负载型可见光光催化剂的制备及其光催化活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
减小光催化剂的粒径是提高光催化剂活性的途径之一,但催化剂粒径减小到纳米尺度范围会发生聚集现象,将光催化剂负载到表面积较大的有孔材料上能有效避免光催化剂发生聚集,从而提高光催化活性。本研究工作重点集中在负载型可见光光催化剂的制备,合成方法的简化,对其存在形态的分析以及光催化活性提高的机理分析,主要包括以下两个方面的内容:
     第一部分是分别在酸性条件和碱性条件下制备Cr-MCM-48,然后以Cr-MCM-48为载体,用浸渍法负载25%质量分数的Ti02,比较酸碱条件下制备的载体对TiO2/Cr-MCM-48光催化活性的影响。小角XRD分析表明,在所有的酸性条件下制备的样品中都有MCM-48介孔结构,但是碱性条件下制备的样品在Si/Cr小于20后介孔结构坍塌。广角XRD显示Ti02均呈无定形态。BET表明酸碱条件下制备的样品随着铬前驱体的增加表面积逐渐下降。UV-Vis DRS显示酸碱条件下制备的Cr-MCM-48和TiO2/Cr-MCM-48都有Cr6+存在,碱性条件下制备的所有样品都含有Cr3+,酸性条件下制备的样品在Si/Cr比小于20时开始出现多聚三价铬酸盐。以OrangeⅡ为降解目标物,对于在相同Si/Cr比条件下制得的样品,酸性体系制备的样品比碱性体系制备的样品具有更高的可见光催化活性,其中以样品aci-20-7-25 (Si/Cr=20, pH=7)的光催化活性最好,这主要是因为酸性条件下制备的样品中Cr6+物种含量较多。
     第二部分是采用一步法首次将Bi2WO6负载于介孔MCM-48分子筛中。小角XRD、BET测试结果说明所制备得到的复合材料保持了MCM-48介孔分子筛的三维孔道结构。广角XRD、TEM测试结果表明钨酸铋纳米粒子高度分散于MCM-48中,粒子平均粒径随着金属前驱体浓度的增加而增大。UV-Vis DRS测试结果表明该复合体系在可见光区域有良好的吸收。Raman测试结果表明钨酸铋颗粒是以晶体的形态负载于MCM-48中。与传统的高温固态法和水热法相比,用一步法制备出来的Bi2WO6/MCM-48在适当的金属负载量的情况下,凭借较小的颗粒尺寸在可见光下表现出优越的活性。
A common approach to enhance the photocatalytic activity of potocatalyst is to reduce the particle size. These small particles tend to agglomerate by strong interparticle forces when the nanometric size region is reached. In order to avoid the aggregation of these small subnanometric clusters, one methodology that has been developed consists in incorporating these clusters inside the rigid framework of microporous hosts. In this thesis, supported visible-light-driven potocatalyst were synthesised and the performance was further investigated. The details are listed as follows:
     1.Cr-MCM-48 was synthesized under acid condition and alkali condition and then 25 wt.% TiO2 were loaded by a post-impregnation method. XRD analysis showed that the MCM-48 structure was formed in all the samples synthesized under acid condition but only in the samples synthesized under alkali condition with Si/Cr ratio larger than 20. The BET surface area of TiO2/Cr-MCM-48 decreased with much more metals incorporated. DRS results indicated that Cr6+ was present in all samples. It was found that the photodegradation ability of 25% TiO2/Cr-MCM-48 synthesized under acid condition was higher than 25% TiO2/Cr-MCM-48 synthesized under alkali condition with the same Si/Cr ratio. This could be attributed to the presence of the high amount of Cr6+ in 25% TiO2/Cr-MCM-48 synthesized under acid condition. The sample aci-20-7-25 (Si/Cr=20, pH=7) showed the best visible-light photoactivity.
