用户名: 密码: 验证码:
基于旋光色散效应的波长检测及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技水平的不断提高和新兴技术的出现,波长检测的应用范围遍及生产、生活、军事和科研等多个领域,方便快捷的测量波长也正成为一种迫切的需求。目前测量波长的设备主要分成色散型、干涉型和滤波型三类,其中色散型波长检测技术是利用色散元件(光栅或棱镜)将复色光色散,再用探测器测量每一谱线元的强度,从而确定波长。干涉型波长检测技术是同时测量所有谱线元的干涉强度,再对干涉图进行逆傅里叶变换而得到目标的光谱图:滤波型波长检测技术是利用可调谐滤波片进行波长检测。这些检测方法各有优缺点,适用于不同的应用场合。本文提出一种基于石英晶体旋光色散效应的全新的波长检测方法,通过检测偏振光的旋光角度来确定波长。实验证实本系统的波长检测范围大于1000nm,波长检测分辨率优于0.1pm,波长检测精度优于±2pm,与目前波长检测的最好水平相当。
     提出并设计了利用可调谐激光器和双光路检测方法构成的旋光色散测试系统,并对石英晶体在光纤通信低损窗口三个波段的旋光色散特性进行了测试。得到了各波段对应的旋光色散曲线和拟合公式。利用得到的旋光色散曲线,准确地测得了石英晶体在850nm、1310nm和1550nm三个波段的旋光率。通过实验数据求得了Sellmeier方程中的常数,并构建了Sellmeier方程。在上述三个波段得到的实验曲线,均与由Sellmeier方程计算出的旋光色散曲线很好吻合,而且在1342nm处得到的旋光率与光学手册中给出的数值完全一致。上述结果表明,本文提出的旋光色散测试系统,为光学材料的旋光色散特性的检测提供了可靠的手段。
     在850nm、1310nm和1550nm三个波段,我们给出了石英晶体在可调谐激光器整个输出波长范围内连续的旋光率数值,目前还没有文献给出相关的信息。在1310nm波段,研究了石英晶体旋光效应的温度特性,给出了Sellmeier方程中常数与温度的关系。这些数据对石英晶体在近红外波段的进一步开发与应用具有实际意义。
     提出了利用石英晶体的旋光色散效应标定法布里-珀罗可调谐滤波器扫描波长的新方法。该方法可实现对法布里-珀罗可调谐滤波器整个扫描波长范围的全程标定,而且是利用旋光色散曲线直接读出波长数值。目前已报道的光纤光栅阵列法、法布里-珀罗半导体激光器法以及气体吸收法等方法,只能在其梳状特征峰处对波长进行标定,然后再对法布里-珀罗可调谐滤波器的波长与电压间非线性关系曲线进行拟合,无法实现大范围的实时波长标定。我们对1550nm波段的光纤法布里-珀罗可调谐滤波器进行了实际标定研究。实验结果表明本系统的波长扫描分辨率优于1pm,波长扫描精度优于±2pm,处于目前已报道的各种波长标定方法中的最好水平。
     提出了利用旋光色散效应研发波长计的新方法。利用实验室现有条件,在近红外波段开展了波长检测的实验研究。对光纤光栅的布喇格反射波长和可调谐激光器的输出波长进行了检测,并对测量结果进行了详细的误差分析。实验证实本系统波长检测实验值与可调谐激光器自身显示值之间的绝对误差小于±10pm,相对误差小于±2×10-6。并且整个波长测量系统没有采用精密机械扫描和干涉仪结构,有利于提高系统机械、温度稳定性及重复性。另外从价格上看,本系统的成本远低于同样检测精度设备的价格。所以本波长检测系统在核心指标、稳定性、可靠性和成本方面都极具竞争力,具有很好的实际应用前景。
With the continuous improvement of the modern science and technology level and emergence of new technologies, wavelength measurement range of applications is throughout the production, life, military, scientific and other fields. Convenient measurement of wavelength is also becoming a pressing demand. At present wavelength measurements are mainly divided into three types including dispersion-type, interference-type and filter-type. The dispersion-type is based on dispersive elements (diffraction grating or prism) which are used to separate the polychromatic light, and then the intensity of each spectral line element is detected to determine the wavelength. The wavelength measurement in interference-type is to detect the interference intensity of all line elements simultaneously, then to obtain the spectrum by carrying on the inverse Fourier transformation of the interference figure. Filter-type wavelength measurement uses tunable filter to determine wavelength. These wavelength measurement methods have advantages and disadvantages when used in different applications. A new method of wavelength measurement based on optical rotatory dispersion effect of quartz is investigated in this paper. Wavelength can be determined by detecting the rotation angle of plane polarized light. Experimental results show that the wavelength range of this system is greater than 1000nm, and wavelength measurement resolution is better than 0.1pm, wavelength absolute accuracy is better than±2pm, which is now at the best level of wavelength measurement.
