我国主要农产品虚拟水流动格局形成机理与维持机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全和水安全一直是关系国计民生的重大问题,虚拟水概念的提出为解决区域水资源安全与粮食安全提供了新思路。但区域间持续的虚拟水贸易已对区域生态环境和经济发展产生了不良影响,为解决这些问题,需要对虚拟水流动格局的形成机理与维持机制进行深入系统的分析,以期为合理应用虚拟水贸易解决我国水资源危机和粮食安全危机提供科学指导。
     本文以我国主要农产品(稻谷、小麦、玉米)的虚拟水流动格局为研究对象,主要以比较优势理论、自然资源重建理论、资源流动理论和资源替代理论等为理论基础,按照格局、结构、过程和机理的地理学研究思路,借鉴生态学、经济学、水文学等学科,主要以数学模型分析、解释模型分析和GIS空间分析等定量研究方法为主,以及定性和定量相结合、理论分析与实证研究相结合的研究手段,对我国主要农产品虚拟水流动格局及其形成机理、稳定性和维持机制展开系统研究。主要研究内容为:
     构建我国主要农产品虚拟水流量关系矩阵,并对其进行成因分析。本部分内容为全文的研究基础。首先,本文将我国31个省市自治区(不含港、澳、台)划分为八大区域:东北(内蒙古、辽宁、吉林、黑龙江)、华北(北京、天津、山西)、黄淮海(河北、河南、山东、安徽)、西北(陕西、甘肃、青海、宁夏、新疆)、东南(上海、浙江、福建)、长江中下游(江苏、江西、湖北、湖南)、华南(广东、广西、海南)和西南(四川、贵州、云南、西藏)。在此基础上构建了我国主要农产品虚拟水流动格局矩阵,并估算了虚拟水进、出口量,结果表明:我国粮食对外贸易中虚拟水净调入量逐年增加,这主要是受大豆的影响。1999-2010年12年间我国区际间虚拟水流向主要是从北方流向南方地区,2007年输出量达到最大值313.3×108m3,最小值在2003年为172.4×108m3;在八大区域中,东北、黄淮海、长江中下游地区为我国虚拟水净调出区,黄淮海地区调出量增幅最大,其他五大区域为虚拟水净调入区,其中华南和东南为主要的净流入区。通过对虚拟水流动格局的分析显示:虚拟水贸易理论在我国并不完全适用,为保障国家粮食安全、水资源安全与政治安全,应立足本国粮食的自给自足,采取有效的措施保障现有的虚拟水流动格局。
     运用改进的空间偏离-份额模型分析我国主要农产品虚拟水总量变化的时空演变特征。为探究虚拟水流动格局的形成机理,本文构建基于国家分量、区域结构分量、邻区空间结构分量、区域空问效应分量和邻区效应分量的空间偏离-份额模型,对1999-2010年间我国各地区主要农产品虚拟水总量变化进行分解分析,结果表明:区域主要农产品虚拟水含量的增减不但与本区域农业内部产业结构和农业竞争力优势有关,还与邻区的农业内部产业结构和农业竞争力优势有关;并进一步划分了各地区主要农产品虚拟水含量的变化类型;采用最小方差法将中国31个行政区确定为五种影响类型:单因素主导型、双因素主导型、三因素主导型、四因素主导型和五因素主导型。由此可以看出虚拟水含量的规模、结构和效应都在影响着虚拟水的流动格局,但并不是影响虚拟水流动的唯一因素,虚拟水流动格局的形成应是多因素的综合作用结果。
     运用PLS模型定量化研究我国虚拟水流动格局形成机理。在虚拟水流动格局和虚拟水量时空演变的研究基础上,为更加准确的研究虚拟水流动格局的形成机理,采用PLS模型对其进行定量化研究,从人口、农业资源、农业生态环境、经济、科技和文化、交通及虚拟水增量等七个方面对我国主要农产品虚拟水流动格局的形成机理进行分析,研究结果表明:人口通过农业资源影响虚拟水增量进而影响虚拟水的流动;经济主要是通过交通及技术和文化影响虚拟水的流动;虚拟水流动会反作用于农业生态环境。由此进一步证明,虚拟水流动格局的形成是受多因素共同作用的结果。
     引入生态网络安全概念构建虚拟水流动格局网络稳定性模型并分析其可持续性。虚拟水流动格局的形成是受国家政策等多因素共同作用的结果,因此,在未来一段时间内虚拟水流动格局不会有大的变化,为保证虚拟水流动格局的稳定性,引入生态网络安全系统相关概念,构建虚拟水流动格局网络稳定性模型,结果表明:1999年-2010年间,虚拟水流动格局网络系统的信道数目减少,并且信道容量在逐年降低;系统聚合度和系统冗余度亦呈波动降低趋势;系统网络使用率呈现降低趋势;系统网络空闲率呈增加趋势;网络系统指标表明我国区际间主要农产品虚拟水流动形成的网络系统的稳定性逐年降低。最后,从生态网络安全角度分析虚拟水战略在我国的适用性,提出南水北调、生态补偿等有效措施会保证虚拟水流动格局的稳定性。
     构建基于虚拟水流动格局的区际间农业生态补偿横向转移支付模型,初步解决了农业生态补偿标准模糊和补偿主客体不明确的问题。农业生态补偿研究旨在解决农业发展与生态环境的可持续性问题。通过借鉴国内外研究成果,提出了农业生态补偿机制框架。为解决补偿标准模糊和补偿主客体不明确的问题,引入虚拟水理论,将虚拟水作为农业生态补偿的载体,构建了区际间农业生态补偿横向转移支付模型,并形成了基于虚拟水流动格局的农业生态补偿思路,以全国为例,得出以下结论:八大区域中东南地区和华南地区仅是补偿主体,而其他区域既是补偿主体又是补偿客体;并计算出了相应的补偿金额。
     研究虚拟水与水资源承载力的关系。引入虚拟水作为评价华北地区水资源承载力的评价指标,探讨虚拟水战略的适用性及与水资源承载力的关系。以水资源总量、总供水量、年降水量等13个因子作为水资源承载力评价的指标,运用主成分分析法对华北地区的水资源承载力进行综合评价。结果表明:影响水资源承载力的驱动因子主要为经济、人口和水资源及虚拟水净流量;华北地区水资源承载力处于波动上升的趋势;虚拟水是影响水资源承载力的重要因子,但虚拟水的引入不会改变水资源承载力的总体变化趋势。
Food security and water security are major issues which have been the relationship between the national economy and the people's livelihood, the proposed virtual water concept provides a new approach to solve regional water security and food security. Continuing interregional virtual water trade has had a negative impact on the regional ecological environment and economic development, to solve these problems; it needs to deeply analyze the formation mechanism of the virtual water flow pattern and maintenance mechanism, which provides a scientific guidance for solving water crisis and food security crisis in China.