     2. MCM-48 modified by Bi2WO6 with a high photocatalytic activity in the visible-light range was synthesized for the first time using a facile one-step process. The XRD patterns and Nitrogen adsorption isotherms of the prapared materials exhibited the characteristic of MCM-48. The XRD and TEM showed that the small subnanometric Bi2WO6 clusters began to aggregate into bigger Bi2WO6 particles when much more metal precursors were introduced. A blue shift in the band gap transition could be seen for Bi2WO6/MCM-48 in diffuse reflectance UV-vis spectra. Raman spectra illustrated the crystal structure of Bi2WO6 on MCM-48. In comparison to Bi2WO6 synthesised via traditional solid-state reactions and hydrothermal processes, the Bi2WO6/MCM-48 with small crystal size and appropriate metal oxide loading amount offers highly enhanced photocatalytic activity under visible light irradiation.
引文
[1]Hu X L, Li G S, Yu J C. Design, Fabrication, and Modification of Nanostructured Semiconductor Materials for Environmental and Energy Application[J]. Langmuir.2010, 26(5):3031-3039.
    [2]Burda C, Chen X B, Narayanan R, E-Sayed M A. Chemistry and Properties of Nanocrystals of Different Shapes[J]. Chemical Reviews.2005,105:1025-1102.
    [3]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature.1972,238:37-38.
    [4]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results[J]. Chemical Reviews.1995,95:735-758.
    [5]Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews.1995,95:69-96.
    [6]Cheng S, Tsai S J, Lee Y F. Photocatalytic decomposition of phenol over titanium oxide of various structure s[J]. Catalysis Today.1995,26(1):87-96.
    [7]Luo H M, Wang C, Yan Y S. Synthesis of Mesostructured Titania with Controlled Crystalline Framework[J]. Chemistry of Materials.2003,15:3841-3846.
    [8]Zhuang J, Rusu C N, Yates J T Jr. Adsorption and Photooxidation of CH3CN on TiO2[J]. The Journal of Physical Chemistry B.1999,103(33):6957-6967.
    [9]Salvador P, Garcia Gonzalez M L, Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium (IV) oxide rutile[J]. The Journal of Physical Chemistry.1992,96:10349-10353.
    [10]Colon G, Hidalgo M C, Navio J A. A novel preparation of high surface area TiO2 nanoparticles from alkoxide precursor and using active carbon as additive [J]. Catalysis Today.2002,76(2-4):91-101.
    [11]Charles H E, Sykes, Mintcho S. Tikhov, Lambert Richard M. Surface Composition, Morphology, and Catalytic Activity of Model Poly crystalline Titania Surfaces[J]. The Journal of Physical Chemistry B.2002,106(29):7290-7294.
    [12]Yang Y, Wang H Y, Li X, Wang C. Electrospun mesoporous W6+-doped TiO2 thin films for efficient visib le-light photocatalysis[J]. Materials Letters.2009,63:331-333.
    [13]Liu Y, Liu C Y, Rong Q H, Zhang, Z. Characteristics of the silver-doped TiO2 nanoparticles[J]. Applied Surface Science.2003,220:7-11.
    [14]Zeng W, Liu T M. Hydrogensensingcharacteristicsandmechanismo fnanosize TiO2 dope with metallic ions[J]. Physica B.2010,405:564-568.
    [15]Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation[J]. Journal of the American Chemical Society.2004,126(15):4782-4783.
    [16]Xu T, Song C, Liu Y. Band structures of TiO2 doped with N, C and B[J]. Journal of Zhejiang University Science B.2006,7:299-303.
    [17]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science.2001,293(5528):269-271.
    [18]Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders[J]. Chemistry of Materials.2002,14:3808-3816.
    [19]Li D, Haneda H, K Nitin, Labhsetwar, Hishita S, Ohashi N. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies[J]. Chemical Physics Letters.2005,401:579-584.
    [20]Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar N K. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde[J]. Journal of Fluorine Chemistry.2005,126:69-77.
