钙钛石型氧化物催化剂的制备及其在空气电极中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气电极是锌空气电池的重要组成之一。影响空气电极性能的主要因素是氧还原催化剂和空气电极结构。采用柠檬酸辅助的前驱体法制备了ABO_3、AA'BO_3、ABB'O_3三个系列共十种钙钛石型氧化物催化剂。通过热重分析,确定了催化剂的焙烧制度。XRD分析表明,催化剂样品特征衍射峰明显,杂峰少,晶形完整。
     常温H_2O_2催化分解实验表明,La_(0.8)Sr_(0.2)MnO_3催化分解活性较高,LaCoO_3的活性最高。通过测量稳态极化曲线和交流阻抗曲线,考察了催化剂的电化学活性,结果表明,La_(0.8)Sr_(0.2)MnO_3的电化学活性在所制备的催化剂中最高。总体上,催化剂的H_2O_2催化分解活性越高,其电化学活性也越高。但LaCoO_3表现异常,催化分解活性最高,电化学活性反而最小,可能是催化剂不稳定造成的。对AA'BO_3型和ABB'O_3型催化剂的研究表明,通过有选择地对钙钛石型氧化物催化剂的A位、B位金属离子进行部分替换,可使催化剂活性明显提高。
     通过分析空气电极表面的传质过程,以La_(0.8)Sr_(0.2)MnO_3为催化剂,制作了多孔、疏水、透气的空气电极。在此基础上,以Hg/HgO电极作参比电极,镍网为对电极,制作了半电池模型。确定了制备空气电极的最优工艺条件,催化层PTFE含量约20%,厚度控制在0.20~0.35mm,疏水层厚度0.3mm,20MPa下冷压成型,电极各层采用D|S|A排布方式。结果表明,在-0.6V(Vs Hg/HgO)扫描电位下电流达到378mA,表明此空气电极具有较好的电极性能。极化曲线的数学处理表明,电极制备工艺稳定,重现性好。
Air electrode is extensively equipped in fuel cell and metal-air battery, settled between the electrolyte and air, employed to be cathode in discharging procedure. In this article, the approaches to enhancing the air electrode performance were examined, namely preparing the more effective oxygen reduction catalysts to lessen the electrochemical polarization and improving the electrode structure to decrease the material diffusion resistance.
    Ten kinds of perovskite-type oxides were synthesized by the calcination of amorphous citric acid complex precursors. The thermal decomposition behavior of the precursor was examined by means of thermogravimetry (TG). X-ray diffraction verified the catalyst materials with obvious characteristic diffraction peaks and perfect crystalline phases.
    In the experiment of H2O2 catalytic decomposition, the catalytic decomposition activity of La0.8Sr0.2MnO3 was high and that of LaCoOs reached the highest among ten kinds of perovskite-type oxide catalysts. By measuring the curve of steady-state polarization and AC impedance , the electrochemical activity of catalyst was investigated. The results showed that La0.8Sr0.2MnO3 exhibits the highest electrochemical activity among all of the catalysts. It suggested that the higer the activity of H2O2 catalytic decomposition the higher the electrochemical activity with the exception of LaCoOs presumably for inherent instability. The study on AA'BOs and ABB'O3 showed that the partial substitution of A-site or B-site ion could always obtain new catalysts with good catalytic activity.
    Combined with the investigation of mass transfer on the surface of air electrode, the semi-hydrophobic and porous gas diffusion electrodes were fabricated by use of
    
    
    
    as catalyst. Then employing Hg/HgO elecreode as reference electrode and nickel screen as counter electrode, a semi-cell model was made. The optimum conditions for air electrode preparation were shown as follow: 20% PTFE in active layer, thickness of active layer 0.2~0.35mm, diffusion layer 0.3mm, compacting pressure 20MPa and layers sequence D|S|A layout. The air electrode exhibited good performance that current was as high as 378mA at -0.6V ( Vs Hg/HgO ).
