番茄生长模型及日光温室小气候建模的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室要在多变的自然气候条件下,为作物生长创造一个适宜的环境,以实现高产出、高品质、低成本、高效益、环境友好等可持续发展为目标,因而越来越引起人们重视。现代日光温室是目前我国设施农业生产的主力,在我国反季节蔬菜的生产中起着重要的作用,有着良好的发展前景。并成为一个具有重要意义的研究方向。其中温室小气候控制是现代温室中最重要的关键技术之一。在进行有效试验观测的基础上,论文研究的内容包括以下几个部分:
     (1)温度、湿度、光照和CO_2浓度是节能型日光温室内对作物生长有重要影响的主要环境因子。主要应用BP神经网络方法,基于环境因子的条件下,建立有效积温法的温室番茄叶面积指数模型,温室番茄果实横纵径的模型,温室番茄干物质积累和分配指数模型。在模型建成之后就可以通过番茄的生长发育天数来预测番茄的叶面积指数,果实横茎和果实纵茎。这种方法简单、快速、经济、不破坏番茄的叶片省去很多的麻烦。因此模型具有实际应用性。
     (2)农田蒸散量(Evapotranspiration,ET)是研究区域水分平衡和制定灌溉需水量计划的基本依据,其准确性直接影响着作物需水预报的精度,而且业已成为监测农业旱情、提高区域水资源利用效率的关键环节。本文建立了基于环境因子的水分蒸发模型。该模型揭示了环境因子与水分蒸发、土壤水分蒸发、作物蒸腾之间的数量关系,揭示了环境因子对水分蒸发,土壤水分蒸发变化的影响,和环境因子对植物水分生理变化的影响,可以利用气象参数预测日光温室内的作物蒸腾耗水量,然后依据预测值适时适量地供给植株水分,从而达到节水、高产、优质的目的。在水分蒸发和土壤水分蒸发的模型中由于温室内的环境因子时刻变化,水分和土壤蒸发也受其影响,因此如果可以预测模型中蒸发的最小值,这样不仅对植物的成长有利,而且也可以节约用水。遗传算法,是近些年来发展起来的一种崭新的自适应搜索的全局优化算法。它比传统的非线性规划方法收敛性好,适应性强,可以达到全局最优,故其应用前景十分广泛。本文应用遗传算法优化水分蒸发模型,可以预测模型中蒸发的最小值。体现了遗传算法广泛的应用性。该模型对于制定合理的温室湿度管理技术体系,减轻病害发生频率,以及制定合理的灌溉制度,在保证适时适量供给作物用水的基础上节约大量灌溉用水,都具有重要意义。
     (3)温室环境的建模是温室环境控制的关键,也是实现温室环境控制必须解决的一个难题。针对温室这样一个非线性、多变量藕合的复杂系统,无论是仅采用数据信息还是仅采用语言信息,都难以对它进行充分的描述。无论是机理建模还是实验建模都无法建立温室一个通用的模型,而且这些模型都对温室系统进行了简化和线性化处理。自适应模糊神经网络是一类具有学习功能的模糊逻辑系统,通过学习能自动修正其模糊规则,能够综合利用数据和语言两类信息,适宜于辨识时变非线性对象。本文建立了基于自适应模糊神经网络的温室环境模型,根据实验数据对模型中的参数进行调整,参数可最终收敛到某些确定的值,从而可得到温室环境自适应模糊神经网络模型。从建立的温室环境自适应模糊神经网络模型,对不同季节温室内部小气候的模拟结果来看,模型具有较高的精度,使用该模型对不同季节温室内部的温度、湿度、光照进行预测,预测值和实测值也具有较好的拟合关系。这说明可以使用自适应模糊神经网络模型对温室不同季节小气候进行模拟,并可以得到物理模型无法达到的精度,在温室内部的湿度模拟这一点上,表现尤为明显。如果对温室的定性描述较为全面,那么所建立的模型就会具有较好的适应性,克服了一般线性模型在这方面的局限。
     (4)根据建立的温室小气候模型,提出了运用计算机仿真的方法预测温室小气候的温度、湿度、光照,并结合温室实际运行情况,分析温室小气候特点以及各种调控设施的调控能力。针对春季、夏季、秋季、冬季,室内温度、室内湿度、室内光照、室外温度、室外湿度、室外光照不同特点采取不同的调控措施创造适宜作物生长的环境,为温室小气候的控制奠定前提条件和基础。
     (5)基于对番茄生长的日光温室多年环境数据的综合,建立了一套周年连续的温湿光数据库,称为通用数据库。应用在温室番茄专家系统病害预测模块中,建立的环境数据库主要根据温度湿度光照的记录结合温室常见病害发生条件,预测病害的发生,目的是从预防的角度来解决病害的危害。这样可以减少施药的次数和用量。目前这个系统只是从环境因子的角度进行预测,无法量化。随着我国温室的发展,温室环境数据库将在温室管理中发挥重要的作用,具有重要的意义。为生产上现代温室、特别是新建温室的环境管理提供重要的数据支持,实现现代温室生产的环境管理自动化、智能化。
Greenhouse is to create the most suitable environment for crops cultivated inside such that the goal of high-yield,high-quantity,low-cost,best-benefit,environment friendly at harvest can be reached,so it has attracted attention.Modern greenhouse is the main of China's facilities agricultural production,playing an important role in our off-season vegetable production and having good prospects for development.The control of the greenhouse microclimate is one of the key techniques in modern greenhouse and becoming increasingly important.On the basis of conducting effective test observation,the main contents of this paper include follows:
     (1)Temperature,humidity,light,carbon dioxide concentration are the major environmental factor having important impacts on crop growths in energy-saving solar greenhouse.In the use of the method that is applied of neural network and based on the environmental factors,the tomato leaf area index model of the effective temperature,the horizontal and longitudinal diameter model of tomato fruits,and dry matter accumulation and distribution exponential model of tomato are established.This method is simple,rapid,economic,and does not damage the leaves of tomato saving a lot of trouble.Thus the model has practical application.