     We propose and design a measurement system by using tunable laser and double-beam testing technique, with which we have measured the optical rotatory dispersion properties of quartz crystal at three low loss wavebands in optical fiber communication. We get the optical rotatory dispersion curves and the fitting formula at the three wavebands. Using the optical rotatory dispersion curves, we measure the rotatory power of quartz crystal at 850nm,1310nm and 1550nm waveband accurately. From the experimental data we also calculate the coefficients in Sellmeier equation, and then constructe Sellmeier equation in near-infrared waveband. Optical rotatory dispersion plots from the constructed equation are well coincide with the experimental results in all the three wavebands, and furthermore the calculated rotatory power at 1342nm from the equation are completely consistent with that in optics handbook. These results show that the optical rotatory dispersion test system proposed by us provides a reliable means of detecting the optical rotatory dispersion characteristics of optical materials.
     At 850nm,1310nm and 1550nm waveband, we obtain the continuous rotation rate of quartz crystal in the whole wavelength range of tunable lasers. Up to now there is no literature to give the relative information. We also investigate the temperature effect of the optical rotation of quartz crystal at 1310nm waveband. The relation of Sellmeier equation's coefficient to temperature is calculated. These data have practical significance to the further development and application of quartz crystal in the near-infrared waveband.
     A new method of calibrate wavelength of Fabry-Perot tunable filter based on optical rotatory dispersion effect has been investigated. With this method wavelength calibration of Fabry-Perot tunable filter in the whole scanning range can be realized. We can readout the wavelength directly through the optical rotatory dispersion curve. The reported methods, such as grating array method, Fabry-Perot semiconductor lasers method, gas absorption method and other methods, can only calibrate wavelength in their comb characteristic peaks, and then the non-linear relationship curves between wavelength and voltage of Fabry-Perot tunable filter are fitted, they can not achieve a real-time and wide range wavelength calibration. We carry out the wavelength calibration of optical fiber Fabry-Perot tunable filter at 1550nm band. Experimental results show that the wavelength scanning resolution of this system is better than lpm, wavelength scanning accuracy is better than±2pm, it is at the best level of wavelength calibration methods that have been reported.
     A new method of building wavemeter based on rotatory dispersion effect is proposed. The wavelength of near-infrared waveband is measured by using the existing conditions of laboratory. We measure the wavelength of fiber Bragg grating and tunable laser, and analyzed the error in detail. The absolute error between experimental values and display value of tunable laser is less than±10pm, the relative error is less than±2x10-6. Because there are no precision mechanical scanning system and no use of interferometer; the system machinery stability, temperature stability and repeatability can be improved. Also from the point of price, the cost of this testing method is far less than the price of same accuracy equipment. Therefore, this wavelength measurement method is very competitive in the core parameter, stability, reliability and cost, it has good prospects for practical application.
引文
[1]陈本永,杨万福,严利平.激光频率(波长)测量技术研究现状及发展[J].激光杂志,2009,30(2):1-3.