    The mathematical process of polarization curve revealed that the fabrication technique of air electrode was steady and prone to bring high electrode performance.
引文
[1] 宋文顺.化学电源工艺学[M].北京:中国轻工业出版社,1998
    [2] A. Putt Ronald, W. Merry Glenn. Zinc-air primary batteries[J]. 1992. IEEE 35th International Power Sources Symposium, 1992
    [3] 查全性.电极过程动力学导论(第二版)[M].北京:科学出版社,1987
    [4] 夏熙 译.商品锌空气电池[J].电源技术,1980,(1):26-34
    [5] Y. -J. Li, C. -C. Chang, T. -C. Wen. A mixture design approach to thermally prepared Ir-Pt-Au ternary electrodes for oxygen reduction in alkaline solution[J]. Journal of Applied Electrochemistry, 1997, 27:227-234
    [6] 滕加伟,金丽华,唐伦成.碱性燃料电池氧电极的研究--Ni,Bi,Hg对Ag/C催化剂活性的影响[J].电源技术,1998,22(1):21-23
    [7] 吕鸣祥.扣式锌—空气电池的研究进展[J].电源技术,1987,11(3):21-26
    [8] P. Vasudevan, Neelam Mann, Santosh. Electroreduction of oxygen on some novel cobalt phthalocyanine complexes[J]. Journal of Power Sources, 1989, 28:317-320
    [9] L. Swette, J. Giner. Oxygen electrodes for rechargeable alkaline fuel cells[J], Journal of Power Sources, 1988, 22:399-408
    [10] Jaakko Lamminen, Juhani KiviSaari. Preparation of air electrodes and long run tests[J]. Journal of the Electrochemical Society, 1991, 138(94): 905-908
    [11] Y. Kiros, S. Schwartz. Pyrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells[J]. Journal of Power Sources, 1991, 36(4): 547-555
    [12] Zidong Wei, Wenahang Huang, Shengtao Zhang, et al. Carbon-based air electrodes carrying MnO_2 in Zinc-air batteries[J]. Journal of Power Sources, 2000, 91:83-85
    [13] 森田是宜.助听器用空气电池(扣型)[J].电池,1988,(1):50-56
    [14] 王连驰,于作龙,吴越.稀土催化新貌[J].稀土,1990,11(5):36-49
    [15] T. Hyodo, M. Hayashi, N. Miura, et al. Catalytic activities of rare-earth manganites for catholic reduction of oxygen in alkaline solution[J]. Journal of the Electrochemical Society, 1996, 143(11): L266-L267
    [16] 李春鸿.稀土元素在燃料电池中的应用[J].电源技术,1992,16(2):24-28
    [17] A. M. Kannan, A. K. Shukla, S. Sathyanarayana. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries[J]. Journal of Power Sources, 1989, 25: 141-150
    [18] Huamin Zhang, Yasutake Teraoka, Noboru Yamazoe. Preparation of perovskite-type oxides with large surface area by citrate process[J]. Chemistry Letters, 1987:665-668
    
    
    [19] Youichi Shimizu, Kenchi Uemura, Norio Miura, et al. Gas-diffusion electrodes for oxygen reduction with large surface area Lat_(l-x)Ca_xMO_3(M=Co, Mn)[J]. Chemistry Letters, 1988:1979-1982