     (2)Farmland evapotranspiration(Evapotranspiration,ET) is the fundamental basis to researchthe regional water balance and to plan to develop irrigation water requirement,and the accuracy of it have direct impact on crop water demand forecasting,so it has become the key link to monitor agricultural drought and to improve the regional water use efficiency.This paper established the water evaporation models based on environmental factors.The models show the relationship of environmental factors and water evaporation,soil evaporation,crop transpiration between the number,not only reveal the environmental factors of water evaporation,evaporation of soil moisture changes,and environmental factors on plant physiological changes of water,but also can be used to forecast crop transpiration water consumption with meteorological parameters,then based on predictive value to supply water plants timely and adequately,so as to achieve water-saving,high-yielding,high-quality purposes.In water evaporation and soil evaporation models,in the moment of change climatic factors,soil moisture and evaporation is also affected,if the model can predict the minimum evaporation,so that the growth of plants not only is beneficial,but also can save water.Genetic algorithm,referred to in recent years develop a new self-adaptive search algorithm for global optimization.It is more programming,and adaptable than the traditional method of convergence of nonlinear,you can reach the global optimum,so the applications prospects is a wide range.The application of genetic algorithm optimization model can predict the minimum evaporation model,this paper use genetic algorithm to optimize the water evaporation model.This models are of great significance for establishing a reasonable greenhouse moisture management technology system to reduce the frequency of disease,as well as to establish a reasonable irrigation system,in a timely manner to ensure adequate water supply of crops based on a large number of irrigation water conservation.
     (3)Modeling of greenhouse environment is not only the key to control the greenhouse environment,but also a problem of the achievement of greenhouse environmental controling. Greenhouse for such a non-linear,coupled multivariable complex system,whether it is used only data or only information on the use of language are difficult to adequately describe it.Modeling the mechanism of both the experimental model or are unable to establish a generic model of the greenhouse,and to greenhouse systems these models have simplifly and linearization ability.Whether it is the mechanism modeling or the experimental modeling we are unable to establish a common model of the greenhouse,and have ability to simplifly and linear models.Adaptive fuzzy neural network is a fuzzy logic system of learning function,by learning automatically correcting the fuzzy rules and with two types of utilization data and linguistic information,and it can identify nonlinear time-varying object suitablely.This paper established models of the greenhouse based on adaptive fuzzy neural network,according to the experimental datas adjusting the parameters of the models and the parameters converged to some final determined value in order to be adaptive fuzzy neural network models.From the simulated results that inside the greenhouse established microclimate models with adaptive fuzzy neural network,the models has higher precision,using the model in different seasons within the greenhouse temperature,humidity,light to carry out the forecast,then the forecast value and actual value also has a good fitting relationship.This shows that using adaptive fuzzy neural network model to simulate microclimate in the greenhouse and different seasons, it meet precision that the physical models may be unable to meet,and the performance of the internal simulation humidity is particularly evident.If the qualitative description of the greenhouse are more comprehensive,then the models will have better adaptability, overcoming these limitations that the general linear models have.
