动态无应力构形有限元及钢筋混凝土拱桥负角度竖转施工控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部山区经济欠发达、交通设施不完善,地形多山岭重丘,多数桥梁需跨越‘V’形深谷,施工难度大,基于上述实际情况,从经济、技术和环境等方面综合考虑,上承式钢筋混凝土拱桥较其它桥型具有较明显的优势,因此,对山区跨峡谷钢筋混凝土拱桥施工新工艺进行研究具有现实意义。当钢筋混凝土拱桥施工现场及周边缺少预制场地或预制件运输困难时,负角度竖转施工拱肋较为经济,且具有结构整体性好,施工操作方便,后期维修简便,维护费用少的优点。
     在此背景下,本文以国内首次采用负角度竖转施工的钢筋混凝土拱桥——珍珠大桥为工程背景,在收集和分析国内外负角度竖转施工的相关建设资料及研究成果的基础上,围绕该课题存在的问题,进行了如下问题的研究工作:
     (1)提出了基于动态无应力构形有限元,为桥梁施工过程模拟计算提供了一种新思路。提出了基于动态无应力长度的有间隙拉压杆单元,用于模拟有间隙栓接杆系结构的力学行为;提出了基于动态无应力长度的悬索单元和桁架单元,可以方便的模拟拉索的张拉施工。为了提高桥梁施工过程模拟的计算效率并确保计算精度,针对不同的结构力学模型采用不同的求解策略,提出了针对部分非线性计算的基于剩余荷载系数增量理论的迭代求解方法。
     (2)建立了一套适用于桥梁施工过程计算的动态无应力构形有限元计算程序DUFE,不仅能够解决钢筋混凝土拱桥负角度竖转施工问题,而且也能更为准确和方便的模拟桥梁平转及正角度竖转施工过程,模拟斜拉桥、悬索桥等索桥的吊杆张拉施工过程,以及模拟桥梁支座更换过程等其他类型桥梁施工过程计算问题。通过对有限元程序的经典验证算例计算分析,以及钢筋混凝土拱桥施工过程的实例分析,验证了本文基于动态无应力构形有限元计算程序的准确性、可靠性和实用性。
     (3)对负角度竖转施工过程的关键技术进行了研究。对采用负角度转体施工的拱肋轴线浇筑线形的确定进行了研究。对牵引阶段转体扣索索力和牵引索索力的确定方法做了研究,采用应力平衡法并引入迭代算法确定索力的调整范围。拱肋转体到位后,对劲性骨架合龙过程及临时拉索的拆除方案进行了优化。以珍珠大桥为例,对钢筋混凝土拱桥负角度竖转施工所需要一些关键构造进行设计,为同类工程的设计提供参考。
     (4)在收集国内外相关资料和深入分析国内外研究成果的基础上,分析了钢筋混凝土拱桥负角度竖转施工误差的来源和类型,并提出了降低结构参数误差对结构受力影响的方法。为了减小钢筋混凝土拱桥负角度竖转施工过程中的施工控制误差,采用不同的控制方法对依托工程珍珠大桥负角度竖转施工时引起施工误差的参数进了敏感性分析,建立一套适于钢筋混凝土拱桥负角度竖转施工控制体系。
     (5)采用动态无应力构形有限元对贵州珍珠大桥进行负角度竖转施工进行了分析,并与现场施工监控数据进行了比较。对拱肋位移、临时拉索索力及拱肋关键截面应力的实测结果与理论计算结果之间误差产生的原因做了分析,提出和总结了减小误差的方法,为类似桥梁的施工控制提供参考。
For the undeveloped economy, inadequate transport facilities and mountainous terrain in China's western mountains, most bridges need to across the deep V-shaped ravine which is the direct cause of the construction difficulty. Based on the above circumstances, the reinforced concrete deck arch bridge has obvious advantages compared to the other bridges. Therefore, it has practical significance to study the new construction technology of the reinforced concrete arch bridge that across the canyon in mountains area. When there is no prefabrication site around the construction site of the reinforced concrete arch bridge or it is difficult to transport the prefabricated members, it is economically to construct the arch ring with the negative angle vertical rotating method, which aslo has the unique advantages such as convinient installation, good structural intergrity, less and easy maintenance.