    [21]Luo H M, Takata T, Lee Y G, Zhao J F, Domen K, Yan Y S. Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine[J]. Chemistry of Materials.2004,16:846-849.
    [22]Zaleska A, Sobczak J W, Grabowska E, Hupka J. Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light[J]. Applied Catalysis B: Environmental 2008,78(1-2):92-100.
    [23]Zhou N H, Yu J G, Liu S W, Zhai P C, Jiang L. Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method[J]. Journal of Hazardous Materials.2008,154:1141-1148.
    [24]Santz P A, Kamat P V. Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters[J]. Physical Chemistry Chemical Physics.2002,4: 198-203.
    [25]Chakrapani V, Tvrdy K, Kamat P V. Modulation of Electron Injection in CdSe-TiO2 System through Medium Alkalinity[J]. Journal of the American Chemical Society.2010, 132 (4):1228-1229.
    [26]Koenenkamp R, Henninger R, Hoyer P. Photocarrier transport in colloidal titanium dioxide films[J]. The Journal of Physical Chemistry.1993,97:7328-7330.
    [27]Iliev V, Tomova D, Bilyarska L, Prahov L, Petrov L. Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light[J]. Journal of Photochemistry and Photobiology A.2003,159(3):281-287.
    [28]Garcia C G, Kleverlaan C J, Bignozzi C A, Iha N Y M. Time-resolved experiments in dye-sensitized solar cells using [(dcbH2)2Ru(ppy)2](ClO4)2 as a nanocrystalline TiO2 sensitizer[J]. Journal of Photochemistry and Photobiology A.2002,147(2):143-148.
    [29]Duonghong D, Borgarello E, Gratzel M. Dynamics of Light-Induced Water Cleavage in Colloidal Systems[J]. Journal of the American Chemical Society.1981,103:4685-4690.
    [30]Amadelli R, Argazzi R, Bignozzi C A, Scandola F. Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-[J]. Journal of the American Chemical Society.1990, 112:7099-7103.
    [31]Kamat P V. Photoelectrochemistry in Particulate Systems.9. Photosensitized Reduction in a Colloidal TiO, System Using Ant hracene-9-carboxylic Acid as the Sensitizer[J]. The Journal of Physical Chemistry.1989,93(2):859-864.
    [32]付贤智,丁正新,苏文悦.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].催化学报.1999,20(3):321-324.
    [33]Herrmann J M, Disdier J, Pichat R. Photoassisted platinum deposition on TiO2 powder using various platinum complexes[J]. The Journal of Physical Chemistry.1986,90: 6028-6034.
    [34]Hadjiivanov K, Vasileva E, Kantcheva M. Ir spectroscopy study of silver ions adsorbed on titania (Anatase)[J]. Materials Chemistry and Physics.1991,28(4):367-377.
    [35]Alberci R M, Jardim W F. Photocatalytic degradation of phenols using TiO2 in slurry reaction[J]. Water Research.1994,28:1845-1849.
    [36]Zhang F X, Jin R C, Chen J X, et al. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters[J]. Journal of Catalysis.2005,232(2):424-431.
    [37]Gao Y M, Shen H S, Dwight K, et al. Preparation and photocatalytic properties of titanium oxide films[J]. Materials Research Bulletin.1991,27(9):1023-1030.
    [38]Wang C M, Heller A, Gerischer H. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds [J]. Journal of the American Chemical Society.1992,114:5230-5234.
    [39]Sakthivel S, Shankar MV, Palanichamy M. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst[J]. Water Research.2004,38:3001-3008.
    [40]Rufus B I, Ramakrishnan V, Viswanathan B, et al. Rhodium and rhodium sulfide coated cadmium sulfide as a photocatalyst for photochemical decomposition of aqueous sulfide[J]. Langmuir.1990,6:565-567.