     In this paper, in accordance with the pattern, structure, process and mechanism of geography research ideas, learning from the disciplines of ecology, economics, hydrology, with the method of mathematical model analysis, the interpretation model analysis and GIS spatial analysis, as well as a combination of qualitative and quantitative, theoretical analysis and empirical research, virtual water flow patterns and their formation mechanism, system stability and maintenance mechanisms are deeply researched, which studied China's major agricultural products (rice, wheat, corn), based on the theory of comparative advantage, natural resource reconstruction theory, resource flow theory and resource alternative theories, The matrix of the major crops virtual water flow is constructed and its causes are analyzed. The content of this section is the research foundation for the full text. First, China's31provinces, cities and autonomous regions (excluding Hong Kong, Macao and Taiwan) is divided into eight regions:Northeast (Inner Mongolia, Liaoning, Jilin, Heilongjiang), North China (Beijing, Tianjin, Shanxi), the Huang-Huai-Hai (Hebei, Henan, Shandong, Anhui), Northwest (Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang), Southeast (Shanghai, Zhejiang, Fujian), the middle and lower reaches of the Yangtze River (Jiangsu, Jiangxi, Hubei, Hunan), South China (Guangdong, Guangxi, Hainan) and southwest (Sichuan, Guizhou, Yunnan, Tibet). Virtual water flow pattern of China's major agricultural matrix is constructed on this basis, and the virtual water import and export volume are estimated, the results showed that: the virtual water net transferred amount increases every year in China's grain foreign trade, which is mainly influenced by the soybean. From1999to2010, the inter-district virtual water in China flows to the south from the north in the12years, the2007output reached the maximum313.3×108m3in2007and the minimum172.4×108m3in2003. In the eight regions, the net output area of virtual water is the Northeast and Huang-huaihai and the Yangtze River, the other five areas is the net input area, in which the South and Southeast are the main net input areas.By analysis of the virtual water flow pattern, it shows that virtual water trade theory in our country is not entirely applicable, for the protection of national food security, water security and political security, it should be based on national food self-sufficiency, and existing virtual water flow pattern is protected by taking effective measures.
     The temporal and spatial variations of virtual water changes in the total of China's major crops products is analyzed by the improved spatial shift-share model. For exploring the virtual water flow pattern formation mechanism, the space shift-share model is established based on the national component, the regional structural component, the adjacent areas space structure component, the regional spatial effect component and the adjacent areas effect component, The virtual water changes in the total of crops (rice, wheat, and corn) is decomposed and analyzed from1999to2010in various areas of our country, the results show that:the increase or decrease of virtual water content of the main crops are not only related to the internal structure of the regional agricultural and agriculture competitive advantage, but also the internal structure of the adjacent areas of agriculture and agricultural competitiveness advantages. The type of change of virtual water content of the main crops products in all regions is further divided; the five impact types are identified by Minimum variance method in31administrative districts:dominant type of single factor, two factors, three factors, four factors and five factors. It can be seen that the size, structure and effect of the virtual water content affects the virtual water flow pattern, but not the only factor, the formation of the virtual water flow pattern is the result of the combined effects of multiple factors.