     It is the first time to apply the negative angle vertical rotation construction technology to the reinforced concrete arch bridge in China. Taking Pearl Bridge as an example, and on the basis of the related information collected and in-depth analysis at home and abroad, this paper conducts the following researchs with regard to the existing problems of this subject.
     (1) The finite element analysis based on the dynamic unstrained geometry is put forward, which provides a new idea for the simulation of the bridge construction process. The tension and compression link element with gaps based on the dynamic unstressed length is put forward to simulate the mechanical behavior of the bolted structures with gaps, the cable element and truss element based on the dynamic unstressed length are put forward to make it more convinient to simulate the tensioning construction of the cable. In order to improve the computational efficiency of the bridge construction process simulation and to ensure the accuracy of calculation, this paper adopts the different solution strategies for different structural mechanics model and puts forward the iterative method based on the remaining load coefficient increment theory for part of the no-linear caculation.
     (2) This paper establishes a DUFE programe to apply for calculation of bridge construction. This program not only can solve the caculation problem of the negative angle Vertical Rotating Construction of the reinforced concrete arch bridge, but also can solve the caculation problems of other types of bridge such as the stay-cable bridge, suspension bridge, continous beam bridge as well ascontinous rigid frame bridge. The accuracy, reliability and practicability of the finite element computational program based on the dynamic unstressed length in this paper is verified by analyzing the classic validation example of the finite elment program and the instance example of the reinforced concrete arch bridge construction process.
     (3) This paper studies the key technology during the negative angle vertical rotation construction process and determination of axis linear. In each negative angle vertical rotation construction stage of the arch rib, taking the arch axis linear as the research object to study the completed bridge arch axis linear, the unstressed arch axis linear, the casting arch axis linear and the templet installation coordinate in sequence with the step-by-step algorithm. Study the method of determining the rotation stayed-bukle cable force and the pulling cable force in the traction stage. Adopt the stress balance method and introduce the iterative algorithm to determine the adjustment range of the cable force. Conduct the optimization calculation for the closure process of the stiff skeleton after the arch rib is rotated in place. The optimal removal scheme of the rotation stayed-bukle cable and the temporary tie bar is proposed after the stiff skeleton is closed. Take the Pearl Bridge as the example to design the key structures that are needed when construct the reinforced concrete arch bridge with the negative angle vertical rotation method, which can provide reference for the similar engineering design.
     (4) It analyzes the sources and types of errors during the negative angle vertical rotating construction of concrete arch bridge and the ways to reduce errors are also proposed on basis of studying the related information collected and researchs at home and abroad. In order to reduce the control errors in the construction process of the reinforced concrete arch bridge with the negative angle vertical rotation construction method, it adopts different kinds of control method to conduct the sensitive analysis of the construction error parameters that is caused in the negative angle vertical rotaion constructon of the Pearl Bridge, and establishes a set of construction control system for the negative angle vertical rotation construction of the reinforced concrete arch bridge.
     (5) it analyzes the negative angle vertical rotation construction of Pearl Bridge based on the dynamic unstrained geometry FEA. And coMParison with the actual on-site construction monitoring data is conducted. Besides, it also analyzes the cause of difference between theoretical results and the actual monitoring results as for displacement of the arch, temporary traction cable force and stress of key cross section of arch, in addition, it summarizes the ways to minimize the difference which can be referenced for construction monitoring of similar bridges.
引文
[1]顾安邦主编.桥梁工程[M].北京:人民交通出版社,2000.
    [2]强士中主编.桥梁工程[M].北京:高等教育出版社,2004.
    [3]张联燕,程懋方,谭邦明,等.桥梁转体施工[M].北京:人民交通出版社,2003.