    [20] T. Hyodd, M. Hayashi, S. MitsuTake. et al. Praseodymium-calcium manganites (Pr_(L-x)Ca_xMnO_3) as electrode catalyst for oxygen reduction in alkaline solution[J]. Journal of Applied Electrochemistry, 1997, 27:745-746
    [21] 王鹏,姚立广,王明贤等.复合氧化物La_(0.8)Sr_(0.2)CoO_3的合成及其析氧电催化[J].化学工业与工程,2000,17(1):19-22
    [22] 池玉娟,王占良,景晓燕等.钙钛矿型La_(1-x)Sr_xFeO_3和纳米晶LaNiO_3在双功能电极上的应用[J].电源技术,1999,23(5):275-278
    [23] R. E. Carbonio, C. Fierro, D. Tryk, et al. Perovskite-type oxide: oxygen electrocatalysis and bulk structure[J]. Journal of Power Sources, 1988, 22:387-398
    [24] Youichi Shimizu, Haruyuki Matsuda, Norio Miura, et al. Bi-functional oxygen electrode using large surface area perovskite-type oxide catalyst for rechargeable metal-air batteries[J]. Chemistry Letters, 1992:1033-1036
    [25] 顾军,隋升,李光强等.Lal_(1-x)Ca_xFe_(1-y)Co_yO_3对氧气还原的催化活性[J].无机材料学报,1999,14(4):618-621
    [26] N. Miura, M. Hayashi, T. Hyodo, et al. Bi-functional oxygen electrodes using Pr-Mn-Fe-based perovskite-type oxides as catalysts[J]. Materials Science Forum, 1999, 315-317:562-569
    [27] Youichi Shimizu, Kenichi Uemuro, Haruyuki Matsuda, et al. Bi-functional oxygen electrode using large surface area La_(1-x)Ca_xCoO_3 for rechargeable metal-air batteries[J]. Journal of the Electrochedmical Society, 1990, 137(11): 3430-3433
    [28] G. Karlsson. Reduction of oxygen of LaNiO_3 in alkaline solution[J], Journal of Power Sources, 1983, (10). 319-331
    [29] 马紫峰,林维明,黄传荣等.固体氧化物燃料电池电极材料研究Ⅰ La_(1-x)Sr_xMnO_3的合成及其电导特性[J].电源技术,1993,17(6):1-5
    [30] Yasutake Teraoke, Hirofumi Kakebayashi, Isamu Moriguchi, et al. Hydroxy acid-aided synthesis of perovskite-type oxide of cobalt and manganese[J]. Chemistry Letters, 1991: 673-676
    [31] M. S. G. Baythoun, F. R. Sale. Production of strontium-substituted lanthanum manganite perovskite power by the amorphous citrate process[J]. Joumal of the Material Science, 1982, 17: 2757-2769
    [32] G. Sinquin, C. Petit, J. P. Hindermann, et al. Study of the formation ofLaMO_3 (M=Co, Mn) perovskites by propionates precursors: application to the catalytic destruction of chlorinated VOCs[J]. Catalysis Today, 2001, 70 (1-3): 183-196
    
    
    [33]Huang YunHui, Xu ZhiGang, Yah ChunHua, et al. Soft chemical synthesis and transport properties of La_(0.7)Sr_(0.3)MnO_3 granular perovskites[J]. Solid State Communications, 2000, 114 (1):43-47
    [34]Isupova, A. Lyubov, V. Sergey. Tsybulya, et al. Real structure and catalytic activity of La_(l-x)Ca_xMnO_(3+δ) perovskites[J]. Solid State Ionics, 2001, 141-142:417-425
