碳纤维加固非延性钢筋混凝土框架的抗震分析与概念设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非延性钢筋混凝土框架是指没有进行抗震设计、仅用来承担竖向荷载和风荷载,或由于抗震设计规范的修订而不能满足目前抗震要求的现役钢筋混凝土框架结构,这类结构由于缺乏足够的延性和耗能能力,在罕遇地震作用下存在着极高的倒塌风险,急需抗震加固才能继续使用。
     本文对不同高度非延性钢筋混凝土框架结构进行了碳纤维加固前后的弹塑性静、动力抗震分析,在此基础上提出碳纤维抗震加固非延性钢筋混凝土框架结构的概念设计原则,为进一步提出碳纤维抗震加固此类框架结构的量化设计方法奠定基础,对完善和发展我国混凝土结构加固设计规范具有重要意义。本文主要研究工作如下:
     1.结合Perform-3D有限元分析软件,分别建立了伪静力与振动台Benchmark试验的有限元模型,通过与试验结果的对比分析,验证了本文在Perform-3D中建模及弹塑性静、动力分析过程的正确性与适用性;
     2.为探讨不同高度非延性钢筋混凝土框架结构采用碳纤维片材加固后的抗震性能,用PKPM按不考虑抗震设防的原则设计了五层(低层)、十层(中层)、十五层(高层)钢筋混凝土框架结构;在Perform-3D非线性分析软件中实现了碳纤维加固前后框架结构的有限元模型,采用弹塑性静力Pushover方法和动力时程反应分析方法,对加固前后框架结构的抗震性能进行分析与评价;
     3.通过加固前后不同高度框架结构的抗震性能分析,对比多种加固方案的抗震加固效果,提出碳纤维抗震加固非延性钢筋混凝土框架结构的概念设计原则:碳纤维加固框架梁、构件柱对结构的初始弹性刚度影响很小,但可以提高结构的承载力和延性;加固后存在结构薄弱层转移的现象,结构的失效模式可能改变;碳纤维加固低层框架时加固效果最好,加固中、高层框架时的抗震性能提高不如加固低层框架时明显;对于低层框架结构,仅加固框架柱就能大幅提高结构的抗震性能,同时加固框架梁、柱与仅加固框架柱的效果相当;而对中、高层非延性框架结构,只加固框架柱并不能有效地提高结构的抗震性能,需要同时加固框架梁和框架柱才能更好地提高结构的抗震性能。
The non-ductile reinforced concrete (RC) frames refer to the frames that bears only vertical load and wind load, none considering seismic load, and the frames that cannot satisfy the present seismic requirements due to the revision of design code. These kinds of structures lack of enough ductility and energy dissipation capacity, so there is high risk of collapse in future earthquake events. Many of existing RC frames that designed according to the old design code needs to be strengthened for reducing the risk of structural collapses during earthquakes.
     The objective of this study is to evaluate analytically the seismic performance of retrofitted non-ductile RC frames with different height using Carbon Fiber-Reinforced Polymer (CFRP). Pushover and time history analysis were conducted for the studied cases. On the basis of analytical results, the concept design principle of CFRP retrofitting non-ductile RC frames is proposed. The investigation of this study is the basic work for presenting the seismic retrofitting design method of non-ductile RC frames using FRP wraps and significantly for developing and improving of the seismic retrofitting design code of concrete structure in our country. The main contents of the thesis are summarized as follows:
     1. The finite element analysis software Perform-3D was used to conduct Pushover and time history analysis. To validate the capacity and accuracy of the analyzed results, firstly a quasi-static cyclic test and a shaking table Benchmark test were simulated using the software, respectively. The comparisons between the test results and predictions of Pushover and time history analysis demonstrate the capacity and excellent accuracy of the software.