    [4]刘以娟.钢筋混凝土拱桥的发展[J].西南交通大学学报,1992,03:15-19.
    [5]Santiago Perez Fadon Martinez. Arches:Evolution and Future Trends[C]. Proceedings of theFourth International Conference on Arch Bridge, Barcelona,2004.
    [6]韩伯林.世界桥梁发展史[M].北京:知识出版社,1987.
    [7]楼庄鸿.楼庄鸿桥梁论文集[C].北京:人民交通出版社,2004.
    [8]钱冬生.钱冬生教育及桥梁文集(第二版)[C].北京:人民铁道出版社,1991.
    [9]谢尚英,钱冬生.大跨度混凝士拱桥的桥型和施工[J].铁道建筑,1998,1 1:2-5.
    [10]曾宪武,王永珩.桥梁建设的回顾和展望[J].公路,2002,01:14-21.
    [11]Vinko andrlic,林广元.悬臂施工大跨度混凝土拱桥的发展[J].国外桥梁,1981,03:21-28.
    [12]许有胜,陈宝春.南非布洛克兰斯拱桥[J].中外公路,2005,04:109-112.
    [13]A.C.Liebenberg, M.G.Latimer. Bloukrans Bridge[C]. Proceedings of the Third International Conference on Arch Bridge. Paris,2001.
    [14]Santiago Perez-Fadon, Jose Emilio Herrero, Juan Jose Sanchez. Los Tilos arch on La Palma Island[A]. Bridge Design & Engineering(UK Quarterly Magazine)、中国公路学会、Fuzhou University(福州大学)、中国土木工程学会、桥梁杂志社、Institution of Civil Engineers(ICE,UK).Proceedings of ARCH'10-the 6-(th) International Conference on Arch Bridges[C].Bridge Design & Engineering(UK Quarterly Magazine)、中国公路学会、Fuzhou University(福州大学)、中国土木工程学会、桥梁杂志社、Institution of Civil Engineers(ICE,UK):,2010:8.
    [15]Santiago Perez Fad6n,et al. Strength and Beauty:New Arch in La Palma[J]. Bridge Design & Engineering,2005, 1(38):30-31.
    [16]James G, Karoumi R. Monitoring of the new Svinesund bridge. Report 1:Instrumentation of the arch and preliminary results from the construction phase[R]. Stockholm (Sweden), KTH Byggvetenskap,2003.
    [17]陈宝健,许有胜,陈宝春.日本钢筋混凝土拱桥调查与分析[J].中外公路,2005,04:96-101.
    [18]范瑛,梅利芳.日本富士川混凝土拱桥的设计与施工[J].世界桥梁,2002,02:14-16.
    [19]S.Tacahashi, et al. Design and Construction of Fujikawa Conerete Arch Bridge[C]. Proceedings of the Third International Arch Bridge Conference, Paris,2001.
    [20]韦建刚,陈宝春.国外大跨度混凝土拱桥的应用与研究进展[J].世界桥梁,2009,No.14102:4-8.
    [21]刘经建.贵州山区钢筋混凝土箱型拱桥施工技术[J].中国公路,2005,No.20408:92-94.
    [22]J.Radic. Croatian Achievements in Bridge Engineering[C]. Proceedings of the International Conference on Bridge, Dubrovnik, Croatia,2006.
    [23]M.friedl, D.Trlaja, Z.Ljutic. The Construction of Larg-Span Concrete Arch Bridges With Cantilevering Method Using Temporary Cable-Stays[C]. Proceedings of the International Conference on Bridge, Dubrovnik, Croatia,2006.
    [24]Z.Zderie. Recent Achievements of Croatian Bridge Construction[C]. Proceedings of the International Conference on Bridge, Dubrovnik, Croatia,2006.
    [25]P.Sesar, A.Kreeak. Bridges in Croatia-Design and Aestheties[C]. Proceedings of the International Conference on Bridge, Dubrovnik, Croatia,2006.