    [41]Willinger K, Fischer K, Kisselev R, et al. Synthesis, spectral, electrochemical and photovoltaic properties of novel heteroleptic polypyridyl ruthenium(II) donor-antenna dyes[J]. Journal of Materials Chemistry.2009,19:5364-5376.
    [42]Kudo A, Tanaka A, Domen K, et al. Photocatalytic decomposition of water over NiO-K4Nb6O17 catalyst[J]. Journal of Catalysis.1988,111:67-76.
    [43]Reddy E P, Sun B, Smirniotis P G. Transition metal modified TiO2-loaded MCM-41 catalysts for visible- and UV-light driven photodegradation of aqueous organic pollutants[J]. The Journal of Physical Chemistry B.2004,108:17198-17205.
    [44]Han T Y, Wu C F, Hsieh C T. Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles[J]. Journal of Vacuum Science and Technology B. 2007,25(2):430-435.
    [45]Wang C Y, Pagel R, Bahnemann, D W, Dohrmann J K. Quantum Yield of Formaldehyde Formation in the Presence of Colloidal TiO2-Based Photocatalysts:Effect of Intermittent Illumination, Platinization, and Deoxygenation[J]. The Journal of Physical Chemistry B. 2004,108:14082-14092.
    [46]Wang C Y, Liu, C Y, Zheng X, Chen J, Shen T. The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1998, 131(1-3):271-280.
    [47]Huang Y, Ho W, Ai Z, et al. Aero sol-assisted flow synthesis of B-doped, Ni-doped and B-Ni-codoped TiO2 solid and hollow microspheres for photocatalytic removal of NO[J]. Applied Catalysis B:Environmental.2009,89:398-405.
    [48]Hamal D B, Klabunde K J. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2[J]. Journal of Colloid and Interface Science.2007,311(2):514-522.
    [49]Ozaki H, Iwamoto S, Inoue M. Effect of the addition of a small amount of vanadium on the photocatalytic activities of N- and Si- co-doped titanias under visible-light irradiation[J]. Catalysis Letters.2007,113:95-98.
    [50]Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterization of quantum-size titanium dioxide [J]. The Journal of Physical Chemistry.1988,92: 5196-5210.
    [51]Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites:Effects of the Structure of the Active Sites and the Addition of Pt[J]. The Journal of Physical Chemistry B.1997,101:2632-2636.
    [52]Lassaletta G, Fernandez A, Espinos J P, Gonzalez-Elipe A R Spectroscopic characterization of quantum-sized TiO2 supported on silica:influence of size and TiO2-SiO2 interface composition[J]. The Journal of Physical Chemistry.1995,99: 1484-1490.
    [53]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chemical Reviews.1989,89:1861-1873.
    [54]Joselevich E, Willner I. Photosensitization of Quantum-Size TiO2 Particles in Water-in-Oil Microemulsions[J]. The Journal of Physical Chemistry.1994,98: 7628-7635.
    [55]Serpone N, Lawless D, Khairutdinov R Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization or Direct Transitions in This Indirect Semiconductor[J]. The Journal of Physical Chemistry.1995,99:16646-16654.
    [56]Frindell K L, Bartl M H, Popitsch A, Stucky G D. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films[J]. Angewandte Chemie International Edition.2002,41 (6):959-962.
    [57]Kormann C, Bahnemann D W, Hoffmann M R. Preparation and characterization of quantum-size titanium dioxide [J]. The Journal of Physical Chemistry.1988,92: 5196-5201.
    [58]Chemseddine A, Moritz T. Nanostructuring Titania:Control over Nanocrystal Structure, Size, Shape, and Organization[J]. European Journal of Inorganic Chemistry.1999, (2): 235-245.
    [59]Wang W, Gu B H, Liang L Y, Hamilton W A, Wesolowski D J. Synthesis of rutile (a-TiO2) nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition[J]. The Journal of Physical Chemistry B.2004,108(39): 14789-14792.