     (4)According to the establishment greenhouse microclimate models,the views are bring forward that the use of computer simulation to predict temperature,humidity,light and analyzed the characteristics of the greenhouse microclimate control facilities as well as ability to regulate and control in conjunction with the actual operation of the greenhouse.For spring, summer,fall,winter,indoor temperature,indoor humidity,indoor lighting,outdoor temperature, outdoor humidity,outdoor illumination of the different characteristics,different control measures are taken to create a suitable environment for crop growth,and characteristics and control facilities abilities are analyzed.It is fixed the premise conditions and the foundation for the control of greenhouse microclimate.
     (5)Based on environmental comprehensive datas for greenhouse tomato growth for many years,a set of successive anniversary temperature humidity solar radiation database is established,known as the universal database.Accoring to the establishment of the environmental databases light primarily on the basis of the record of temperature and humidity combined with the occurrence of common diseases of greenhouse conditions,used in greenhouse tomato disease forecasting expert system module,it predict the occurrence of diseases.The purpose is solving disease hazards in view of prevention.This will reduce the number of spraying and amount of application.At present the system only from the perspective of environmental factors predict,can not quantify.It proved an important data support for management of modern greenhouse,especially provide important data to support for the newly established greenhouse,and is helpful to automatization and intelligentized management for modern greenhouse environment.
引文
[1]1998.美国国家灌溉工程手册.北京:中国水利水电出版社
    [2]A.Aboakhaled.1982.测渗仪(中译本)
    [3]柴毅,黄席樾,何离庆等.2000.番茄栽培病虫害防治知识表示.重庆大学学报(自然科学版),(6):56-58
    [4]曹卫星,罗卫红.2000.作物系统模拟及智能管理[M].北京:华文出版社
    [5]曹永华.1991.美国CERES作物模拟模型及其应用[J].世界农业,(9):52-55
    [6]陈人杰.2002.温室番茄生长发育动态模拟系统[D].中国农业科学院
    [7]陈端生,郑海山,刘步洲.1990.日光温室气象环境综合研究--Ⅰ.墙体、覆盖物热效应研究初报.农业工程学报,6(2):77-81
    [8]陈端生,郑海山,张建国等.1992.日光温室气象环境综合研究(三)--几种弧型采光屋面温室内直射光量的比较研究.农业工程学报,8(4):78-82
    [9]陈玉民,郭国双,王广兴等.1995.中国主要作物需水量与灌溉.北京:水利水电出版社
    [10]崔绍荣.1993.温室温度和热流量的动态模拟.浙江农业大学学报,19(2):9-162
    [11]陈玉民,郭国双,中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995:45-50
    [12]党永华,薛文奇.1999.光、热、水条件对大棚番茄产量形成的影响.陕西农业科学[J],(1):10-15
    [13]杜尧东,刘作新,张运福.参考作物蒸散量及其计算方法[J].河南农业大学学报,2001(1):57-61
    [14]邓辉,孙增圻,孙富春.2001.模糊聚类辨识算法[J]控制理论与应用,18(2):171-175
    [15]F.彭宁德,佛里斯等著,朱德峰等译.1991.几种一年生作物生长的生态生理过程模拟[M].北京:中国农业出版社
    [16]冯利平.1995.小麦生长发育模拟模型(WHEATSM)[D].南京农业大学
    [17]樊引琴,蔡焕杰.单作物系数法和双作物系数法计算作物需水量的比较研究.水利学报,2002(3):50-55
    [18]顾世样,王士武,袁宏源.参考作物腾发量预测的径向基函数法[J].水科学进展,1999(2):123-128
    [19]胡越黎,计慧杰.2009.短期电力负荷预测的模糊神经网络方法[J].应用科学学报年,27(1):79-83
    [20]J.法郎士,J.H.M.索恩利著(金之庆,高亮之主译).1991.农业中的数学模型[M].北京:农业出版社
    [21]康绍忠,刘晓明,熊运章.1992.土壤-植物-大气连续体水分传输理论及其应用[M].北京:中国水利水电出版社
    [22]康绍忠,刘晓明,熊运章,1994.土壤-植物-大气连续体水分传输理论及其应用.[M]北京:水利电力出版社
    [23]李保国,龚元石,左强等.2000.农田土壤水的动态模型及应用[M].北京:科学出版社
    [24]李建军,沈佐锐,贺超兴,等.2003.日光温室番茄长季节生产专家系统的研制[J].农业工程学报,(3):267-268.