    [26]黄绳武.桥梁施工及组织管理[M].北京:人民交通出版社,1999.
    [27]J.Radie, Z. Savor, S.Pieulin, G.Puz. Large Conerete Arch Bridges in Croatia.Proeeedings of the Third International Arch Bridge Conferenee, Paris,2001.
    [28]中国公路学会桥梁和结构工程学会桥梁学术讨论会论文集,1999.
    [29]项海帆,等.中国桥梁[M].上海:同济大学出版社,香港:建筑与城市出版社,1993.
    [30]魏建东.宜宾小南门大桥的抢修加固与恢复工程[J].公路,2003,04:34-38.
    [31]陈宝春,叶琳.我国混凝土拱桥现状调查与发展方向分析[J].中外公路,2008,No.17602:89-96.
    [32]Chen Baochun. State of the Art of the Development of Arch Bridges in China[C]. Proceedings of the 4th International Conference on New Dimensions of Bridge, Fuzhou, China,2005.
    [33]王怀林.大跨径钢筋混凝土箱型拱桥的设计与施工工艺[J].公路交通科技(应用技术版),2009,v.5;No.5305:180-183.
    [34]郑峰.100m跨钢筋混凝土拱有支架施工[J].铁道标准设计,2003,06:26-27.
    [35]戚玉明,陶建山,吴克强,等.大跨度钢筋混凝土箱形拱桥无支架施工技术[J].桥梁建设,2007,No.181S2:54-56+63.
    [36]向中富,徐君兰,王银辉,等.拱桥拱架施工过程中的结构行为分析[J].重庆交通学院学报,2001,S1:17-22.
    [37]王新敏.220m箱形拱桥现浇支架设计及计算分析[J].桥梁建设,2001,04:20-24.
    [38]毛伟琦.大跨度钢筋混凝土拱桥吊装施工设计[J].桥梁建设,2007,No.178S1:18-21.
    [39]都昌林,马学峰,龚志刚.大跨径无支架缆索吊吊装系统设计与施工[J].公路交通科技,2004,09:74-77.
    [40]苏举.双跨118m钢筋混凝土箱形拱桥缆索吊装施工技术[J].铁道建筑,2006,08:6-8.
    [41]谢尚英,钱冬生.应力调整在劲性骨架法施工的大跨度拱桥中的应用[J].铁道学报,1999,03:85-87.
    [42]赵雷,杜正国.大跨度钢筋混凝土拱桥钢管混凝土劲性骨架施工阶段稳定性分析[J].西南交通大学学报,1994,04:446-452.
    [43]谢尚英,钱冬生.劲性骨架混凝土拱桥施工阶段的非线性稳定分析[J].土木工程学报,2000,01:23-26.
    [44]胡友好.钢筋混凝土拱桥悬臂浇注施工[J].中外公路,2011,v.31;No.19301:139-143.
    [45]林福全.特大跨径钢筋混凝土拱桥悬拼施工[J].公路交通科技(应用技术版),2008,No.4004:105-107+110.
    [46]高玉峰,蒲黔辉,李晓斌,胡秋贵.悬臂浇筑法在国外大跨度混凝土拱桥施工中的应用发展[J].世界桥梁,2008,No.13501:18-21.
    [47]Z.Zhang, X.Niao, D.Nie, W.He and B.Pei. Construction Techniques of the Arch Ring of PanzhihuaBaishagou Bridge[C]. Proceedings of the Fifth International Conference on Arch Bridge, Madeira, Portugal,2007.
    [48]程飞,张琪峰,王景全.我国桥梁转体施工技术的发展现状与前景[J].铁道标准设计,2011,No.59106:67-71.
    [49]周文胜,朱根云,许柏民.G312跨沪宁高速公路跨线桥转体施工[J].桥梁建设,2004,01:47-50.
    [50]李盛.开口薄壁转体拱桥施工阶段整体稳定性分析[J].公路交通科技,2006,02:108-110.