    [60]Bala H, Zhao J Z, Jiang Y Q, Ding X F, Tian Y M, Yu K F, Wang Z C. A novel approach to synthesis of high-dispersed anatase titania nanocrystals[J]. Materials Letters. 2005,59:1937-1940.
    [61]Aprile C, Corma A, Garcia H. Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control:from subnanometric to submillimetric length scale [J]. Physical Chemistry Chemical Physics,2008,10:769-783.
    [62]Grubert G, Stockenhuber M, Tkachenko O P, Wark M. Titanium oxide species in molecular sieves:materials for the optical sensing of reductive gas atmospheres[J]. Chemistry of Materials.2002,14(6):2458-2466.
    [63]Bandyopadhyay M, Birkner A, Berg M W E, Klementiev K V, Schmidt W, Gies H. Synthesis and Characterization of Mesoporous MCM-48 Containing TiO2 Nanoparticles[J].2005,17(15):3820-3829.
    [64]Beyers E, Biermans E, Ribbens S, Witte K D, Mertens M, Meynen V, Bals S, Tendeloo G V, Vansant E F, Cool P. Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles[J]. Applied Catalysis B: Environmental.2009,88:515-524.
    [65]Narkhede V S, Toni A D, Narkhede V V, Guraya M, Niemantsverdriet J W(Hans), van den Berg M W E, Grunert W, Gies H. Au/TiO2 catalysts encapsulated in the mesopores of siliceous MCM-48 Reproducible synthesis, structural characterization and activity for CO oxidation[J]. Microporous and Mesoporous Materials.2009,118:52-60.
    [66]Reddy E P, Davydov L, Smirniotis P G. Characterization of titania loaded V-, Fe-, and Cr-incorporated MCM-41 by XRD, TPR, UV-vis, Raman, and XPS Techniques[J]. The Journal of Physical Chemistry B.2002,106:3394-3401.
    [67]Reddy E P, Sun B, Smirniotis P G. Transition metal modified TiO2-loaded MCM-41 catalysts for visibleand UV-light driven photodegradation of aqueous organic pollutants[J]. The Journal of Physical Chemistry B.2004,108:17198-17205.
    [68]Sun.B, Reddy E P, Smirniotis P G. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis[J]. Applied Catalysis B: Environmental 2005,57:139-149.
    [69]Sun B, Reddy E P, Smirniotis P G. TiO2-loaded Cr-modified molecular sieves for 4-chlorophenol photodegradation under visible light[J]. Journal of Catalysis.2006,237: 314-321.
    [70]Rusina 0, Linnik O, Eremenko A, Kisch H. Nitrogen Photofixation on Nanostructured Iron Titanate Films[J]. Chemistry-A European Journal.2003,9(2):561-565.
    [71]Okte A N, Resat M S, Inel Y. Photocatalytic Degradation of 1,3-Dihydroxy-5-methoxybenzene in Aqueous Suspensions of TiO2:An Initial Kinetic Study[J]. Journal of Catalysis.2001,198:172-178.
    [72]Muneer M, Bahnemann D. Semiconductor-mediated photocatalyzed degradation of two selected pesticide derivatives, terbacil and 2,4,5-tribromoimidazole, in aqueous suspension[J]. Applied Catalysis B:Environmental.2002,36(2):95-111.
    [73]M. Piszcz, B. Tryba, B. Grzmil and A. W. Morawski photocatalytic removal of phenol under UV irradiation on WOx-TiO2 prepared by Sol-Gel Method[J]. Catalysis Letters. 2009,128:190-196.
    [74]Porte la R, Suarez S, Rasmussen S B, Arconada N, Castro Y, Duran A, avila P, Coronado J M, Sanchez B. Photocatalytic-based strategies for H2S elimination[J]. Catalysis Today. 2010,151:64-70.
    [75]Rodrigues B S, Ranjit K T, Uma S, Martyanov I N, Klabunde, K J. Single-Step Synthesis of a Highly Active Visible-Light Photocatalyst for Oxidation of a Common Indoor Air Pollutant:Acetaldehyde[J]. Advanced Materials.2005,17:2467-2471.