    [2]王利强,左爱斌,彭月祥.光波长测量仪器的分类、原理及研究进展[J].科技导报,2005,23(6):31-33.
    [3]吕辉,黄龙波.光波长测量技术研究[J].光通信研究,2003,(5):50-52.
    [4]Ju-Yi Lee, Der-Chin Su. Common-path heterodyne interferometric detection scheme for measuring wavelength shift [J]. Optics Communications,1999,162(4):7-10.
    [5]Jing-Heng Chen, Yin-Cheng Chang. Measuring small wavelength differences by heterodyne interferometry and optical activity of chiral crystal [J]. Optics Communications,2006,267(11):182-186.
    [6]Rongqing Hui, Maurice O'Sullivan. Basic Instrumentation for Optical Measurement [M]. Fiber Optic Measurement Techniques,2009.129-258.
    [7]Wang Li-qiang, Zheng Hong-xing. A Novel High-Precision Laser Wavemeter [J]. Laser Technology & Applications,2007,24(5):21-24.
    [8]M. Wakim, S. Topcu, L. Chassagne, J. Nasser, Y Alayli, P. Juncar. Highly accurate laser wavelength meter based on Doppler effect [J]. Optics Communications,2006, 262(1):97-102.
    [9]包学诚,秦莉娟,周志荛.激光波长的标定-浅谈波长计的结构原理与应用[J].上海计量测试,1998,(6):24-27.
    [10]H. Hussein, M.A. Sobee, M. Amer. Calibration of a Michelson-type laser wavemeter and evaluation of its accuracy [J]. Optics and Lasers in Engineering, 2010,48(3):393-397.
    [11]王纲,沈乃澄,韦占凯,张志勇,梁燕生.红外激光波长计的原理及其研制[J].现代计量测试,1994,(3):6-12.
    [12]T.R.Parker, M.Farhadiroushan. Femtometer resolution optical wavelength meter [J]. IEEE Photonics Technology Letters,2001,13(4):347-349.
    [13]梁晶,龙兴武,张斌,金世龙.一种内置法布里-珀罗标准具选择He-Ne激光器内谱线的方法[J].光学学报,2009,29(11):3108-3113.
    [14]Nageshwar Singh, H.S. Vora. The spectral measurement of a high repetition rate tunable dye laser output using Fabry-Perot fringe [J]. Optics & Laser Technology, 2007,39(4):733-737.
    [15]晁志霞,许婕,徐毅.用于大范围纳米测量的法布里-珀罗干涉仪[J].计量学报,1999,20(4):241-246.
    [16]周锦松,相里斌,魏儒义.空间调制干涉型阿达玛变换光谱成像仪[J].光谱学与光谱分析,2009,29(11):3163-3166.
    [17]彭晶,孟超.傅里叶光谱仪扫描速度对测试的影响[J].光谱实验室,2009,26(6):1504-1507.
    [18]于永爱,吴维,朱冬寅,黄莎莎,孙玲.拉曼光谱技术与便携式拉曼光谱仪[J].激光与光电子学进展,2009,46(8):85-87.
    [19]赵阳,杨家敏,张继彦,刘劲松,袁孝,韦敏习,胡智民,甘新式.利用平晶谱仪测量谱线波长的新方法[J].中国激光,2008,35(4):587-591.
    [20]廖延彪.偏振光学[M].北京:科学出版社,2003.133-135.
    [21]羊国光,宋菲君.高等物理光学[M].合肥:中国科学技术大学出版社,2008.251-261.
    [22]陈纲,廖理几.晶体物理学基础[M].北京:科学出版社,1992.474-492.
    [23]陈孝友,刘隆鉴,陈情.用旋光仪测量透明混合液体的体积浓度[J].四川工业学院学报,2000,19(3):79-83.
    [24]潘雪丰,颜飞彪,陶卫东,白贵儒,钱元春.透明液晶薄膜旋光色散特性研究[J].应用激光,2005,25(3):191-192.