    [51]李翌程.钢管混凝土劲性骨架拱桥转体施工关键技术研究[D].武汉理工大学,2006.
    [52]胡云江.广州丫髻沙大桥的转体施工[J].公路,2001,06:16-24.
    [53]钟伟.混凝土开口薄壁截面拱桥平转施工控制技术研究[D].长沙理工大学,2010.
    [54]徐升桥,任为东,李艳明,等.丫髻沙大桥主桥施工关键技术研究[J].铁道标准设计,2001,06:8-12.
    [55]陈宝春,孙潮,陈友杰.桥梁转体施工方法在我国的应用与发展[J].公路交通科技,2001,02:24-28.
    [56]陈东.劲性骨架混凝土拱桥转体施工关键技术分析[D].西安交通大学,2008.
    [57]张爱花.澜沧江特大桥提篮拱竖转施工方案比选[J].桥梁建设,2010,03:79-82.
    [58]W Hunleine M,P Ruse H.Einneues Verfahren fur den Bauvon Bogenbrucken, dargestellt am Bau der Argentobel brucke[J].Bauingenieur,1985,60:478-493.
    [59]南波治宪,诹佐晴夫,伊东义敏,等.采用竖向转体工艺建造混凝土拱桥-内之仓发电站管理桥[J].桥梁,1988,9:2-8.
    [60]岩田洋一,田边和夫,落合胜,等.采用竖向转体工艺架设拱桥--三贯目大桥的施工[J].桥梁と基础,1999,9:9-15.
    [61]刘剑萍,角本周,成泽邦彦.神原溪谷大桥的竖向转体施工[J].世界桥梁,2003,3:1-4.
    [62]张征,张哲,黄才良.珍珠大桥负角度竖转施工工艺[J].公路,2007,05:93-96.
    [63]马苙.高效液压千斤顶[J].机床与液压,2001,04:82.
    [64]陈建军.利用卷扬机辅助顶升接高塔式起重机[J].工程机械与维修,1997,08:39.
    [65]O'Connor, W.J.. Gnatry crane control:a novel solution explored and extended[C]. Porceedings of the American Control Conefrence. New York:IEEE,2002.
    [66]Emesto Gmabao, Carlos Balaguer. Robotics and automation in construction [J]. IEEE Robotics and Automations Magazine,2002,3:4-6.
    [67]Anna Kochan. Robots of automating construction-an abundance of research[J]. Industrial Robot. 2000,2:111-113.
    [68]田仲初,刘雪锋,颜东煌,等.优化计算在拱桥液压同步提升转体施工控制中的应用[J].中国公路学报,2008,No.9002:74-78.
    [69]卞永明,黄庆峰,桂仲成,等.计算机控制液压同步提升技术在桥梁竖转施工中的应用[J].公路,2002,10:42-45.
    [70]杨兴旺.大跨度斜拉桥施工全过程非线性行为研究[D].成都:西南交通大学,2007.
    [71]Ali H M,Abdel-Ghaffar A M.Modeling the nonlinear seismic behavior of CAB-stayed bridges with passive control bearings[J].Computers & structures,1995,54(3):461-492.
    [72]Ernst H J.Der E-modul von seilen unter beruecksichtigung des durchhanges[J].Der Bauingenieur,1965,40(2):52-55.
    [73]Gimsing N J. Anchored and partially stayed bridges[C].Proceeding of the Internations Symposium on Suspension Bridges,Lisbon,1966:
    [74]Tung D H,Kudder R J.Analysis of CABs as eqivalent two-force members[J].Engineering Journal, AISC,1968(1):12-19.
    [75]Podolny W J.Scalzi J B.Construction and Design of CAB-Stayed Bridges[M].New York:John Wiley and Sons,1986.
    [76]Peyrot A H.Goulois A M. Analysis of CAB structures[J]. Computers & structures,1979,10:805-813.
    [77]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68.