     The virtual water flow pattern formation mechanism is quantitatively studied by PLS model. By using the PLS model, the formation mechanism of the virtual water flow pattern of main crops products in China is analyzed by the seven aspects of population, crops resources, crops ecological environment, economy, technology and culture, traffic and virtual water increment, results show that:population affects the virtual water increment through crops resources, in turn, affects the virtual water flow; Economy mainly affects virtual water flow through transport and technology and cultural; Virtual water flow will react on crops ecological environment. Finally, the PLS models is adopted in this paper to analyze the relationship between the virtual water flows and it's influencing factors. This paper objectively reveals the impact of the other factors except the factor of water resources on virtual water flow pattern. The research conclusion is available for guiding the rationality of the virtual water flow pattern, the trends and adjustment of future mobile, the implementation of the national subsidy policy, and the protection of the crops ecological environment. It can provide scientific basis and the policy implications for ensuring food security and water security, and so on, and it can provide references for the virtual water theory in the practical application in our country. Thus, it is further proved that the formation of the virtual water flow pattern is the result of joint action by multiple factors.
     The concept of ecological network security is introduced, and the stability of the network model of virtual water flow pattern is built and its sustainability analyzed. The formation of virtual water flow pattern is the result of joint action by national policy factors; therefore, in the next period of time, there will be no major changes to the virtual water flow pattern. For analyzing the stability of the network system of virtual water flow pattern, the concept of the ecological network security system is introduced, and the model of the network system stability is build, results show that:Between1999and2010, the number of the channel of the network system of virtual water flow pattern was in decline, and the channel capacity reduced in the year; the polymerization degree and the redundancy of the system fluctuating decreased; the usage rate reduced; the idleness increased; the network system indicators show that the stability of the network system of virtual water formed by the main crops in China's inter-district flows down year by year. So, five response measures are put forward that include establishing the early warning system of food security, enhancing the food production, circulation and reserve capacity, implementing the internationalization strategy of food security, making virtue water strategy according to Chinese situation, strengthening agro-ecological protection and constructing agricultural ecological compensation mechanism. The inter-district agro-ecological compensation horizontal transfer payment model is built based on the virtual water flow pattern. It is initially solved that the agro-ecological compensation standard is vague and the compensation subject and object is unclear. The study of the agricultural ecological compensation aims at solving the agricultural development and ecological environment sustainability issues. Through the study achievements at home and abroad, the framework of the agricultural ecological compensation mechanism is put forward. To solve the problems about the uncertainty of the compensation standard as well as the compensation subject and object, the virtual water theory is introduced. The virtual water is taken as the carrier of agricultural ecological compensation; the agricultural ecological compensation ideas are formed based on the virtual water flow pattern. To take the whole nation as an example, the following conclusions can be obtained:the southeast area and the Southern China area are the only subject of compensation among the eight regions, while the other area is both the compensation subject and the compensation object; and the corresponding compensation amount is calculated.
     Study the relationship between virtual water and water resources bearing capacity. This paper introduces the virtual water as evaluation index of the water resources carrying capacity, and discusses the applicability of the virtual water strategy and the relationship between it and the water resources carrying capacity. Using the total water resources, total supply, such as13factors as the evaluation index of the water resources carrying capacity, the principal component analysis is used to comprehensive evaluated the water resources carrying capacity of north China. The results showed that the main driving factors of effecting water resources carrying capacity is economy, population, the resources of water and the virtual water flow net; the water resources carrying capacity is in the upward trend in North China; the Virtual water is an important factor of affecting the water resources carrying capacity, but the introduction of virtual water will not change the overall changes trend of water resources carrying capacity.
引文
[1]柳长顺,陈献,刘昌明,等.虚拟水交易:解决中国水资源短缺与粮食安全的一种选择[J].资源科学,2005(2):10-15.
    [2]Merrett S. Virtual water and the kyoto consensus a water forum contribution [J]. Water International, 2003,28(4):540-542.
    [3]Bouwer H. Integrated water management:emerging issues and challenges [J].Agricultural Water Management,2000(45):217-228.
    [4]Fishelson G. The allocation of the marginal value product of water Israeli agriculture [A].Water and peace in the Middle East [C]. Amsterdam, Elsevier Science BV:427-440,1994.
    [5]Allan J A. Virtual water:a long term solution for water short Middle Eastern economies? [EB/OL] http://www.soas.ac.Uk/Geography/WaterIssues/OccasionalPapers/home. html,2005-03-12.
    [6]Haddadin M J. Exogenous water-A conduit to globalisation of water resources[A].In: Hoekstra(ed)Virtual Water Trade[C].Proceedings of the international Expert Meeting on Virtual Water Trade, Value of Water Research Series No.12[C].Netherlands, Delft:UNESCO-IHE Institute for Water Education,2003.
    [7]Mccalla A. The water, food, trade nexus[A].In Mediterranean Development Forum[C]. Morocco, Marrakesh:The World Bank,1997.
    [8]Allan J A. Overall perspectives on countries and regions[A].In:Rogers P, Lydon P(eds), Water in the Arab World:Perspectives and Prognoses[C].Massachusetts:Harvard University Press.1994:65-100.