    [25]王光辉,吴福全,徐世昌.BiCaInVIG法拉第旋转器旋光色散的测量[J].光电子技术与信息,2004,17(5):26-28.
    [26]徐群英,董淳.旋光法测定注射用头孢唑林钠的含量[J].中国药师,2004,7(7):566-567.
    [27]李玉莲.旋光法快速测定硫酸吗啡注射液的含量[J].中国药业,2004,13(9):35.
    [28]殷果,李玉兰,邓颖,陈美.旋光法测定注射用美罗培南的含量[J].医药导报,2004,23(11):865-866.
    [29]王晓玲,李玉兰.旋光法测定注射用苯唑西林钠的含量[J].药学实践杂志,2004,22(5):298.
    [30]欧阳晓辉,赵敏蔚.旋光法测定左旋N-乙基-氨甲基吡咯烷的含量[J].应用化学,2008,25(12):1490-1492.
    [31]倪红辉.旋光法测定青霉素皮试注射液的含量[J].中国药业,2008,17(23):33.
    [32]周哲海.平板波导凹面衍射光栅的设计[J].光学精密工程,2008,16(6):993-998.
    [33]洪吟霞,范世福,祝绍其.分光光度计[M].北京:机械工业出版社,1982.15-17.
    [34]Y. V. Bazhanov. Correcting the aberrations of holographic diffraction gratings recorded in astigmatic beams [J]. J. Opt. Tech.,2004,71(1):10-14.
    [35]E. Sokolova. Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory [J]. Appl. Opt.,2004,43(1):20-28.
    [36]Denise Lyons. Image spectrometry with a diffractive optic [J]. SPIE,1995,2480(6): 123-131.
    [37]Michele Hinnrichs, Mark Massie. New approach to imaging spectroscopy using diffractive optics [J]. SPIE,1997,3118(10):194-205.
    [38]Jinjun Liu, Hansjurg Schmutz, Frederic Merkt. Generation of widely tunable Fourier-transform-limited terahertz pulses using narrowband near-infrared laser radiation [J]. Journal of Molecular Spectroscopy,2009,256(7):111-118.
    [39]程玉宝,何宗平,刘瀚.用快速傅里叶变换精确测定激光波长[J].红外与激光工程,1998,27(5):52-54.
    [40]杨仕广,吴海波,焦洋.基于光学劈尖干涉的激光波长测量系统研究[J].电子测量与仪器学报,2009,39(8):872-875.
    [41]M. L. Junttila, B. Stahlberg, E. Kyro, T. Veijola, and J. Kauppinen. Fourier transform wavemeter [J]. Review of Scientific Instruments,1987,58(7): 1180-1184.
    [42]Xiaohong Bi, Xu Yang, Mathias P.G. Bostrom, Nancy Pleshko Camacho. Fourier transform infrared imaging spectroscopy investigations in the pathogenesis and repair of cartilage [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2006,1758(7):934-941.
    [43]H. Hussein, M.A. Sobee, M. Amer. Calibration of a Michelson-type laser wavemeter and evaluation of its accuracy [J]. Optics and Lasers in Engineering, 2010,48(3):393-397.
    [44]P. J. Fox, R. E. Scholten, M. R. Walkiewicz. A reliable, compact, and low-cost Michelson wavemeter for laser wavelength measurement [J]. American Association of Physics Teachers,1999,67(6):624-630.
    [45]Advantest. Michelson interferometer [P]. Number:EP0478801.
    [46]Jae Won Hahn, Seung Nam Park, Chunghi Rhee. Fabry-Perot wavemeter for shot-by-shot analysis of pulsed lasers [J]. Applied Optics,1993,32(7):1095-1099.