    [35]Philip John, Kutty, T. R. N. Preparation of manganite perovskites by a wet-chemical method involving a redox reaction and their characterisation[J]. Materials Chemistry and Physics, 2000, 63 (3): 218-225
    [36]杨中民,信文瑜,王月平.纳米粒子及纳米化学研究进展[J].云南化工,2000,27(1):22-25
    [37]李熙,赵幕愚,王子忱等.柠檬酸盐法合成钙钛矿型复合氧化物纳米固体材料LaFeO_3[J].高等学校化学学报,1991,12(11):1542-1544
    [38]宋崇林,王军,沈美庆等.干燥条件对纳米晶体LaCoO_3的结构与合成机理的影响[J].应用化学,1998,15(5):65-67
    [39]张喜梅,李琳,郭祀远等.用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):155-159
    [40]梁新义,秦永宁,齐晓周等.超声共沉淀法制备LaCoO_3纳米晶的研究[J].化学物理学报,1998,11(4):375-378
    [41]池玉娟,于海涛,李环宇等.钙钛矿型复合氧化物La_(l-x)Sr_xFeO_3纳米晶制备研究[J].黑龙江大学自然科学学报,2000,17(1):73-75
    [42]吴风清,王兢,索辉等.纳米晶LaFeO_3的合成及湿敏特性的研究[J].吉林大学自然科学学报,1999,(1):83-86
    [43]钟子宜,胡征,颜其洁等.纳米钙钛矿型氧化物LaFeO_3和LaMnO_3形成过程[J].湖南师范大学自然科学学报,1996,19(4):48-53
    [44]董相廷,郭奕柱,洪广言等.超微LaMO_3(M=Fe,Cr,Mn,Co)的导电性与粒度关系[J].科技通报,1994,10(5):277-280
    [45]唐先敏,钱晓良,孙尧卿等.湿化学法制备钙钛矿型La_(l-x)Sr_xMnO_3的电学性能及其晶体学研究[J].华中理工大学学报,1994,22(9):34-38
    [46]夏定国,沙其骞,刘庆国.SOFC燃料电池空气电极材料——粉体制备及其性能[J].稀土,1994,15(1):25-27
    [47]林生岭,严豸明.镧锶镍复合氧化物的制备及热分析[J].华东船舶工业学院学报,1997,11(2):49-54
    [48]马秀英,董必礼,高利珍.镍系ABO_3型稀土复合氧化物La_(l-x)Sr_xNiO_3的结构与催化性能[J].太原重型机械学院学报,2000,21(3):238-241
    
    
    [49]耿树江,邵忠宝,牛盾等.溶胶-凝胶法合成La_(l-x)Sr_xCoO_3粉末[J].中国有色金属学报,1998,8(增刊2):61-63
    [50]康振晋,孙尚梅,王轶等.La_(l-x)Sr_xCoO_3快速溶胶-凝胶法合成[J].延边大学学报(自然科学版),2000,26(1):38-40
    [51]刘源,秦永宁,齐晓周等.纳米晶LaCoO_3和La_(l-x)Sr_xCoO_3的制备及其催化氧化性能研究[J].天津大学学报,1999,32(2):229-232
    [52]张文保,倪生麟.化学电源导论[M].上海:上海交通大学出版社,1992
    [53]D. B. Zhou, H. Vander Poorten. Electrochemical characterization of oxygen reduction on Teflon-bonded gas diffusion electrodes[J]. Electrochimica Acta., 1995, 40:1819-1826
    [54]Masakazu Sakaguchi, Masatoshi Ohta. Characterization of the three-phase equilibrium on a porous electrode for fuel cells[J]. J. Electrochem Soc., 1990, 136(7): 1923-1927
    [55]N. Giordano, E. Passalacqua, V. Aldemccl, et al. Morphological characteristics of PTFE bonded gas diffusion electrodes[J]. Electrochimica Acta., 1991, 36:1049-1055
    [56]N. Giordano, E. Passalacqua, P. L. Antouncci, et al. Influence of the physicochemical properties on the performance of Pt/C porous electrodes for oxygen reduction in phosphoric acid[J]. Electrochimica Acta., 1993, 38:913-918
    [57]顾军,隋升,李光强等.燃料电池电极制作方法研究[J].电化学,1999,5(4):459-462
    [58]E. Hah, I. Eroglu, L. Turker. Performance of an alkaline fuel cell with single or double layer electrodes[J]. International Journal of Hydrogen Energy, 2000, 25 (2): 157-165
    [59]刘石明,钱晓良,刘烈伟等.La_(l-x)Sr_xCoO_3气体扩散电极在碱性条件下的氧还原电催化性能[J].化学通报,2000,2(9):41-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700