    [9]Allan J A. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible [A]. In prioritized for water resource allocation and management [C].London, United Kingdom: ODA:13-26,1993.
    [10]Kosugi K, Hopmans J W. Scaling water retention curves for soils with lognormal pore-size distribution [J].Soil Science Society of America Journal,1998(62):1496-1505.
    [11]Yoder R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses [J].Agronomy Journal,1936(28):337-351.
    [12]Kemper W D, Koch E J. Aggregate stability of soils from Western United States and Canada [M].Technical Bulletin No.1355.United States Department of Agriculture, Agricultural Research Service, 1966.
    [13]Kemper W D, Rosenau R C. Aggregate stability and size distribution [J].1986 pp.425-442.In:Klute A(ed) Methods of soil analysis. Part 1.
    [14]Hockstra A Y. Perspectives on water:a model-based exploration of the future [M].International BOOKS, Utrecht, The Netherlands,1998.
    [15]刘宝勤,封志明,姚治君.虚拟水研究的理论、方法及其主要进展[J].资源科学,2006(1)120-127.
    [16]Hoekstra A Y, Hung P Q.Virtual water trade:a quantification of virtual water flows between nations in relation to international crop trade [C]//Hoekstra A Y (ed).Value of Water Research Report Series No.11. Delft:UNESCO-IHE Institute for Water Education,2002:13-15.
    [17]孙才志,刘玉玉,陈丽新,等.基于基尼系数和锡尔指数的中国水足迹强度时空差异变化格局[J].生态学报,2010(5):1312-1321.
    [18]Chapagain A K, Hoekstra A Y. Virtual water trade:a quantification of virtual water Hows between nations in relation to international trade of livestock and livestock products [C]//Hoekstra A Y(ed). Virtual Water Trade:Proceedings of the International Expert Meeting on Virtual Water Trade. Delft:IHE, 2003:137-145.
    [19]Zimmer D, Renault D. Virtual water in food production and global trade:Review of methodological issues and preliminary results [C]//Hoekstra A Y(ed). Virtual water trade:Proceedings of the international Expert Meeting on Virtual Water Trade.Delft:UNESCO-IHE Institute for Water Education,2003.
    [20]Allen R G, Pereira L S, Raes D et al. Crop evapotranspiration:gudielines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome:1998,(2):8.
    [21]牛树海.虚拟水分析理论和方法[J].华侨大学学报(自然科学版),2004(3):331-333.
    [22]王树谦,梁灵君.浅析ET与农作物产品虚拟水之间的关系[J].水科学与工程技术,2005(6):26-29.
    [23]龙爱华,徐中民,张志强等.虚拟水理论方法与西北4省(区)虚拟水实证研究[J].地球科学进展,2004(4):577-584.
    [24]韩宇平,雷宏军,潘红卫等.农产品虚拟水含量计算方法研究[J].安徽农业科学,2011,39(8):4423-4426.
    [25]高太忠,庞会从,余国山等.虚拟水理论在河北省的应用[J].水资源保护,2010,26(3):29-82,86.
    [26]徐中民,龙爱华,张志强.虚拟水的理论方法及在甘肃省的应用[J].地理学报,2003,58(6):861-869.
    [27]王红瑞,王军红.中国畜产品的虚拟水含量[J].环境科学,2006,27(4):609-615.
    [28]曹建廷,李原园,张文胜,等.农畜产品虚拟水研究的背景、方法及意义[J].水科学进展,2004,(15):829-834.
    [29]Hoekstra A Y. Virtual water trade:an introduction [A].In:Hoekstra A Y(ed.),Virtual water trade. Value of Water Research Report Series(No.12)[C].IHE Delft,2003:13-23.
    [30]Williams E D, Ayres R U, Heller M. The 1.7 kilogram microchip:energy and material use in the production of semiconductor devices. Environmental Science and Technology,2002,36(24):5504-5510.
    [31]Hoekstra A Y. Perspectives on water:a model-based exploration of the future[M].International BOOKS, Utrecht, The Netherlands,1998.
    [32]Allan J A. Virtual water-problemshed solutions for water scarce watersheds:consequences of economic political invisibility, http://www.siwi.org/waterweek 2003/work shop.%207%200ral(28).html.
    [33]Allan J A. Virtual water-the water, food, and trade nexus useful concept or misleading metaphor?[J]. IWRA, Water International,2003,28(1):106-113.
    [34]Allan J A. Hydro-peace in the Middle East:why water wars? A case study of Jordan River Basin[J]. SAIS Journal,2002, XXII (2):221-235.
    [35]林家彬.日本水资源管理体系考察及借鉴[J].水资源保护,2002(4):55-59.
    [36]Taikan Oki and Shinjiro Kance. Virtual water trade to Japan and in the world [A]. In A.Y Hoekstra edited. Proceedings of the International Expert Meeting on virtual water trade. Value of water Research Report series NO.12[C]. Delf, the Netherlands,2003:221-235.