    [47]Nageshwar Singh, H.S. Vora. The spectral measurement of a high repetition rate tunable dye laser output using Fabry-Perot fringe [J]. Optics & Laser Technology, 2007,39(6):733-737
    [48]Jan Burke, Kenichi Hibino, Ryohei Hanayama, Bozenko F. Oreb. Simultaneous measurement of several near-parallel surfaces with wavelength-shifting interferometry and a tunable phase-shifting method [J]. Optics and Lasers in Engineering,2007,45(2):326-341.
    [49]张哨峰,梁培辉.影响Fizeau波长计精度因素的分析[J].中国激光,1992,19(10):759-764.
    [50]Sanjib Chatterjee, Y. Pawan Kumar, Basanta Bhaduri. Measurement of surface figure of plane optical surfaces with polarization phase-shifting Fizeau interferometer [J]. Optics & Laser Technology,2007,39(3):268-274.
    [51]杨春沪沈法华孙东松.基于Fizeau干涉仪多普勒激光雷达测量的实验研究[J].激光与红外,2009 39(7):724-727.
    [52]Akihiro Yamamoto, Ichirou Yamaguchi. Surface profilometry by wavelength scanning Fizeau interferometer [J]. Optics & Laser Technology,2000,32(6): 261-266.
    [53]宋建明,是度芳.利用斐索干涉测量激光波长[J].量子电子学,2001,18(3):224-227.
    [54]徐毓光,余勤跃.费索激光波长计[P].中国专利,专利号:93112393.3.
    [55]金锡哲,向阳,禹秉熙.Sagnac型干涉成像光谱仪研制及干涉成像光谱实验[J].遥感学报,2002,6(3):193-197.
    [56]郑玉权,禹秉熙.成像光谱仪分光技术概览[J].遥感学报,2002,6(1):75-80.
    [57]Qiang Wu, Ginu Raj an, Pengfei Wang, Yuliya Semenova, Gerald Farrell. Optimum design for maximum wavelength resolution for an edge filter-based ratiometric system [J]. Optics & Laser Technology,2010,42(9):1032-1037.
    [58]Matt E. Martin, Musundi Wabuyele, Masoud Panjehpour, Bergein Overholt, Robert DeNovo, Steve Kennel, Glenn Cunningham, Tuan Vo-Dinh. An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging [J]. Medical Engineering & Physics,2006, 28(3):149-155
    [59]M. G. Xu, H. Geiger, J. P. Dakin. Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter [J]. Light wave Technol.,1996,14(3):391-396.
    [60]Greg Kopp, Michael Derks, Alan Graham. Liquid crystal tunable birefringent filters [J]. SPIE,1996,2830(3):345-350.
    [61]洪新华,姚凯.成像光谱仪的原理与应用[J].河南科技学院学报(自然科学版),2005,33(2):113-116.
    [62]张海鹏,房建成.石英MEMS陀螺漂移周期性误差补偿研究[J].仪器仪表学报,2008,29(6):1225-1230.
    [63]田文杰,李跃宏,霍静,田双,田强.同基共模抑制石英晶体谐振器研究[J].仪器仪表学报,2008,29(8):1650-1653.
    [64]孙振东,赵玉春,范世福,薛芳,万峰.新型石英晶体粘度测量仪的研制[J].仪器仪表学报,2000,21(3):270-272.
    [65]管世波,李东,王艳林.高频石英晶体测试系统信号源设计[J].电子测量与仪器学报,2007,21(6):104-108.
    [66]Chun Ye. Low-loss tunable filter based on optical rotatory dispersion [J]. Appl. Opt.,2006,45(6):1162-1168.
    [67]Chun Ye. Liquid-crystal bandpass filter based on the optical rotatory dispersion effect [J]. Appl. Opt.,2004,43(20):4007-4010.
    [68]张姗,吴福全,吴闻迪.多级石英晶体旋光光学滤波器的滤波特性[J].物理学报,2008,57(8):5020-5026.
    [69]刘建霞,张听明,叶红安.石英晶体旋光折射率特性研究.通信技术[J],2010,43(1):198-199.