     2. Three non-ductile RC frames with different heights representing low- (5 floors), medium- (10 floors), and high-rise (15 floors) buildings as control specimens were designed and investigated Then the finite element model of three non-ductile frames and retrofitted frames using different rehabilitation patterns were modeled in Perform-3D. The seismic performance of the control and retrofitted RC frames was evaluated using the Pushover and dynamic time history analysis.
     3. The retrofitted effectiveness of different rehabilitation patterns is evaluated from the comparing of seismic performance control and retrofitted frames. It is found that the bearing capacity and the ductility of RC frames are improved after retrofitting, while the elastic stiffness is unchanged. The weakness floors may be transferred for retrofitted frames and then change the failure mode of retrofitted frame. The retrofitted effectiveness is best when retrofitting the low-rise frames. For the low-rise frames, the FRP rehabilitation of columns only is effective in enhancing the seismic performance and retrofitting both beams and columns perform the same as retrofitting columns only. For medium- and high-rise ones, rehabilitation of columns only cannot improve the seismic performance of frames and it is necessary to retrofitting both the frame beams and columns for these frames.
引文
[1]叶列平,冯鹏. FRP在工程结构中的应用与发展[J].土木工程学报, 2006, 39(3):24-36.
    [2] Xiao Y.. Applications of FRP composites in concrete column[J]. Advance of Structural Engineering, 2004, 7(4):335-343.
    [3] Lelli Van Den Einde, Zhao Lei, Seible Frieder. Use of FRP composites in civil structural applications[J]. Construction and Building Materials, 2003, 17(6-7):389-403.
    [4] Frieder, S., Priestley M. J., et al. Seismic retrofit of RC columns with continuous carbon fiber jackets[J]. Journal of Composites for Construction, 1997, 1(2):52-63.
    [5]赵彤,谢剑.碳纤维布补强加固混凝土结构新技术[M].天津:天津大学出版社, 2001.
    [6]周秦.碳纤维布加固混凝土结构技术的应用研究[D].北京:中国地质大学硕士学位论文, 2009.
    [7] American Concrete Institute. Guide for the design and construction of extermally bonded FRP systems for strengthening concrete structures(ACI 440.2R-08)[S]. 2008.
    [8]《碳纤维片材加固修复混凝土结构技术规程》编制组.碳纤维片材加固修复混凝土结构技术规程[S].北京:中国计划出版社, 2001.
    [9] Canadian Standards Association. Design and construction of building components with fibre-reinforced polymers[S]. 2004
    [10] Fardis M. N., Khalili H. H. Concrete encased in fiberglass reinforced plastic[J]. ACI Structure Journal, 1981, 78(6):440-446.
    [11] Spoelatra M. R., Monti G. FRP-confined concrete model[J]. Journal of Composites for Construction, 1999, 3(3):143-150.
    [12] Pessiki S., Harries K. A., Kestner J. T., Ricles J. M. Axial behavior of reinforced concrete columns confined with FRP jackets[J]. Journal of Composites for Construction, 2001, 5(4):237-245.
    [13] Li Yeou Fong, Lin Chih Tsung, Sung Yi Ying. A constitutive model for concrete confined with carbon fiber reinforced plastics[J]. Mechanics of Materials, 2003, 35(3-6):603-619.
    [14] Matthys S., Toutanji H., Taerwe L. Stress-strain behavior of large-scale circular columns confined with FRP composites[J]. Journal of Structural Engineering, 2006, 132(1):123-133.
    [15] Tourgay T., Koksal H. O., Polat Z., Karakoc C. Stress-strain model for concrete confined with CFRP jackets[J]. Materials and Design, 2009, 30(8):3243-3251.
    [16] Abbasnia R., Ziaadiny H. Behavior of concrete prisms confined with FRP composites under axial cyclic compression[J]. Engineering Structures, 2010, 32(3):648-655.
    [17]吴波,王维俊,张正先.反复荷载下碳纤维布加固钢筋混凝土框架梁的试验研究[J].世界地震工程, 2003, 19(1):62-69.