    [25]李军.1997.作物生长模拟模型的开发应用进展[J].西北农业大学报,(4):102-107
    [26]李元哲,吴德让,于竹.1994.日光温室微气候的模拟与实验研究[J].农业工程学报,10(1):130—136
    [27]郦伟等.1997.日光温室的热环境理论模型[J].农业工程学报,13(2):160-163
    [28]李荣超.2000.水稻覆膜早作节水高产灌溉模式研究[D].河海大学
    [29]李英能,段爱旺,吴景社.2001.作物与水源利用.中国:重庆出版社
    [30]李远华.1999.节水灌溉理论与技术[M].武汉:武汉水利电力大学出版社,
    [31]刘任,L.S.Pereira J.L.Teixeira.参照腾发量的新定义及计算方法对比[J].水利学报,1997(6):27—33
    [32]刘晓英,林而达,刘培军.Priestley-Taylor与Penman法计算参照作物腾发量的结果比较[J].农业工程学报,2003(-):32-36
    [33]吕佩珂,李明远,吴钜文等.1992.中国蔬菜病虫原色图谱[M].北京:农业出版社,51-54.
    [34]裴孝伯,李世诚,蔡润等.2005.温室环境数据库的建立[J].农业网络信息,(3):31-33.
    [35]潘学标.2003.作物模型原理[M].北京:气象出版社
    [36]齐维强.2004.积温对日光温室番茄生长发育效应的研究以及模型初探[D].西北农林科技大学
    [37]钱幕尧.1993.灰色理论在作物需水量推理中的应用[J].农村水利与小水电,(10):24-27
    [38]钱蕴璧,李英能.2002.节水农业新技术研究[M].郑州:黄河水利出版社
    [39]孙忠富.2000.工厂化农业信息技术研究与应用展望.发展中的工厂化农业一工厂化农业可持续发展研讨会论文集[C].北京出版社,242-248
    [40]孙忠富,陈人杰.2002.温室园艺作物模拟模型研究基本理论与技术方法的探讨[J].中国农业科学,35(3):320-324
    [41]孙景生,熊运章,康绍忠.1993.农田蒸发蒸腾的研究方法与进展[J].灌溉排水,13(4):36-38
    [42]孙忠富,吴毅明,曹永华等.1993.日光温室中直射光是计算机模拟方法--设施农业光环境模拟分析研究之三.农业工程学报,9(1):36-42
    [43]孙忠富,李佑祥,吴毅明等.1993.北京地区典型日光温室直射光环境的模拟与分析--设施农业光环境模拟分析研究之四.农业工程学报,9(2):45—51
    [44]沈明卫.2000.华东地区塑料连栋温室热环境及夏季降温研究[博士学位论文].杭州:浙江大学
    [45]孙增圻,徐红兵.1997.基于T-S模型的模糊神经网络[J].清华大学学报(自然科学版),37(3):76-80
    [46]S.Mohna.1994.几种腾发量估算方法的对比研究[J].灌溉排水,(1):49-53
    [47]吴德让,李元哲,于竹.1994.日光温室地下热交换系统的理论研究[J].农业工程学报,10(1):137-143
    [48]吴德让,李元哲,于竹.1994.日光温室地卜热交换系统的实验和优化设计研究[J].农业工程学报,10(1):144-149
    [49]王介民,高峰,刘绍民.流域尺度ET的遥感反演[J].遥感技术与应用,2003(5):332-33
    [50]王守唐,高东杰.2001.基于T-S模糊模型的辨识算法[J].控制与决策,16(5):630-636
    [51]谢贤群.1990.测定农田蒸发和显热通量的微气象技术.农田作物环境试验研究.北京:气象出版社
    [52]谢贤群,左大康,唐登银.1991.农田蒸发-测定与计算.北京:气象出版社
    [53]谢贤群.1992.农田蒸发耗水量试验研究.作物与水分关系研究.181—192
    [54]许迪,刘任.测定和估算田间作物腾发量方法研究综述[J].灌溉排水,1997(4):54-59
    [55]杨晓光,陈端生,郑海山.1994.日光温室气象环境综合研究(四)--日光温室地温场模拟初探.农业工程学报,10(1):150-156
    [56]殷新佑.1994.水稻发育温度效应的非线性模型及其应用[JJ.作物学报,20(6):692-700
    [57]郑国生,吴乃元.2001.CO_2浓度升高对大豆冠层光合速率影响的数值模拟研究[J].生物数学学报,16(4):430—438
    [58]左大康,覃文汉.1988.国外蒸发研究进展.地理研究,7(1)
    [59]张福墁.2000.在提高质量的前提下研究与开发-对我国工厂化农业(设施园艺部分)进一步研开发的思考发展中的中国工厂化农业.工厂化农业可持续发展研讨会论文集[C].北京:北京出版社
    [60]张剑锋.2003.节能型日光温室环境因子的物理模型及其评价[硕士学位论文].南京:南京农业大学
    [61]张亚红,陈端生.1998.日光温室内空气湿度数学模型初探.农业工程学报,14(增刊):109-114
    [62]张志斌,贺超兴.2004.设施番茄越夏长季节规范化栽培技术[J].中国蔬菜,(1):47—49
    [63]周晓峰,沈斌,罗志义.1997.大棚番茄生长发育与棉铃虫危害的模拟模型研究[J].生态学报,17(3):303—310
    [64]Acock B.1989.Crop modeling in the USA[J].Acta Horticulture,248:356-372
    [65]Bertin N,Gray C.1993.Tomato fruit-set:A case study for validation of the model TOMGRO[J].Acta Horticulturae,328:185-193
    [66]Blaney,Griddle.1950.Determining water requirements in irrigate areas from climatological and irrigation data and irrigation data.USDA(SCS)TP,(96):48
    [67]BusingerJ.A.1963.The glasshouse(greenhouse) climate.In Physics of plant environment,North-Holl and Publ.co,Amsterdam,277-318
    [68]Bot,GP.A.1983.Greenhouse climate:From Physical Processed to a dynamie model.Ph.D.Thesis.Agricultural University.Wageningen,Nearthlands.1983.