    [70]N.V. Joshi, D. Salcedo, H. Gil. Power dependence on the rotational strength in a quartz crystal [J]. Physics Letters A,2007,366(6):174-176.
    [71]俞文海,刘皖育.晶体物理学[M].北京:中国科学技术大学出版社,1998.140-141.
    [72]李景镇.光学手册[M].西安:陕西科学出版社,1986:450-452.
    [73]Ivo Vysin, Jan Riha, Hana Vavrikova. An alternative method of dispersion
    relations derivation in the crystalline optical activity in the direction perpendicular to the optic axis [J]. Optic,2007,118(9):407-417.
    [74]Gorachsnd Ghosh. Sellmeier coefficients and dispersion of thermo-optic coefficients for some optical glasses [J]. Applied Optics,1997,36(7):1540-1546.
    [75]赵培涛,李国华,彭捍东,宋国栋,许言强.旋光测量系统的新设计[J].激光技术,2005,29(5):504-506.
    [76]邓红艳,吴福全,唐恒敬.Wollaston棱镜分束角的光谱特性[J].激光杂志.2005,26(4):42-43.
    [77]林剑辉,潘雪丰,陶卫东,白贵儒.双光路法测量手性物质的旋光角[J].光学仪器,2006,28(6):3-6.
    [78]廖延彪.光纤光学[M].北京:清华大学出版社,2000.192.
    [79]苏富芳,吴福全.石英晶体旋光性的温度效应测试研究[J].光学学报,2005,25(5):670-672.
    [80]赵爽,吴福全.石英晶体的色散方程及折射率温度系数[J].光子学报,2006,35(8):1183-1186.
    [81]张昕明,叶红安.1310波段石英晶体旋光性的温度效应研究[J].光学技术,2009,35(5):723-725.
    [82]饶云江,周昌学,冉曾令,朱涛,陈容睿.啁啾光纤光栅法布里-珀罗传感器波分频分复用[J].中国激光,2006,33(5):631-635.
    [83]Liu Kun, Jing Wen-cai, Liu Tie-gen, Jia Da-gong, Zhang Hong-xia, Zhang Yi-mo. Application of Fabry-Perot Tunable Filter Nonlinearity Rectification in Dynamic Strain System [J]. hinese Journal of Sensors and Actuators,2008,21(7): 1264-1268.
    [84]E. Pichonat-Gallois, V. Petrini, M. de Labachelerie. Design and fabrication of thermal actuators used for a micro-optical bench:application to a tunable Fabry-Perot filter [J]. Sensors and Actuators A:Physical,2004,114(9):260-266.
    [85]Toshio Yamanoi, Takashi Endo, Hiroshi Toshiyoshi. A hybrid-assembled MEMS
    Fabry-Perot wavelength tunable filter [J]. Sensors and Actuators A: Physical,2008, 145(7):116-122
    [86]M. S. Leeson. Performance analysis of direct detection spectrally sliced receivers using Fabry-Perot filters [J]. J. Lightwave Tech.,2000,18(1):13-25.
    [87]Hui Ding, Jianqi Liang, Junhong Cui, Xiangnan Wu. A novel fiber Fabry-Perot filter based mixed-gas sensing system [J]. Sensors and Actuators B,2009,138(4): 154-159.
    [88]刘卓琳,张伟刚,姜萌,张绮,刘亚萍,林锦海,尚佳斌,王春宝.光纤滤波器的原理、结构设计及其进展[J].中国激光,2009,36(3):540-546.
    [89]Rodney S. Tucher, Douglas M. Baney, Wayne V. Sorin, Curt A. Flory. Thermal Noise and Radiation Pressure in MEMS Fabry-Perot Tunable Filters and Lasers [J]. IEEE Journal on Selected Topics on Quantum Electronics,2002,8(1):88-97.