    [18]李忠献,景萌.在弯矩、剪力和反复扭矩复合作用下的碳纤维布加固RC箱梁抗扭性能试验研究[J].土木工程学报, 2006, 39(11):77-83.
    [19] Benjeddou O., Ouezdou M. B., Bedday A. Damaged RC beams repaired by bonding of CFRP laminates[J]. Construction and Building Materials, 2007, 21(6):1301-1310.
    [20]曾严红,林峰,顾祥林.碳纤维布加固开裂低配筋混凝土梁试验研究与有限元分析[J].建筑结构学报(增刊), 2008:97-101.
    [21] Frider Seible, Nigel Priestley M. J., Hegemier Gilbert A., Donato Innamorato. Seismic retrofit of RC columns with continuous carbon fiber jackets[J].Journal of Composites for Construction, 1997, 1(2):52-62.
    [22] Saadatmanesh H., Ehsani M. R., Limin Jin. Seismic strengthening of circular bridge pier models with fiber composites[J]. ACI Structural Journal, 1996, 93(6):936-947.
    [23] Wilkins Aquino, Neil M. Hawkins. Seismic retrofitting of corroded reinforced concrete columns using carbon composites[J]. ACI Structural Journal, 2007, 104(3): 348-356. [ 24 ] Bre?a Sergio F., Benjamin. Hysteretic behavior of bridge columns with FRP-jacketed lap splices designed for moderate ductility enhancement[J]. Journal of Composites for Construction, 2007, 11(6):565-574.
    [25]王震宇,芦学磊,李伟,王代玉.塑性铰区碳纤维约束高强混凝土圆柱抗震性能的试验研究[J].建筑结构, 2009, 39(2): 21-24.
    [26] Khalid M. Mosalam A., Mohamed Talaat, Baris Binici. A computational model for reinforced concrete members confined with fiber reinforced polymer lamina: implementation and experimental validation[J]. Composites Part B:Engineering, 2007, 38(5-6): 598-613.
    [27]王震宇,王代玉,卢学磊.碳纤维约束高强混凝土圆柱压弯构件非线性全过程分析[J].计算力学学报, 2009, 26(6):913-918.
    [28]潘志宏,李爱群,孙义刚.基于纤维模型的外包钢加固混凝土框架结构静力弹塑性分析[J].沈阳建筑大学学报:自然科学版, 2010, 26(1):68-74.
    [29] Parvin A., Granata P. Investigation on the effects of fiber composites at concrete joints[J]. Composites Part B:Engineering, 2000, 31(6-7):499-509.
    [30] Parvin Azadeh, Wu Shanhong. Ply angle effect on fiber composite wrapped reinforced concrete beam-column connections under combined axial and cyclic loads[J]. Composite Structures, 2008, 82(4):532-538.
    [31]陆洲导,洪涛,谢莉萍.碳纤维加固混凝土框架节点的抗震试验研究[J].结构工程师, 2004, 20 (5):39-43.
    [32]吴波,王维俊.碳纤维布加固钢筋混凝土框架节点的抗震性能试验研究[J].土木工程学报, 2005, 38(4):60-65.
    [33]彭亚萍,王铁成,刘增夕,黄博升. FRP抗震加固混凝土梁柱节点的受剪承载力分析[J].地震工程与工程振动, 2006, 26 (1) :116-121.
    [34]冼巧玲,江传良,周福霖.混凝土框架节点碳纤维布抗震加固的试验与分析[J].地震工程与工程振动, 2007, 27(2):104-111.
    [35] Duong, K. V. Seismic behavior of a shear-critical reinforced concrete frame: an experimental and numerical investigation[D]. Department of Civil Engineering, University of Toronto, Toronto, Ontario, Canada, 2006.
    [36] Duong K. V., Sheikh S. A., Frank J. V. Seismic behavior of shear-critical reinforced concrete frame: experimental investigation[J]. ACI Structural Journal, 2007, 104(3):304-313.