    [37]Dennis Wichelns. The policy relevance of virtual water can be enhanced by considering comparative advantages [J]. Agricultural Water Management,2004(66):49-63.
    [38]Dennis wichelns. The role of virtual water in efforts to achieve food security and other national goals, with an example from Egypt[J]. Agricultural Water Management:2001(49):131-151.
    [39]刘红梅,王克强,刘静.国际农业虚拟水贸易国别研究[J].农业经济问题,2007(9):96-100.
    [40]Turton A R, Moodley S, Goldblatt M et al. An analysis of the role of virtual water in Southern Africa in meeting water scarcity:an applied research and capacity building project. Johannesburg:Group for Environmental Monitoring (GEM) and IUCN(NETCAB),2000:2-8.
    [41]程国栋.虚拟水——中国水资源安全战略的新思路[C].中国科学院院刊,2003(4):260-265.
    [42]程国栋.虚拟水:水资源与水安全研究的创新领域[EB/OL].Http://www.Waterlab.Org.cn.
    [43]张志强,程国栋.虚拟水、虚拟水贸易与水资源安全新战略[J].资源环境,2004(3):7-10.
    [44]龙爱华,徐中民,张志强.西北四省(区)2000年的水资源足迹[J].冰川冻土,2003,25(6):692-699.
    [45]何艳梅.全球水短缺背景下的虚拟水贸易[J].水利发展研究,2006(8):18-21.
    [46]柯兵,刘文华,段光明,等.虚拟水在解决农业生产和粮食安全问题中的作用研究[J].环境科学,2004,25(2):32-36.
    [47]龙爱华,徐中民,王新华,等.人口、富裕及技术对2000年中国水足迹的影响[J].生态学报,2006(10):3358-3365.
    [48]孙才志,陈丽新.我国虚拟水及虚拟水战略研究[J].水利经济,2010(3):1-4.
    [49]孙才志,刘玉玉,陈丽新,等.中国粮食贸易中的虚拟水流动格局与成因分析—兼论“虚拟水战略”在我国的适用性[J].中国软科学,2010(7):36-44.
    [50]王红瑞,董艳艳,王军红,等.关于虚拟水与虚拟水贸易的讨论[J].北京师范大学学报(自然科学版),2006(6):633-638.
    [51]Yang H, Zeheder A J B. Water scarcity and food import:a case study for Southern Mediterranean Countries [J]. World Development.2002,30(8):1413-1430.
    [52]Saila Parveen. Trading virtual water between India and Bangladesh a politico-economic dilemma [EB/OL]. http://www. siwi. Org/waterweek2003/Workshop%207%20Oral(28).htm,2005-08-10.
    [53]Yegnes-Botzer, A. Virtual water export from Israel:quantities, driving forces and consequences[A].MSc thesis DEW 166[C].NetherIands, Delft:UNESCO-IHE Institute for Water Education,2001.
    [54]马静,汪党献,A. Y. Hoekstra,等.虚拟水贸易在我国粮食安全问题中的应用[J].水科学进展,2006(17):102-107.
    [55]周姣,史安娜.区域虚拟水贸易计算方法及实证[J].中国人口资源与环境,2008,18(4):184-188.
    [56]周姣,史安娜.我国区域间虚拟水贸易的前瞻思考[J].区域经济,2009,23(6):37-40.
    [57]王红瑞,王岩,王军红,等.北京农业虚拟水结构变化及贸易研究[J].环境科学,2007(12):2877-2884.
    [58]王新华.中部四省虚拟水贸易的初步研究[J].华南农业大学学报(社会科学版),2004,3(3):33-38.
    [59]刘宝勤.我国粮食虚拟水流动空间格局及其调控政策[J].水利发展研究,2010(2).
    [60]柳文华,赵景柱,邓红兵,等.水—粮食贸易:虚拟水研究进展[J].中国人口资源与环境,2005,15(3):129-134
    [61]朱启荣,高敬峰.中国对外贸易虚拟水问题研究——基于投入产出的分析[J].中国软科学,2009(5):40-45,88.
    [62]陈丽新,孙才志.中国农产品虚拟水流动格局的形成机理与维持机制研究[J].中国软科学,2010(11):44-53.
    [63]孙才志,陈丽新,刘玉玉.中国省级间农产品虚拟水流动适宜性评价[J].地理研究,2011(1):612-621.
    [64]Chapagain A K, Hoekstra A Y. Water footprints of nations [A]. Value of Water Research Report Series No.16 [C].Netherlands, Delft:UNESCO-IHE Institute for Water Education,2004.
    [65]Chapagain A K, Hoekstra A Y. The water needed to have the Dutch drink coffee [A].Value of Water Research Report Series No.14 [C]. Netherlands, Delft:UNESCO-IHE Institute for Water Education,2003.
    [66]王新华,徐中民,龙爱华.中国2000年水足迹的初步计算分析[J].冰川冻-土,2005(5):774-780.
    [67]黄晶,宋振,伟陈阜.北京市水足迹及农业用水结构变化特征[J].生态学报,2010,30(23):6546-6554.