    [69]Bot,G.P.A.1991.Physical modelling of greenhouse climate.Proceedings of the IFAC/ISHS Workshop,7-12
    [70]Black,Thurthell,Tanner.1968.Hydraulic load cell lysimeter,construction calibration and tests.Soil Sci.Soc.Am.Proc,32:623-629
    [71]Boulard,TandA.Baille.1993.A simple greenhouse climate control model incorporating effects on ventilation and evaporative cooling.Agricultural and Forest Meteorology,vol(65):145-157
    [72]Boaventura Cunha,Carlos Couto,A.E.B.Ruano.2000.A greenhouse Climate Multivariable Predictive Controller,Acta Horticulturae.N.534,ISHS,269-276
    [73]Boaventura Cunha,C.Couto and A.E.B.Ruano.1997.Real-time parametere stimation of dynamic temperature models for greenhouse environmental control.Control Eng.Practice.Vo15(10):1473-1481
    [74]Azeem M F,Hanmandlu M,Ahmad N.2000.Generalization of adaptive neuro-fuzzy inference systems[J].IEEE Transactions on Neural Network,11(6):1332-1346
    [75]Allen.R.G,Pereira.L.S,Raes.D and Smith.M.1998.Crop Evapotranspiration-Guidelines for Computing Crop Water Requirement,Rome,Food and Agriculture Organization of the United Nations
    [76]B.T.TIEN and G.VAN STRATEN.1998.A Neuro Fuzzy Approach to Identify Lettuce Growth and Greenhouse Climate.Artificial Intelligence Review,12:71-93
    [77]Bot,GP.A.1983.Greenhouse climate:from physieal processed to a dynamic model.Ph.D.Thesis.Agrieultural University.Wageningen,Nearthlands
    [78]BotG.P.A.1983.Greenhouse climate:From physical processes to a dynamic model.Doctor's Dissertation,LH Wageningen,240
    [79]Cecilia Stanghellini,Taeke de Jong.1995.A model of humidity and its applications in a greenhouse Agricultural and Forest Meteorology.Vol.76(2):129-148
    [80]Chao,k,Gates,R.S.,Chi,H,-C.1995.Diagnostic hardware/software system for the environment Controllers.Trans.ASAE.Vol.38(3):939-947
    [81]C.M.WellS,P.C.Austin,1985.Modeling and Control for New Zeal and Greenhouse.Acta Horticulturae,174,549-553
    [82]Dayan E,Van Keulen H,Jones J W,Zipori I,Shmuel D,Challa H.1993.Development,calibration and validation of a greenhouse tomato growth model.I.Description of the modelAgricultural Systems,43:145-163
    [83]Dayan E,Van Keulen H,Jones J W,Zipori l.Shmuel D,Challa H.1993.Development,calibration and validation of a greenhouse tomato growth modekll.Field calibration and validation.Agricultural Systems,43:165-183
    [84]Chalabi Z.S.1992.A generalized optimization strategy for dynamic CO_2 enriehment in a greenhouse European Journal of Operational Research,59,308-312
    [85]Dyer,Mather.1965.The“evapotron”,an instrument for the measurement of eddy fluxes in the lower atmosthere.J.APPI.Meteorol,4:622-625
    [86]Fisher P.R,Heins R.D.1996.The greenhouse care system:a decision-support system for height control and scheduling of potted flowering plants[J].Acta Horticulturae,417:41-45
