63-71.
    Lumb, A M, McCammon, R B, Kittle, J L.1994. User's manual for an Expert System(HSPEXP)forcalibration of the Hydrologic Simulation Program--Fortran. Reston, VA: U.S. Geological SurveyWater-Resources Investigations.
    Mac Berthouex, P, Brown, L C.2002. Statistics for environmental engineers: CRC.
    Madsen, H2000. Automatic calibration of a conceptual rainfall-runoff model using multipleobjectives. Journal of Hydrology,235(3-4),276-288.
    Maurer, E P, Duffy, P B2005. Uncertainty in projections of streamflow changes due to climate changein California. Geophysical Research Letters,32, L03704.
    Maurer, E P, Brekke, L, Pruitt, T, Duffy, P B2007. Fine-resolution climate projections enhanceregional climate change impact studies. Eos Trans. AGU,88(47),504.
    McCabe, G J, Wolock, D M1999. General-Circulation-Model Simulations of Future Snowpack in theWestern United States. Journal of the American Water Resources Association,35(6),1473-1484.
    McCuen, R H, Snyder., W M1986. Hydrologic Modeling: Statistical Methods and Applications.Prentice-Hall, Englewood Cliffs, NJ.
    Mearns, L O, Gutowski, W, Jones, R, Leung, R, McGinnis, S, Nunes, A, Qian, Y2009. NorthAmerican Regional Climate Change Assessment Program: An overview. EOS Transactions AGU,90(36),311.
    Meehl, G A, Washington, W M, Wigley, T M L, Arblaster, J M, Dai, A2003. Solar and greenhouse gasforcing and climate response in the twentieth century. Journal of Climate,16(3),426-444.
    Miller, N L, Kim, J, Hartman, R K, Farrara, J1999. Downscaled climate and streamflow study of theSouthwestern United States. Journal of the American Water Resources Association,35(6),1525-1537.
    Miller, N L, Kim, J2000. Climate change sensitivity analysis for two California watersheds:Addendum to downscaled climate and streamflow study of the Southwestern United States. Journal of theAmerican Water Resources Association,36(3),657-661.
    Miller, N L, Bashford, K E, Strem, E.2001. Climate change sensitivity study of California hydrology:a report to the California Energy Commission. Berkeley, CA: Lawrence Berkeley National Laboratory.
    Miller, N L, Bashford, K E, Strem, E2003. Potential impacts of climate change on Californiahydrology. Journal of the American Water Resources Association,39(4),771-784.
    Mimikou, M, Kouvopoulos, Y, Cavadias, G, Vayianos, N1991. Regional hydrological effects ofclimate change. Journal of Hydrology,123(1),119-146.
    Mohamoud, Y M, Parmar, R S2006. Estimating Streamflow and Associated Hydraulic Geometry, theMid-Atlantic Region, USA. Journal of the American Water Resources Association,42(3),755-768.
    Mote, P W, Hamlet, A F, Clark, M P, Lettenmaier, D P2005. Declining Mountain Snowpack inWestern North America. Bulletin of the American Meteorological Society,86(1),39-49.
    Munson, A, Socolofsky, S, Adams, E E1998. HSPF modeling of the Charles River Watershed.
    Nakicenovic, N, Alcamo, J, Davis, G, de Vries, B, Fenhann, J, Gaffin, S, Gregory, K, Grubler, A, Jung,T Y, Kram, T2000. Special report on emissions scenarios: a special report of Working Group III of theIntergovernmental Panel on Climate Change. Pacific Northwest National Laboratory, Richland, WA(US),Environmental Molecular Sciences Laboratory (US).
    Nash, J E, Sutcliffe, J V1970. River flow forecasting through conceptual models part I—A discussionof principles. Journal of Hydrology,10(3),282-290.
    Negev, M.1967. A sediment model on a digital computer: Dept. of Civil Engineering.
    Nelder, J A, Mead, R1965. A simplex method for function minimization. The Computer Journal,7(4),308-313.
    Null, S E, Viers, J H, Mount, J F2010. Hydrologic response and watershed sensitivity to climatewarming in California's Sierra Nevada. PloS one,5(4), e9932.
    Panagoulia, D1992. Impacts of GISS-modeled climate changes on catchment hydrology.Hydrological Sciences Journal,37(2),141-163.
    Parton, W J, Scurlock, J M O, Ojima, D S, Schimel, D S, Hall, D O1995. Impact of climate change ongrassland production and soil carbon worldwide. Global Change Biology,1(1),13-22.
    Peterson, D H, Smith, R E, Dettinger, M D, Cayan, D R, Riddle, L2000. An organized signal insnowmelt runoff over the western united states. Journal of the American Water Resources Association,36(2),421-432.
    Pope, V D, Gallani, M L, Rowntree, P R, Stratton, R A2000. The impact of new physicalparameterizations in the Hadley Centre climate model: HadAM3. Climate Dynamics,16(2),123-146.
    Porter, J W, McMahon, T A1971. A model for the simulation of streamflow data from climatic records.Journal of Hydrology,13,297-324.