    [90]乔学光,王瑜,傅海威,赵大壮,王炜,张晶.可调谐法布里-珀罗滤波器的高精度大范围实时定标[J].光学学报,2008,28(5):852-855.
    [91]H. Hussein, M.A.Sobee, M.Amer. Calibration of a Michelson-type laser wavemeter and evaluation of its accuracy [J]. Optics and Lasers in Engineering,2010,48(3): 393-397.
    [92]Jichi Ma, Yan Li, Chunyong Yin. Highly Precise Nonlinear Error Calibrating System Based on Fabry-Perot Interferometer [J]. SPIE,2007,6834(11):201-207.
    [93]V.R. Machavaram, R.A. Badcock, G.F. Fernando. Fabrication of intrinsic fibre Fabry-Perot sensors in silica fibres using hydrofluoric acid etching [J]. Sensors and Actuators A,2007,138(7):248-260.
    [94]E.J. Mierkiewicz, F.L. Roesler, S.M. Nossal and R.J. Reynolds. Geocoronal hydrogen studies using Fabry-Perot interferometers, part 1:Instrumentation, observations, and analysis [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2006,68(9):1520-1552.
    [95]K. Liu, W.C. Jing, G.D. Peng, J.Z. Zhang, D.G. Jia, H.X. Zhang and Y.M. Zhang. Investigation of PZT driven tunable optical filter nonlinearity using FBG optical fiber sensing system [J]. Optics Communications,2008,281(6):3286-3290.
    [96]Hui Ding, Xiangnan Wu, Jianqi Liang, Xianli Li. Online calibration of PZT driven fiber Fabry-Perot fiber nonlinearity using FBG array and PSO algorithm [J]. Measurement,2009,42(8):1059-1064.
    [97]W. H. Chung, H. Y. Tam, M. S. Demokan, P. K. A. Wai, C. Lu. Wavelength and power monitoring of DWDM systems using scanning F-P filter calibrated with a F-P laser [J]. Optics Communication,2002,210(9):219-224.
    [98]蒙红云.放大自发辐射注入波长锁定法布里-珀罗激光器[J].中国激光,2008,35(8):1181-1184.
    [99]Fu Yuan Shih, Chien Hung Yeh, Chi Wai Chow, Chia Hsuan Wang, Sien Chi. Utilization of self-injection Fabry-Perot laser diode for long-reach WDM-PON [J]. Optical Fiber Technology,2010,16(1):46-49
    [100]印建平,王思舫.0.75μm-3.0μm波段光栅单色仪的波长定标[J].光学仪器,1985,7(4):24-32.
    [101]S. L. Gilbert, W. C. Swann. Acetylene 12C2 H2 absorption reference for 1510 nm to 1540 nm wavelength calibration-SRM 2517 [M]. NIST Special Publication, 1998.133-260.
    [102]C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill and W. R. C. Rowley. High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region [J]. Applied Physics B:Lasers and Optics,2005,80(6):977-983.
    [103]李天初,钱进,张小平.1.5μm波长DFB半导体激光乙炔(12C2H2)线性吸收稳频[J].2001,22(7):161-163.
    [104]赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社,2007.
    [105]Kyung-Rak Sohn, Joon-Hwan Shim. Liquid-level monitoring sensor systems using fiber Bragg grating embedded in cantilever [J]. Sensors and Actuators A, 2009,152(6):248-251.
    [106]Dong Xiaowei, ZhaoRuifeng. Detection of liquid-level variation using a side-polished fiber Bragg grating [J]. Optics & Laser Technology,2010,42(2): 214-218.
    [107]Yage Zhan, Hua Wu, Qinyu Yang. Fiber grating sensors for high-temperature measurement [J]. Optics and Lasers in Engineering,2008,46(4):349-354.
    [108]R. de Oliveira, C.A. Ramos, A.T. Marques. Health monitoring of composite structures by embedded FBG and interferometric Fabry-Perot sensors [J]. Computers and Structures,2008,86(2):340-346.