    [68]盖力强,谢高地,李士美,等.华北平原小麦、玉米作物生产水足迹的研究[J].资源科学,2010(11):2066-2071.
    [69]王新华,徐中民,龙爱华.中国2000年水足迹的初步计算分析[J].冰川冻土,2005(5):774-780.
    [70]马静,汪党献,来海亮,等.中国区域水足迹的估算[J].资源科学,2005,27(5):96-100.
    [71]秦丽杰,邱红,陶国芳.粮食贸易与水资源安全[J].世界地理研究,2006(1):44-49.
    [72]郭斌,任志远。陕西省2003年水资源足迹测评与分析[J].干早地区农业研究,2006,24(6):178-182.
    [73]陈颢,任志远,郭斌.陕西省近10年来水资源足迹动态变化研究[J].干旱区资源与环境,2011,25(3):43-48.
    [74]盖力强,谢高地,李士美,等.华北平原小麦、玉米作物生产水足迹的研究[J].资源科学,2010(11):2066-2071.
    [75]刘梅,许新宜,王红瑞,等.基于虚拟水理论的河北省水足迹时空差异分析[J].自然资源学报,2012,27(6):1022-1034.
    [76]陈俊旭,张士锋,华东等.基于水足迹核算的北京市水资源保障研究[J].资源科学,2010(3):528-534.
    [77]鲁仕宝,黄强,马凯,等.虚拟水理论及其在粮食安全中的应用[J].农业工程学报,2010(5):59-64.
    [78]赵军凯,张爱社.水资源承载力的研究进展与趋势展望[J].水文,2006,26(6):47-50,54.
    [79]夏军.水资源安全的度量:水资源承载力的研究与挑战(一)[J].海河水利,2002(2):5-7.
    [80]Harris J M. Carrying capacity in agriculture:globe and regional issue[J].Ecological Economics,1999, 129(3):443-461.
    [81]Munther, Haddadin. Water issue in Hashemite Jordan[J]. Arab Studies Quarterly,2000,22(2):54-67.
    [82]Rijisberman. Different approaches to assessment of design and management of sustainable urban water system [J]. Environment Impact Assessment Review,2000,129(3):333-345.
    [83]Committee to review the Florida Keys Carrying Capacity Study, National Research Coumcil. Interim Review of the Florida Keys Carrying Capacity Study[Z]. Washington DC:National Academy Perss,2001 Also on:http://books.nap.edu/books/NI000343/html.
    [84]Falkenmark M, Lundqvist J. Towards water security:political determination and human adaptation crucial[J]. Natural Resources Forum,1998,21(1):37-51.
    [85]Kuykendtiema J L, Bjorklund G, Najlis P. Sustainable water future with global implications: everyone's responsibility[J]. Natural Resources Forum,1997,21(3):181-190.
    [86]新疆水资源软科学课题组.新疆水资源及其承载力的开发战略对策[J].水利水电技术,1989(6):2-9.
    [87]李令跃,甘泓.试论水资源合理配置和承载能力概念与可持续发展之间的关系[J].水科学进展,2000,11(3):307-313.
    [88]施雅风,曲耀光.乌鲁木齐河流域水资源承载力及其合理利用[M].北京:科学出版社,1992:210-220。
    [89]贾嵘.区域水资源承载力研究[J].西安理工大学学报,1998,14(4):382-387.
    [90]阮本青.流域水源管理[M].北京:科学出版社,2001:152-169.
    [91]曾维华,程声通.区域水资源集成规划刍议[J].水利学报,1997,2(10):77-82.
    [92]程国栋.承载力概念的演变及西北水资源承载力的应用框架[J].冰川土,2002,24(4):316-367.
    [93]文琦,何彤慧.近10年来我国水资源承载力研究综述[J].水资源保护,2005,21(6):15-18.
    [94]苏志勇,徐中民,张志强,等.黑河流域水资源承载力的生态经济研究[J].冰川冻土,2002,24(4): 400-406.
    [95]王栋,史运良,王腊春.浅析太湖流域水资源系统退化与修复对策[J].水资源保护,2003(6):41-42.
    [96]刘昌明,王红瑞.浅析水资源与人口、经济和社会环境的关系[J].自然资源学报,2003,18(5):635-644.
    [97]徐中民.情景基础的水资源承载力多目标分析理论及应用[J].冰川冻土,1999,21(2):99-106.
    [98]王铁成,谢红彬,贾宝全.孔雀河流域绿洲生态支持系统调控模式研究[J].干旱区资源与环境,2002,16(3):7-11.
    [99]闵庆文,于贵瑞,余卫东.西北地区水资源安全的生态系统途径[J].水土保持研究,2003,10(4):272-274.
    [100]夏军,朱一中.水资源安全的度量:水资源承载力的研究与挑战[J].自然资源学报,2002,17(3):262-269.
    [101]朱一中,夏军,谈戈.西北地区水资源承载力分析预测与评价[J].资源科学,2003,25(4):43-48.
    [102]中国水利电力研究所.西北地区水资源合理开发利用与生态环境保护研究[J].中国水利,2001(5):9-11.