    Pupacko, A1993. Variations in Northern Sierra Nevada streamflow: implications of climate change.Journal of the American Water Resources Association,29(2),283-290.
    Rango, A, Martinec, J1995. Revisiting the degree-day method for snowmelt computations. Journal ofthe American Water Resources Association,31(4),657–669.
    Reckhow, K H, Chapra, S C1983. Confirmation of water quality models. Ecological Modeling,20(2-3),113-133.
    Refsgaard, J C, Knudsen, J1996. Operational validation and intercomparison of different types ofhydrological models. Water Resources Research,32(7),2189-2202.
    Regonda, S K, Rajagopalan, B, Clark, M, Pitlick, J2005. Seasonal cycle shifts in hydroclimatologyover the Western United States. Journal of Climate,18(2),372-384.
    Revelle, R R, Waggoner, P E1983. Effects of a Carbon Dioxide-Induced Climatic Change on WaterSupplies in7the Western United States. Month,419,432.
    Roos, M1987. Possible changers in California snowmelt patterns. Proceedings Fourth Annual PacificClimate (PACLIM) Workshop. Pacific Grove, CA, pp.22-31.
    Rosenbrock, H H1960. An automatic method for finding the greatest or least value of a function. TheComputer Journal,3(3),175-184.
    Running, S W, Nemani, R R1991. Regional hydrologic and carbon balance responses of forestsresulting from potential climate change. Climatic Change,19(4),349-368.
    Sandberg, J, Manza, P, United States. Bureau of Reclamation. Mid-Pacific Regional, O, GlobalClimate Change Response, P1991. Evaluation of Central Valley Project Water Supply and DeliverySystems. US Department of the Interior, Bureau of Reclamation, Mid-Pacific Regional Office.
    Scibek, J, Allen, D M2006. Modeled impacts of predicted climate change on recharge andgroundwater levels. Water Resources Research,42(11), W11405.
    Shelton, M L, Fridirici, R M1997. Decadal changes of inflow to the Sacramento-San Joaquin Delta,California. Physical Geography,18(3),215-231.
    Singh, V P.1995. Computer models of watershed hydrology: Water Resources Publications.
    Singh, V P, Frevert, D K2002. Mathematical modeling of watershed hydrology. Mathematical modelsof large watershed hydrology,1-22.
    Snyder, M A, Sloan, L C, Diffenbaugh, N S, Bell, J L2003. Future climate change and upwelling inthe California Current. Geophysical Research Letters,30(15),1823.
    Staley, N, Bright, T, Zeckoski, R W, Benham, B L, Brannan, K M2005. A Comparison of HSPFSimulations Using FTABLEs Generated by Field and Computer-Based Data. ASAE Annual InternationalMeeting. Tampa, Florida.
    Steiner, A L, Tonse, S, Cohen, R C, Goldstein, A H, Harley, R A2006. Influence of future climate andemissions on regional air quality in California. Journal of geophysical research,111(D18), D18303.
    Stewart, I T, Cayan, D R, Dettinger, M D2004. Changes in snowmelt runoff timing in western NorthAmerica under a 'business as usual' climate change scenario. Climatic Change,62(3),217-232.
    Stewart, I T, Cayan, D R, Dettinger, M D2005a. Changes toward Earlier Streamflow Timing acrossWestern North America. JOURNAL OF CLIMATE,18(8),1136-1155.
    Stewart, I T, Cayan, D R, Dettinger, M D2005b. Changes toward earlier streamflow timing acrossWestern North America. Journal of Climate,18(8),1136-1155.
    Thomann, R V, Barnwell Jr, T O1980. Workshop On Verification Of Water Quality Models.
    Thompson, J R, Sorenson, H R, Gavin, H, Refsgaard, A2004. Application of the coupled MIKESHE/MIKE11modeling system to a lowland wet grassland in southeast England. Journal of Hydrology,293(1),151-179.
    Thornthwaite, C W1948. An approach toward a rational classification of climate. Geographical review,38(1),55-94.
    Tsuang, B J, Dracup, J A1991. Effect of global warming on Sierra Nevada mountain snow storage.Proceedings of the59th Western Snow Conference. Juneau, Alaska, pp.17-28.
    U.S.EPA2000. BASINS Technical Note6: Estimating hydrologic and hydraulic parameters for HSPF.Athens, GA: U. S. Environmental Protection Agency, Office of Water (4305), p.34.
    USDA-SCS, H1972. National Engineering Handbook. United States Department of Agriculture, SoilConservation Service, Washington, DC.
    Van Rheenen, N T, Palmer, R N, Hahn, M2003. Evaluating potential climate change impacts on waterresource system operations: case studies of Portland, Oregon and Central Valley, California. WaterResources Update,124,35-50.
    VanRheenen, N T, Wood, A W, Palmer, R N, Lettenmaier, D P2004. Potential implications of PCMclimate change scenarios for Sacramento-San Joaquin River basin hydrology and water resources. ClimaticChange,62,,257-281.
    Vehvil inen, B, Lohvansuu, J1991. The effects of climate change on discharges and snow cover inFinland. Hydrological Sciences Journal,36(2),109-121.