    [37]王新玲,赵更歧,吕林,朱俊涛,姚章堂.碳纤维布加固震后严重损伤混凝土框架的抗震试验研究[J].建筑结构, 2010, 40(1):50-53.
    [38] Balsamo A., Colombo A., Manfredi G., Prota A.. Seismic behavior of a full-scale RC frame repaired using CFRP laminates[J]. Engineering Structures. 2005, Vol.27(5):769-780.
    [39]吴刚,吕志涛,张继文. CFRP布加固钢筋混凝土框架抗震性能的试验研究[C].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会,昆明: 2002:130-136.
    [40]王国炎.碳纤维加固钢筋混凝土框架结构抗震性能的试验研究[D].南京:东南大学硕士论文.2005:16-22.
    [41]熊耀清,姚谦峰. CFRP加固RC框架结构振动台试验及损伤机理分析[J].北京交通大学学报, 2006, 30(1):25-29.
    [42] Stefano Pampanin, Davide Bolognini, Alberto Pavese. Performance-based seismic retrofit strategy for existing reinforced concrete frame systems using fiber-reinforced polymer composites[J]. Journal of Composites for Construction,2007, 11(2):211-226.
    [43]王新玲,范建伟,王华.碳纤维布加固完好混凝土框架结构抗震性能试验研究[J].郑州大学学报, 2008, 29(4):81-85.
    [44] Zhu J. T., Wang X. L., Xu Z. D., Weng C. H.. Experimental study on seismic behavior of RC frames strengthened with CFRP sheets[J]. Composite Structures, 2011, 93(6):1595-1603.
    [45] Khaled Galal, Hossam El-Sokkary. Analytical evaluation of seismic Performance of RC frames rehabilitated using FRP for increased ductility of members[J]. Journal of Performance of Constructed Facilities, 2008, 22(5):276-288.
    [46]胡孔国,陈小兵,岳清瑞.基于性能的碳纤维抗震加固设计[J].地震工程与工程振动, 2004, 24(5):159-166.
    [47]戴绍斌,杜黎妍.碳纤维布增强混凝土框架抗震性能的有限元分析[J].地震工程与工程振动, 2005, 25(4):112-115.
    [48] Niroomandi A., Maheri A., Mahei Mahmoud R., Mahini S.S.. Seismic performance of ordinary RC frames retrofitted at joints by FRP sheets[J]. Engineering Structures, 2010, 32(8):2326-2336.
    [49]江卫国,陈忠范,程文瀼. FRP加固框架的抗震性能分析[J].工程抗震与加固改造, 2009, 31(1):91-96.
    [50] Mortezaei A., Ronagh H.R., Kheyroddin A.. Seismic evaluation of FRP strengthened RC buildings subjected to near-fault ground motions having fling step[J]. Composite Structures, 2010, 92(5):1200-1211.
    [51] Reyes Garcia, Iman Hajirasouliha, Kypros Pilakoutas. Seismic behavior of deficient RC frames strengthened with CFRP composites[J]. Engineering Structures, 2010, 32(10):3075-3085.
    [52]马明. FRP加固混凝土框架结构的抗震性能研究[D].济南:济南大学硕士学位论文, 2010.
    [53]潘文. Push-over方法的理论与应用[D].西安:西安建筑科技大学博士论文, 2004:1-25.
    [54] Mwafy A. M., Elnashai A. S.. Static Pushover versus dynamic collapse analysis of RC buildings[J]. Engineering Structures, 2001, 23(5):407-424.
    [55]陈建兴,姜文伟,穆为. Pushover分析在性能抗震设计中的应用[J].结构工程师, 2008, 24(3):81-86.
    [56]吴素静. Pushover分析及时程分析在实际结构工程中的应用与研究[D].西安:西安建筑科技大学硕士论文. 2004:17-28.
    [57]程绍革,王理,张允顺.弹塑性时程分析方法及其应用[J].建筑结构学报, 2000, 21(1):52-56.