    [76]杨桂芹,李朝晖,林章祥,等.TiO2对牛血清白蛋白的光催化降解的研究[J].光谱学与光谱分析,2005,25(8):1309-1311.
    [77]Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. Photocatalytic bactericidal effect of TiO2 thin films:dynamic view of the active oxygen species responsible for the effect[J]. Journal of Photochemistry and Photobiology A:Chemistry.1997,106(1-3): 51-56.
    [78]Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C Photochemistry Reviews.2000,1(1):1-21.
    [79]Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalyticwater-splitting using TiO2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews.2007,11:401-425.
    [80]Abe R, Higashi M, Domen K. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation[J]. Journal of the American Chemical Society.2010,132:11828-11829.
    [81]Hisatomi T, Miyazaki K, Takanabe K, Maeda K, Kubota J, Sakata Y, Domen, K. Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added photocatalyst loaded with Rh2-yCry03 cocatalyst[J]. Chemical Physics Letters.2010,48: 144-146.
    [82]Tang X D, Ye H Q, Zhao Z, Liu H, Ma C X. Photocatalytic Splitting of Water Over a Novel Visible-Light-Response Photocatalyst Nd2InTa07[J]. Catalysis Letters.2009,133: 362-369.
    [83]Schumacher K, du Fresne Von Hohenesche C, Unger K K, Ulrich R, Du Chesne A, Wiesner U, Spiess H W. The Synthesis of Spherical Mesoporous Molecular Sieves MCM-48with Heteroatoms Incorporated into the Silica Framework[J]. Advanced Materials.1999,11:1194-1198.
    [84]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science.1968,26:62-69.
    [85]Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews.1995,95:49-68.
    [86]Fox M A, Dulay M T. Photochemical Processes for Water Treatment[J]. Chemical Reviews.1993,93(1):341-357.
    [87]Tang H, Berger H, Schmid P E, Levy F. Optical properties of anatase (TiO2)[J]. Solid State Communications.1994,92(3):267-271.
    [88]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst[J]. Nature.2001,414(6864):625-627.
    [89]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature.1992, 359:710-712.
    [90]Beck J S, Vartulli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgings J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society.1992,114(27):10834-10843.
    [91]Yu J C, Wang X, Fu X, Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films[J]. Chemistry of Materials.2004,16:1523-1530.
    [92]Matos J, Laine J, Herrmann J M. Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania[J]. Journal of Catalysis.2001,200(1):10-20.
    [93]Xu Y, Langford C H. Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y[J]. Journal of Physical Chemistry B.1997,101(16):3115-3121.
    [94]Xu Y, Langford C H. Enhanced Photoactivity of a Titanium(IV) Oxide Supported on ZSM-5 and Zeolite A at Low Coverage[J]. The Journal of Physical Chemistry.1995,99: 11501.
    [95]Serpone N, Lawless D, Disdier J, Herrmann J M. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids:Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations [J]. Langmuir.1994,.10:643-652.
    [96]Choi W Y, Termin A, Hoffmann M R. The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics[J]. The Journal of Physical Chemistry.1994,98:13669-13679.
    [97]Davydov L, Reddy E P, France P, Smirniotis P G. Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light[J]. Journal of Catalysis.2001,203:157-167.
    [98]Rodrigues S, Ranjit K T, Uma S, Martyanov I N, Klabunde K J. Single-Step Synthesis of a Highly Active Visible-Light Photocatalyst for Oxidation of a Common Indoor Air Pollutant:Acetaldehyde[J]. Advanced Materials.2005,17:2467-2471.
    [99]Marques F C, Canela M C, Stumbo A M. Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase [J]. Catalysis Today.2008,133(135):594-599.