    Vertessy, R A, Hatton, T J, O'Shaughnessy, P J, Jayasuriya, M D A1993. Predicting water yield from amountain ash forest catchment using a terrain analysis based catchment model. Journal of Hydrology,150(2-4),665-700.
    Vicuna, S, Dracup, J A2007. The evolution of climate change impact studies on hydrology and waterresources in California. Climatic Change,82(3-4),327-350.
    Viessman, W, Lewis, G L, Knapp, J W.1989. Introduction to Hydrology: Harper and Row, New York.
    Wahl, K L1991. Is April to July runoff really decreasing in the western United States.
    Washington, W M, Weatherly, J W, Meehl, G A, Semtner Jr, A J, Bettge, T W, Craig, A P, Strand Jr, WG, Arblaster, J, Wayland, V B, James, R2000. Parallel climate model (PCM) control and transientsimulations. Climate Dynamics,16(10),755-774.
    Wilby, R, Dawson, C2007. SDSM4.2-A decision support tool for the assessment of regional climatechange impacts: User Manual. Environment(April).
    Wilby, R L, Dettinger, M D2000. Streamflow changes in the Sierra Nevada, California, simulatedusing a statistically downscaled General Circulation Model scenario of Climate Change. Advances inGlobal Change Research,6,,99-121.
    Wilby, R L, Whitehead, P G, Wade, A J, Butterfield, D, Davis, R J, Watts, G2006. Integrated modelingof climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK.Journal of Hydrology,330(1),204-220.
    Wise, E K2009. Climate based sensitivity of air quality to climate change scenarios for thesouthwestern United States. International Journal of Climatology,29(1),87-97.
    WMO.2005. World Meteorological Organization. Statement on the status of the global climate in2005. Global Environmental Change Part A, WMO-No.743,.
    Wood, A W, Lettenmaier, D P, Palmer, R N1997. Assessing climate change implications for waterresources planning. Climatic Change,37(1),203-228.
    Xu, C Y, Halldin, S1997. The effect of climate change on river flow and snow cover in the NOPEXarea simulated by a simple water balance model. Nordic Hydrology,28(4),273-282.
    Yao, H, Georgakakos, A2001. Assessment of Folsom Lake response to historical and potential futureclimate scenarios:2. Reservoir management. Journal of Hydrology,249(1),176-196.
    Young, C A, Escobar, M I, Fernandes, M, Joyce, B, Kiparsky, M, Mount, J F, Mehta, V K, Purkey, D,Viers, J H, Yates, D2009. Modeling the hydrology of climate change in California’s Sierra Nevada forsubwatershed scale adaptation. Journal of the American Water Resources Association,45(6),1409-1423.
    Zar, J H1999. Biostatistical analysis. Prentice Hall New Jersey,4(9).
    王国庆.2006.气候变化对黄河中游水文水资源影响的关键问题研究.[博士学位论文].南京:河海大学.
    仕玉治.2011.气候变化及人类活动对流域水资源的影响及实例研究.[博士学位论文].大连:大连理工大学.
    张哲2007. HSPF水文模型机理及应用研究[硕士学位论文].石家庄:河北师范大学.
    邢可霞,郭怀成,孙延枫,贺彬,黄永泰2004.基于HSPF模型的滇池流域非点源污染模拟.中国环境科学,24(2),229-232.
    梅立永,赵智杰,黄钱,尹璇2007.小流域非点源污染模拟与仿真研究—以HSPF模型在西丽水库流域应用为例.农业环境科学学报,26(1),64-70.
    舒晓娟,陈洋波,黄锋华,周浩澜2009. PEST在WetSpa分布式水文模型参数率定中的应用.水文(005),45-49.
    董艳辉,李国敏,郭永海,徐海珍2010.应用并行PEST算法优化地下水模型参数.工程地质学报,18(1),140-144.
    褚健婷,夏军,许崇育2009. SDSM模型在海河流域统计降尺度研究中的适用性分析.资源科学,30(12),1825-1832.
    薛亦峰,王晓燕2009. HSPF模型及其在非点源污染研究中的应用.首都师范大学学报:自然科学版,30(003),61-65.
    康玲,杨正祥,姜铁兵.2009.基于Morlet小波的丹江口水库入库流量周期性分析.计算机工程与科学,31(11),149-152
    薛金凤,夏军,马彦涛2002.非点源污染预测模型研究进展.水科学进展,13(5),649-656.
    刘兆飞,徐宗学,刘绿柳,陈亚宁2009.塔里木河流域未来最高和最低气温变化趋势.干旱区地理,31(6),822-829.
    张恒,曾凡棠,房怀阳,张恒军,萧洁儿,林澍2012.基于HSPF及回归模型的淡水河流域非点源负荷计算.环境科学学报,32(4).
    贾仰文,高辉,牛存稳,仇亚琴2008.气候变化对黄河源区径流过程的影响.水利学报,39(1).
    赵芳芳,徐宗学2007.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析.气象学报,65(4),653-662.
    黄俊雄,徐宗学,刘兆飞,赵芳芳2009.统计降尺度法分析太湖流域未来气候变化情景.资源科学,30(12),1811-1817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700