    [103]牟海省,刘昌明.我国城市设置与区域水资源承载力协调研究刍议[J].地理学报,1994,49(4):338-343.
    [104]谭少华.我国水资源与城市规划协调研究[J].地域研究与开发,2001,20(2):47-50.
    [105]吴九红,曾开华.城市水源承载力的系统动力学研究[J].水利经济,2003,21(3):36-39.
    [106]许有鹏.干旱区水资源承载能力综合评价研究[J].自然资源学报,1993,8(3):229-237.
    [107]傅湘,纪昌明.区域水资源承载能力综合评价——主成分分析法的应用[J].长江流域资源与环境,1999,8(2):168-173.
    [108]魏斌,张霞.城市水资源合理利用分析与水资源承载力研究——以本溪市为例[J].城市环境与城市生态,1995,8(4):19-24.
    [109]王其藩.高级系统动力学[M].北京:清华大学出版社,1995.
    [110]翁文斌,蔡喜明,史慧斌,等.宏观经济水资源规划多目标决策分析方法研究及应用[J].水利学报,1995(2):1-1J.
    [111]王海兰,牛晓耕.基于水资源承载力的东北三省虚拟水贸易实证研究[J].地方经贸,2011,(5):69-79.
    [112]张志芬,刘东升.基于虚拟水理论区域水资源承载力评价[J].水文水资源,2010(1):15-17.
    [113]龚新梅,吕光辉,桂东伟.用虚拟水理论方法讨论新疆绿洲生态恢复与可持续发展[J].干旱区资源与环境,2007(5):132-135.
    [114]杨振,牛叔文,焦继荣,等.虚拟水战略与民勤绿洲可持续发展问题研究[J].兰州大学学报,2005(5):10-13.
    [115]秦丽杰,常永智,李明.虚拟水战略下的我国区域生态补偿机制研究[J].东北师大学报(哲学社会科学版),2008(4):27-31.
    [116]Lant C L.Commentary:"virtual water occam's razor" by stephen merrett and "Virtual water-the water, food and trade Nexus:useful concept or misleading metaphor?"by Tony Allan[J].Water International,2003,28(1):113-115.
    [117]韩宇平,雷宏军,潘红卫.基于虚拟水的区域发展研究[M].中国水利水电出版社2011(6):10.
    [118]龙方.新世纪中国粮食安全问题研究[M].中国经济出版社,2007(9):38-39.
    [119]胡靖.中国粮食安全:公共产品属性与长期调控重点[J].中国农村观察,2000(4):12-15.
    [120]杜威漩.中国农业水资源管理制度创新研究[M].黄河水利出版社,2006(5):46-55.
    [121]孙才志,张蕾.中国农产品虚拟水:耕地资源区域时空差异演变[J].资源科学,2009,31(1):84-93.
    [122]陈永福.中国食物供求与预测[M].北京:中国农业出版社,2004.94-100,144-147,178,211-215,259-261.
    [123]殷培红,方修琦,田青,等.21世纪初中国主要余粮区的空间格局特征[J].地理学报,2006,61(2):190-198.
    [124]董文福.1990-2002年中国农产品“虚拟水”的变化分析[J].中北大学学报:自然科学版,2006,27(6):554-557.
    [125]吴继英,赵喜仓.偏离-份额分析法空间模型及其应用[J].统计研究,2009,26(4):73-79.
    [126]Dunn ES. A statistical and analytical technique for regional analysis [J].Papers of Regional Science Association,1960(6):97-112.
    [127]Barff R A, Knight III P L. Dynamic shift-share analysis [J]. Growth and Change,1988,19(2):1-10.
    [128]Nazara S, Hewings G J D. Spatial structure and taxonomy of decomposition in shift-share analysis [J].Growth and Change,2004(35):476-490.
    [129]Zaccomer G P. Shift-Share Analysis with Spatial Structure:an Application to Italian Industrial Districts[J]. Transition Studies Review,2006,13 (1):213-227.
    [130]Moran P. The interpretation of statistical maps [J]. J R Stat Soc B,1948(10):243-251.
    [131]史春云,张捷,高薇,等.国外偏离-份额分析及其拓展模型研究述评[J].经济问题探索,2007(3):133-136.
    [132]吴继英,赵喜仓.偏离-份额分析Esteban模型及其在劳动生产率分析中的应用[J].数量经济技术经济研究,2011(2):113-123.
    [133]Gian Pietro Zaccomer. Spatial structure in a shift-share decomposition:new results for the Italian industrial districts case [J]. Transition Studies Review,2008,15(1):111-123.
    [134]张耀光.最小方差法在农业类型(或农业区)划分中的应用[J].经济地理,1986,6(1):49-55.
    [135]孙才志,谢巍,邹玮.中国水资源利用效率驱动效应测度及空间驱动类型分析[J].地理科学,2011,31(10):1213-1220.
    [136]杜建刚,范秀成.基于体验的顾客满意度模型研究[J].管理学报,2007(4):514-521
    [137]马士华,谭勇,龚凤美.工业企业物流能力与供应链绩效的实证关系的实证研究[J].管理学报,2007(4):409-501.