    [100]Portela R, Canela M C, Sanchez B, Marques F C, Stumbo A M, Tessinari R F, Coronado J M, Suarez S. H2S photodegradation by TiO2/M-MCM-41 (M=Cr or Ce): Deactivation and by-product generation under UV-A and visible light[J]. Applied Catalysis B:Environmental.2008,84:643-650.
    [101]Sun B, Reddy E P, Smirniotis P G. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis[J]. Applied Catalysis B: Environmental.2005,57:139-149.
    [102]Sun B, Reddy E P, Smirniotis P G. TiO2-loaded Cr-modified molecular sieves for 4-chlorophenol photodegradation under visible light[J]. Journal of Catalysis.2006,237: 314-321.
    [103]Marques F C, Canela M C, Stumbo A M. Use of TiO2/Cr-MCM-41 molecular sieve irradiated with visible light for the degradation of thiophene in the gas phase[J]. Catalysis Today.2008,133(135):594-599.
    [104]Davydov L, Smirniotis P G. Quantification of the primary processes in aqueous heterogeneous photocatalysis using single-stage oxidation reactions [J]. Journal of Catalysis.2000,191:105-115.
    [105]Takehira K, Ohishi Y, Shishido T, Kawabata T, Takaki K, Zhang Q, Wang Y. Behavior of active sites on Cr-MCM-41 catalysts during the dehydrogenation of propane with CO2[J]. Journal of Catalysis.2004,224(2):404-416.
    [106]Zhang L, Zhao Y, Dai H, He, H, Au C T. A comparative investigation on the properties of Cr-SBA-15 and CrOx/SBA-15[J]. Catalysis Today.2008,131(1-4):42-54.
    [107]Selvaraj M, Kawi S. An optimal direct synthesis of Cr-SBA-15 mesoporous materials with enhanced hydrothermalstability[J]. Chemistry of Materials.2007,19(3):509-519.
    [108]Weckhuysen B M, Wachs I E, Schoonheydt R A. Surface chemistry and spectroscopy of chromium in inorganic oxides[J]. Chemical Reviews.1996,96(8):3327-3350.
    [109]Zang L, Lange C, Abraham I, Storck S, Maier W F, Kisch H. Amorphous Microporous Titania Modified with Platinum(IV) ChloridesA New Type of Hybrid Photocatalyst for Visible Light Detoxification[J]. The Journal of Physical Chemistry B.1998,102: 10765-10771.
    [111]Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews.1995,95:69-96.
    [112]Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chemical Reviews.1993,93: 341-357.
    [113]O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment[J]. Chemical Reviews.1993,93:671-698.
    [114]Tsunoda Y, Sugimoto Y, Sugahara Y. Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from aurivillius phase Bi2SrTa2O9[J]. Chemistry of Materials.2003,15:632-635.
    [115]Kim J, Chung I, Choy J, Park G. Macro molecular nanoplatelet of aurivillius-type layered perovskite oxide, Bi4Ti3O12[J]. Chemistry of Materials.2001,13:2759-2761.
    [116]Guo Q, Wang J, Kleppa O J. Note on the enthalpies of formation, from the component oxides, of CoWO4 and NiW04, determined by high-temperature direct synthesis calorimetry[J]. Thermochimica Acta.2001,380:1-4.
    [117]Tsunoda Y, Shirata M, Sugimoto W, Liu Z, Terasaki O, Kuroda K, Sugahara Y. Preparation and HREM characterization of a protonated form of a layered perovskite tantalate from an aurivillius phase Bi2SrTa2O9 via acid treatment[J]. Inorganic Chemistry. 2001,40:5768-5771.
    [118]Kim N, Vannier R N, Grey C P. Detecting different oxygen-ionjump pathways in Bi2WO6 with 1-and 2-dimensional 170 MAS NMR spectroscopy[J]. Chemistry of Materials.2005,17:1952-1958.
    [119]Zhang C, Zhu Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of Materials.2005,17:3537-3545.
    [120]Tang J W, Zou Z G, Ye J H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation[J]. Catalysis Letters.2004,92:53-56.