    [78]Kim H-K,Lee M-J,Chang S-P.Non-linear shape-finding analysis of a self-anchored suspension bridge[J].Engineer Structures,2002,24(1547-1559)
    [79]肖汝诚.确定大跨径桥梁结构合理设计状态的理论与方法研究[D].上海:同济大学,1996.
    [80]Saafan S A.Nonlinear behavior of structure plane frame[J]. ASCE,1963,89(ST4):1144-1156.
    [81]Fleming J F.Nonlinear Analysis of CAB-stayed Bridges[J].Computers & structures,1978,10(4):621-635.
    [82]陈德伟.斜拉桥的非线性分析及工程控制[D].上海:同济大学,1990.
    [83]陈务军,关富玲,袁行飞等.斜拉桥施工控制分析中线性与非线性影响分析[J].中国公路学报,1998,11(2):52-58.
    [84]杨炳成,孙明.斜拉桥索力的非线性优化倒拆分析[J].中国公路学报,1998,11(3):55-61.
    [85]杨平.斜拉桥三维非线性分析及收敛问题[J].武汉理工大学学报(交通科学与工程版),2003,27(1):33-36.
    [86]Brotton D M.A general computer program for the solution of suspension bridge problems[J].The Structural Engineer,1966,44(5):161-167.
    [87]李立峰,邵旭东.大跨桥梁几何非线性试验与分析[C].中国公路学会桥梁与结构工程学会1995年桥梁学术讨论会,北京,1995:413-417.
    [88]王解军,杨文华,刘光栋.大跨悬索桥的几何非线性分析[J].湖南大学学报,1998,25(3):70-73.
    [89]辛克贵,刘钺强,杨国平.大跨度斜拉桥恒载非线性静力分析[J].清华大学学报(自然科学版),2002,42(6):818-821.
    [90]徐建设,陈以一,韩琳,等.普通螺栓和承压型高强螺栓抗剪连接滑移过程[J].同济大学学报(自然科学版),2003,05:510-514.
    [91]Raul Zaharia, Dan Dubina. Stiffness of joints in bolted connected cold-formed steel trusses[J]. Journal of Constructional Steel Research 2006,62:240-249.
    [92]Ballio G, Mazzolani F M. Theory and design of steel structures[M]. London:Chapman and Hall,1983.
    [93]Jianren Zhang, Chuanxi Li, Feihong Xu, Xiaoming Yu. Test and Analysis for Ultimate Load-Carrying Capacity of Existing Reinforced Concrete Arch Ribs[J]. Journal of Bridge Engineering,2007,12:4-12.
    [94]Chang-Koon Choit, Gi Taek Chung. A gap element for three-dimensional elasto-plastic contact problems[J]. Computers and Structures,1996,61 (6):1155-1167.
    [95]A.Landenberger, A.El-Zafrany. Boundary element analysis of elastic contact problems using gap finite elements[J]. Computers and Structures,1999,71(6):651-661.
    [96]F.Paris, A.Blazquez, J.Canas. Contact problems with non-conforming discretizations using boundary element method. Computers and Structures 1995,57(5):829-839.
    [97]周丹,褚奇,黑世强.钢筋混凝土拱桥转体施工的仿真分析[J].交通科技,2008,No.22702:28-30.
    [98]王建江,项贻强,王林,汪劲丰,丰硕,陈向阳,荆龙江.大跨度钢筋混凝土箱形拱桥的健康状况分析与试验研究[J].公路交通科技,2005,01:81-84+96.
    [99]张小花.大跨度可调式无支墩钢拱架施工混凝土拱桥技术[D].西南交通大学,2004.
    [100]钟新谷,曾庆元.加权残值法在钢筋混凝土拱桥非线性有限元分析中的应用[J].计算力学学报,1999,04:470-477.
    [101]Paola Ronca, Cohn M.Z. Limit analysis of reinforced concrete arch bridges[J]. Journal of Structural Divis. ASCE,1979,106(ST10):313-326.