    [138]林盛,刘金兰,韩文秀.基于PLS-结构方程的顾客满意度评价方法[J].系统工程学
    报,2005(6):653-656.
    [139]Ander J C, Cerbing D W. Structural equation modeling in practice:A review and recommended two-step approach[J]. Psychological Bulletin, 1988,(103):411-423.
    [140]Boomsma A. The robustness of LISREL against small sample sizes in factor analysis models [J]. Systems Under Indirect Observation:Causality, Structure and Prediction,1982(2):1-5.
    [141]Hoskuldsson A. PLS regression methods[J], Journal of Chemo metrics,1988(2):211-228.
    [142]刘炳胜.中国区域建筑产业竞争力形成机理研究[D],天津大学,2009.
    [143]韩博平.生态网络中物质、能量流动的信息指标及其灵敏度分析[J].系统工程理论方法分析,1995,4(1):24-29.
    [144]韩博平.生态网络中物质、能量流动的时间链分析[J].生态学报,1995,15(2):163-168.
    [145]Lindeman R L. The trophic-dynamic aspect of ecology [J]. Ecology,1942,23(4):399-417.
    [146]Ulanowicz R E. Identifying the structure of cycling in ecosystems [J]. Mathematical Biosciences, 1983,65(2):219-237.
    [147]Patten B C. Network integration of ecological extremal principles:excrgy, emcrgy, power, ascendancy, and indirect effects [J]. Ecological Modeling,1995,79(1-3):75-84.
    [148]Ruhedg R W. Ecological stability:An information theory viewpoint [J]. Journal of Theoretical Biology,1976,57(2):355-371.
    [149]Ulanowicz R E. Complexity, stability and self-organization in natural communities. Ecology, 1979(43):295-298.
    [150]覃正,姚公安.基于信息熵的供应链稳定性研究[J].控制与决策,2006,21(6):693-696.
    [151]Patten B C. Energy cycling in the ecosystems [J]. Ecological modeling,1985,28(1-2):1-71.
    [152]程宇光.健全农业生态环境补偿制度的若干问题探析[J].生态经济,2010(6):148-151.
    [153]李文华等.生态系统服务功能价值评估的理论、方法与应用[M].中国人民大学出版社,2008.
    [154]中国21世纪议程管理中心可持续发展战略研究组.生态补偿:国际经验与中国实践[M].社会科学文献出版社,2007.
    [155]李小云,靳乐山,左亭等.生态补偿机制:市场与政府的作用[M].社会科学文献出版社,2007.
    [156]孔凡斌.中国生态补偿机制理论、实践与政策设计[M].中国环境科学出版社,2010.
    [157]闫伟.区域生态补偿体系研究[M].经济科学出版社,2008.
    [158]Johst K, Drechsler M, Watzold F. An ecological-economic modeling pro-cedure to design compensation payments for the efficient spatio-temporal [J]. Ecological Economcis,2002(41):37-41.
    [159]Plantinga A J, Alig R, Cheng H. The supply of land for conservation uses:evidence from the conservation reserve program [J]. Resource, Conservation and Recycling,2001(31):199-215.
    [160]Moran D, McVittie A, Allcroft D J, et al. Quantifying public preferencesfor agro-environmental policy in Scotland:a comparison of methods [J]. Ecological Economics,2007,63(1):42-53.
    [161]高小萍.我国生态补偿的财政制度研究[M].经济科学出版社,2010.
    [162]王风,高尚宾,杜会英等.农业生态补偿标准核算—以洱海流域环境友好型肥料应用为例[J].农业环境与发展,2011(4):115-118.
    [163]李长健,邵江婷,董芳芳.农民权益保护视角下的农业生态补偿法律研究[J].农业现代化研究,2008(5):554-558.
    [164]王宏宇,王丽君.磨盘山水源地保护区内农业生态补偿机制研究[J]环境科学与管理,2008(10):14-16.
    [165]赵润,高尚宾,杨鹏,等.云南省洱海流域农业生态补偿机制研究[J].农业环境与发展,2011(4):42-46.
    [166]李平.我国农业生态环境补偿制度建设可行性研究[J].宁夏社会科学,2010(6):58-61.
    [167]孙思微.基于AHP法的农业生态补偿政策绩效评估机制研究[J].经济论坛,2011(5):177-178.
    [168]Allan J A. Water stress and global mitigation:water food and trade [EB/OL]. http://ag.arizona.edu/OALS/ALN/aln45/allan.html.
    [169]Hoekstra A Y. Perspectives on water:a model-based exploration of the future [M].International BOOKS, Utrecht, The Netherlands,1998.
    [170]苑全治,郝晋民,张伶俐,等.基于外部性理论的区域更低保护补偿机制研究—以山东省潍坊市为例[J].自然资源学报,2010(4):529-538.
    [171]谢高地,鲁春霞,冷允法,等.青藏高原生态资产的价值评估[J].自然资源学报,2003(2):189-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700