    [58] Freeman S. A., Nicoletti J. P., Tyrdl J. V.. Evaluation of existing buildings for seismic risk-A case study of puget sound naval shipyard[J]. Earthquake Engineering, 1975,11(2):113-122.
    [59] Saiidi M., Sozen M. A.. Simple non-linear seismic analysis of RC structures[J]. Journal of Structural Division, 1981, 107(5):937-951.
    [60] Fajfar P., Gaspersic P.. The N2 method for the seismic damage analysis of RC buildings[J]. Earthquake Engineering and Structural Dynamics, 1996, 25(1):31-46.
    [61] Chopra A. K., Goel R. K.. A modal Pushover analysis procedure for estimating seismic demands for buildings[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(3):561-582. [ 62 ] Kilar V., Fajfar P.. Simple push-over analysis of asymmetric buildings[J]. Earthquake Engineering and Structural Dynamics, 1997, 26(2):233-249. [ 63 ] Gupta A., Krawinkler H.. Estimation of seismic drift demands for frame structures[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(9):1287-1305.
    [64]韩小雷,陈学伟,林生逸,何伟球,郑宜,吴培烽,毛贵牛.基于纤维模型的超高层钢筋混凝土结构弹塑性时程分析[J].建筑结构, 2010, 40(2):13-16.
    [65]熊向阳,戚震华.侧向荷载分布方式对静力弹塑性分析结果的影响[J].建筑科学, 2001, 17(5):8-13
    [66]徐云扉,胡庆昌,陈玉峰,施昌,洪柏年,林绍钧,于洪.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报, 1986, 7(2):1-16.
    [67]吕西林,李培振,陈跃庆. 12层钢筋混凝土标准框架振动台模型试验的完整数据[R].同济大学土木工程防灾国家重点实验室振动台试验室, 2004.
    [68] Kent D. C., Park R.. Flexural Members with Confined Concrete[J]. Journal of the Structural Division, 1971, 97(7):1969-1990.
    [69] Mander B., Priestley M. J. N., Park R.. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8):1804-1826
    [70]过镇海.钢筋混凝土原理[M].北京:清华大学出版社, 1999.
    [71] Lam L., Teng J. G.. Design-oriented Stress-strain Model for FRP-confined Concrete in Rectangular Columns[J]. Journal of Reinforced Plastics and Composites, 2003, 22(13):1149-1186.
    [72] Lam L., Teng J. G.. Design-oriented Stress-strain Model for FRP-confinedConcrete[J]. Construction and Building Materials, 2003, 17(6-7):471-489.
    [73]吴刚,吕志涛.纤维增强复合材料(FRP)约束混凝土矩形柱应力-应变关系的研究[J].建筑结构学报, 2004, 25(3):99-106.
    [74]赵彤,刘明学,谢剑.碳纤维布增强钢筋混凝土延性性能的评估与分析.地震工程与工程振动[J]. 2003, 23(4):117-122
    [75]邢秋顺,翁义军,沈聚敏.约束混凝土应力应变全曲线的试验研究[C].约束与普通混凝土强度理论及应用学术讨论会论文集,烟台, 1987:81-87.
    [76] Saadatmanesh H.. Extending Service Life of Concrete and Masonry Structures with Fiber Composites[J]. Construction and Building Materials. 1997, 11 (5-6): 327-335.
    [77]郭瑞峰.碳纤维约束钢筋混凝土圆柱及方柱本构模型[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2010:82-92.
    [78]王震宇,王代玉,吕大刚,郭瑞峰. CFRP中等约束钢筋混凝土方柱单轴受压应力-应变模型[J].建筑结构学报, 2011, 32(4):101-109.
    [79]周宝峰.强度包线对人造地震动影响的研究[D].哈尔滨:中国地震局工程力学研究所硕士论文, 2008:42-54.
    [80]陈永祁.拟合标准反应谱的人工地震波[J].建筑结构学报, 1986, 2(4) :34-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700