    [102]McDonald, Brain M, Peyrot, Alain H. Analysis of cables suspended in sheaves[J]. Journal of Structural Engineering.ASCE,1988,114(ST3):693-706.
    [103]A.H.Pevrot, A.M.Goulois. Analysis of cable structures [J]. Computers & Structures,1979,10 (5):805-813.
    [104]B.Zhou, M.L.Accorsi, J.W.Leonard. Finite element formulation for modeling sliding cable elements[J], Computers & Structures,2004,82(2-3):271-280.
    [105]Ho-Kyung Kim, Myeong-Jae Lee, Sung-Pil Chang. Non-linear shape-finding analysis of a self-anehored suspension bridge[J], Engineer Structures,2002,24(12):1547-1559.
    [106]唐茂林,强士中,沈锐利.悬索桥成桥主缆线形计算的分段悬链线法[J].铁道学报,2003,01:87-91.
    [107]李传习.混合梁悬索桥非线性精细计算理论及其应用[D].湖南大学,2006.
    [108]刘毅,李爱群,郭彤.悬索桥恒载作用下缆索线形及内力的计算方法[J].桥梁建设,2007,No.17903:24-26.
    [109]Y.B.Yang, Tsay, Jiunn-Yin. Two-node catenary cable element with rigid-end effect and cable shape analysis[J]. International Journal of Structural Stability and Dynamics,2011,3:563-580.
    [110]张征.自锚式吊拉组合桥非线性计算程序开发[D].大连:大连理工大学2009.
    [111]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [112]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [113]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004.
    [114]铁摩辛柯著,肖敬勋等译.材料力学[M].天津:天津科学技术出版社,1989.
    [115]N.Chandrasekaran, W.E.Haisler, R.E.Goforth. Afinite element solution methed for contact problem with friction[J]. International Journal for Numerical Methods in Engineering,1987, 24:477-495.
    [116]周仁忠,陈富强,杨炎华.重庆朝天门长江大桥施工扣索索力监控分析[J].交通科技,2009,No.23201:15-18.
    [117]张克波,王国俊.大跨度钢管混凝土拱桥拱肋吊装中的扣索索力计算[J].长沙理工大学学报(自然科学版),2005,04:17-21.
    [118]Hong Guan, Yin-Jung Chen, Yew-Chaye Loo, et al. Bridge topology optimisation with stress, displacement and frequency constraints[J]. Computers & Structures.2003,81(3):131-145.
    [119]陈宝春.钢管混凝土拱桥施工问题研究[J].桥梁建设,2002,03:55-59.
    [120]周水兴,江礼忠,曾忠,周建庭.拱桥节段施工斜拉扣挂索力仿真计算研究[J].重庆交通学院学报,2000,03:8-12.
    [121]张建民,郑皆连,秦荣.大跨度钢管混凝土拱桥吊装过程的优化计算方法[J].桥梁建设,2002,01:52-54+58.
    [122]韩磊,张俊兵.钢管骨架无支架缆索吊装法扣索索力的优化分析[J].铁道工程学报,2009,v.26;No.13411:17-22.
    [123]Zhang Zhicheng, et al. Optimization of cable forces during adj ustment of the line-shape on long span arch bridge[J]. Engineering mechanics,2004,21(6),187-192.
    [124]亓路宽,陈占力,宋建永,刘祖胜.拱桥悬浇扣挂施工中最大悬臂状态下的索力调整[J].公路交通科技,2007,No.13607:82-85.
    [125]刘世忠,任万敏,林智强.大岩洞特大桥拱肋脱架时背索和扣索索力优化计算[J].兰州交通大学学报,2008,v.27;No.13106:5-7.
    [126]林阳子,黄侨,任远.拱桥拱轴线的优化与选形[J].公路交通科技,2007,No.13203:59-63.
    [127]刘九生,王国鼎.大跨径拱桥拱轴线允许偏差的探讨[J].华东公路,2000,06:17-18.