    [109]Mousumi Majumder, Tarun Kumar Gangopadhyay, Ashim Kumar Chakraborty, Kamal Dasgupta, D.K. Bhattacharya. Fibre Bragg gratings in structural health monitoring-present status and applications [J]. Sensors and Actuators A,2008, 147(9):150-164.
    [110]Jung Ryul Lee, Hiroshi Tsuda, Bon-Yong Koo. Single-mode fibre optic Bragg grating sensing on the base of birefringence in surface-mounting and embedding application s[J]. Optics & Laser Technology,2007,39(2):157-164.
    [111]Xingjie Ni, Yong Zhao, Jian Yang. Research of a novel fiber Bragg grating underwater acoustic sensor [J]. Sensors and Actuators A,2007,138(7):76-80.
    [112]Wenjun Zhou, Xinyong Dong, K. Ni, C.C. Chan, P. Shum. Temperature-insensitive accelerometer based on a strain-chirped FBG [J]. Sensors and Actuators A:Physical,2010,157(1):15-18.
    [113]Roberto Montanini, Simone Pirrotta. A temperature-compensated rotational position sensor based on fibre Bragg gratings [J]. Sensors and Actuators A: Physical,2006,132(11):533-540.
    [114]Alberto Cavallo, Chris May, Aldo Minardo. Active vibration control by a smart auxiliary mass damper equipped with a fiber Bragg grating sensor [J]. Sensors and Actuators A:Physical,2009,153(8):180-186.
    [115]W.J.B. Grouve, L. Warnet, A. de Boer, R. Akkerman, J. Vlekken. Delamination detection with fibre Bragg gratings based on dynamic behaviour [J]. Composites Science and Technology,2008,68(9):2418-2424.
    [116]张昕明,余有龙,朱勇.光纤光栅传感系统信号解调技术[J].光电子技术与信息,2002,15(4):17-20.
    [117]范典,姜德生,梅加纯.高速双边缘光纤光栅波长解调技术[J].光子学报,2006,35(1):118-121.
    [118]李丽,林玉池,王为,朱萍玉.光纤光栅非平衡M-Z干涉解调技术研究[J].压电与声光,2008,30(1):16-18.
    [119]Melle Serge M., Liu Kexing, Measures Raymond M., A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors [J], IEEE Photonics Technology Letters,1992,4(5):516-518.
    [120]Ming Gang Xu. Modeling and Performance Analysis of a Fiber Bragg Grating Interrogation System Using an Acousto-Optic Tunable Filter [J]. J. Lightwave Technol.,1996,14(3):391-395.
    [121]L. A. Ferreira, J. L. Santos, and F. Farahi. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using two matched gratings [J]. IEEE Photonics Technology Letters,1997,9(4):487-489.
    [122]Yong Zhao and Yanbiao Liao. Discrimination methods and demodulation techniques for fiber Bragg grating sensors [J]. Optics and Lasers in Engineering, 2004,41(1):1-18.
    [123]M. A. Davis and A.D. Kersey. Application of a Fiber Fourier Transform Spectrometer to the Detection of Wavelength Encoded Signals from Bragg Grating Sensors[J]. J. Lightwave Technol.,1995,13(7):1289-1295.
    [124]Jun He, Fang Li, Lei Feng, Hao Xiao, Yuliang Liu. Elimination of environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating sensor array[J]. Optics Communications,2009,282(7):2836-2840.
    [125]Cathy Crunelle, Marc Wuilpart, Christophe Caucheteur, Patrice Megret. Original interrogation system for quasi-distributed FBG-based temperature sensor with fast demodulation technique [J]. Sensors and Actuators A:Physical,2009,150(3): 192-198.
    [126]Qiang Wu, Yuliya Semenova, An Sun, Pengfei Wang, Gerald Farrell. High resolution temperature insensitive interrogation technique for FBG sensors[J]. Optics & Laser Technology,2010,42(6):653-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700