    [121]Yamashita H, Yoshizawa K, Ariyuki M, Higashimoto S, Che M, Anpo M. Photocatalytic reactions on chromium containing mesoporous silica molecular sieves (Cr-HMS) under visible light irradiation:decomposition of NO and partial oxidation of propane[J]. Chemical Communications.2001,435-436.
    [122]Shen S H, Guo L J. Hydro thermal synthesis, characterization, and photocatalytic performances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light photo catalysts for water splitting[J]. Catalysis Today.2007,129:414-420.
    [123]Hu Y, Wada N, Tsujimaru K, Anpo M. Photo-assisted synthesis of V and Ti-containing MCM-41 under UV light irradiation and their reactivity for the photooxidation of propane[J]. Catalysis Today.2007,120:139-144.
    [124]Shang M, Wang W, Sun S, Zhou L, Zhang L. Bi2WO6 Nanocrystals with High Photocatalytic Activities under Visible Light[J]. The Journal of Physical Chemistry. 2008,112:10407-10411.
    [125]Zhang W Z, Wang J L, Tanev P T, Pinnavaia T J. Catalytic hydroxylation of benzene over transition-metal substituted hexagonal mesoporous silicas[J]. Chemical Communications.1996,979-980.
    [126]Junges U, Jacobs W, Voigt-Martin I, Krutzsch B, Schuth F. MCM-41 as a support for small platinum particles:a catalyst for low-temperature carbon monoxide oxidation[J]. Journal of the Chemical Society, Chemical Communications.1995,22:2283-2284.
    [127]Corma A, Navarro M T, Pariente J P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons[J]. Journal of the Chemical Society, Chemical Communications.1994, 147-148.
    [128]Blasco T, Corma A, Navarro M T, Pariente J P. Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structure s[J]. Journal of Catalysis.1995,156:65-74.
    [129]Fu H, Pan C, Yao W, Zhu Y. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6[J]. The Journal of Physical Chemistry B.2005,109:22432-22439.
    [130]Yang X, Dai W, Gao R, Chen H, Li H, Cao Y, Fan K. Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde[J]. Journal of Molecular Catalysis A:Chemical.2005, 241:205-214.
    [131]Kudo A, Tsuji I, Kato H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation[J]. Chemical Communications.2002, 2(17):1958-1959.
    [132]Butler M A. Photoelectrolysis and physical-properties of semiconducting electrode WO3[J]. Journal of Applied Physics.1977,48:1914-1920.
    [133]Camerel F, Faul C F J. Combination of ionic self-assembly and hydrogen bonding as a tool for the synthesis of liquid-crystalline materials and organogelators from a simple building block Electronic supplementary information (ESI) available:IR, NMR, DSC and TGA data of the organic core and complexes [J]. Chemical Communications.2003, 3(15):1958-1959.
    [134]Fu H, Pan C, Yao W, Zhu Y. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6[J]. The Journal of Physical Chemistry B.2005,109:22432-22439.
    [135]Yu J C, Wang X C, Fu X Z. Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films [J]. Chemistry of Materials.2004,16: 1523-1530.
    [136]Li G, Zhang D, Yu J C, Leueg M K H. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide[J]. Environmental Science & Technology.2010,44:4276-4281.
    [137]Wu J; Duan F; Zheng Y, Xie Y. Synthesis of Bi2WO6 nanoplatebuilt hierarchical nest-like structures with visible-light-induced photocatalytic activity [J]. The Journal of Physical Chemistry.2007,111:12866-12871.
    [138]Shimodaira Y, Kato H, Kobayashi H, Kudo A. Photophysical Properties and Photocatalytic Activities of Bismuth Molybdates under Visible Light Irradiation[J]. The Journal of Physical Chemistry B.2006,110:17790-17797.
    [139]Kudo A, Omori K, Kato H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties [J]. Journal of the American Chemical Society.1999,121:11459-11467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700