    [128]肖坚,范重,牟在根,等.合理拱轴线的选型与优化研究[A].天津大学.第九届全国现代结构工程学术研讨会论文集[C].天津大学:,2009:12.
    [129]Chen Deliang, et al. Calculation of the cable force and pre-camber in the process of assembling arch bridge segments[J]. Engineering mechanics,2007,5:132-137.
    [130]颜东煌,李学文,刘光栋,易伟建.用应力平衡法确定斜拉桥主梁的合理成桥状态[J].中国公路学报,2000,03:51-54.
    [131]颜东煌.斜拉桥合理设计状态确定与施工控制[D].湖南大学,2001.
    [132]F.T.K.Au, J.J.Wang, G.D.Liu. Construetion control of reinforced concrete Arch bridges[J]. Journal of bridge Engineering,2003,8(1):39-45.
    [133]王伟.大跨度拱桥悬拼施工中扣索索力的计算[J].铁道建筑,2007,No.39704:11-13.
    [134]李晓斌.大跨度钢筋混凝土拱桥悬臂浇注施工控制与模型试验研究[D].西南交通大学,2008.
    [135]李建慧,李爱群,郭彤.斜拉桥不确定性参数随机分析研究[J].公路交通科技,2008,No.15211:72-77.
    [136]Y.Zheng, P.K.Das. Improved Response Surface Method and its Application to Stiffened Plate Reliability Analysis[J]. Engineering Structures,2000,22(5):544-551.
    [137]陈铁冰,杨炳成,石洞.斜拉桥非线性随机静力分析[J].西安公路交通大学学报,2000,02:45-48.
    [138]石磊,刘春城,张哲,杜蓬娟.大跨悬索桥非线性随机静力分析[J].大连理工大学学报,2004,03:421-424.
    [139]F.S.Wong. Slope Reliability and Response Surface Method[J]. Journal of Geotechnical Engineering,1985,111(1):32-53.
    [140]肖汝诚,林平.计算结构力学在桥梁结构施工设计与施工控制中的应用[J].计算结构力学及其应用,1993,01:92-98.
    [141]杜亚凡.东神户大桥上部结构施工及架设精度控制(上)[J].国外桥梁,1994,01:7-15.
    [142]杜亚凡.东神户大桥上部结构的施工及架设精度控制(下)[J].国外桥梁,1994,03:197-203.
    [143]F.Sakai, S.Tanaka. Construction Control system for Cable stayed bridge[J]. IABSE Proc, IABSE,1988,92(85):181-190.
    [144]Takuwa, et al. Prestressed concrete cable-stayed bridge constructed on an expressway the Tomei Ashigara bridge[C]. Cable-stayed bridges, Recent Developments and Their Future. Elsevier Science Publishers,1991.
    [145]F.Sakai, A.Isoe, A.Umeda. A new methodology for control of construction Accuracy in cable-stayed bridges[C]. Proe.3th EASEC, Shanghai, China,1991.
    [146]F.Sakai, et al. Application of construction control system to erection of stiffening truss girder of Rainbow Bridge[C]. Proc. Inter. Conf. Bridge into 21 Century. HongKong,1994.
    [147]J.I.Park, et al. Control system and Post-Processing in erection of composite cable-stayed bridge[C]. Proe. Deauville Conf.1994. Cable-stayed bridges and suspension Bridges.1991.
    [148]石雪飞.斜拉桥结构参数估计及施工控制系统[D].上海,同济大学博士学位论文.
    [149]P.Reddy, et al. Simulation of construction of cable-stayed bridges[J]. Journal of Bridge Engineering,1999,4(4):249-257.
    [150]Li Qiao, et al. The closed condition of long span bridge construction control backward analysis[C]. Proc.17th session of the National Bridge Conference,2006.
    [151]Zhou Shuixing, et al. Design and construction techniques of Daning River Bridge[C]. Proc.6th International Conference on Arch Bridges,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700