    [87]Gray C ,Jones J.W.Longuenesse J.J.1993.Modelling daily changes in specific leaf area of tomato:the contribution of the leaf assimilate pool[J].Acta Horticulturae,328:205-209
    [88]George Biju.A,B.R.S.Reddy,N.S.Raghawanshi,W.W.Wallender.Decision Support System for Estimating Reference Evapotranspiration[J],Jouraal of Irrigation and Drainage Engineering,ASCE.Vol,128(1):127-133
    [89]Gijzen H,et al,1989.Aflexble and explanatory model of light distribution and photosymhesis in row crops.Agri,For.Meteorol,48(l,2):l-20
    [90]Goudriaan J.1986.A simple and fast numerical method for the computation of daily totals of crop photosynthesis.Agricultural and Forest Meteorology,38:249-254
    [91]Goudriaan J,Van Laar H H.1994.Modelling Potential Crop Growth Processes.Kluwer Academic Publishers,149-167
    [92]Heuvelink E.1995.Dry matter production in a tomato crop:measurements and simulation.Annals of Botany,75:369-379.
    [93]Heuvelink E.1996.Tomato growth and yield:quantitative analysis and synthesis[D].Wageningen:wageningen Agriculture University.326
    [94]I.Seginer,T.Boulard and B.J.Bailey.1994.Neural network models of the greenhouse climate.Journal of Agricultural Engineering Research,Vol,59(3):203-216
    [95]I..Seginer,Y.Hwang,T.Boulard,J.W.Jones.1996.Mimickink an expert greenhouse grower with a neural-net policy Trans.ASAE,Vol,39(1):299-306
    [96]I.Seginer.1997.Some artificial neural network applications to greenhouse environmental control.Computers and electronics in agriculture,Vol,18(2-3):167-186
    [97]J.C.Bakker.1995.Greenhouse climate control:constraints and limitation.Acta HortiCulturae.(399):25-35 [98]J.C.Bakker.1992.Glasshouse with closed cover and ventilation system for air treatment.Acta Hortieulturae.(312):115
    [99]Jolliet O.1994.HORTITRANS,a model for Predicting and optimizing humiduity and transpiration in greenhouses.Journal of Agricultural Engineering Research.Vol.57(1):23 -57
    [100]Kanemasu,Wesely,Hieks,Heilman.1979.Techiques for calculating energy and mass flexes.In Modification of the Aerial Environment of Crops
    [101]Leutscher K J,Vogelezang J V W.1990.A crop growth simulation model for operational management support in pot plant production.Agricultural Systems,33:101-104.
    [102]Marcelis L.F.M .1992.The dynamics of growth and dry matter distribution in cucumber[J].Annals of Botany,(69):487-492
    [103]Marcelis L.F.M,Heuvelink E,Goudriann.1998.Modeling biomass production and yield of horticultural corps:a review[J].Scientia.Horticulturae,74(1):83-111
    [104]Matthews R B,M J Kropff,D Bachelet et al.1995.Wallingford and IRRI[M],Los Bafios,Philippines,299
    [105]M.Ferreira,E.A.Faria,A.E.Ruano.2002.Neural network models in greenhouse air temperature prediction.Neurocomputing.Vol,43(1-4):51-75
    [106]M.Kindelan.1980.Dynamic Modeling of Greenhouse Environment.Transactions of the ASAE,1232-1239
    [107]OkadaM.1985.An analysis of the thermal screen effeets on greenhouseen environment by means of a multilayer screen modeLActa Hdrt,174,139-144
    [108]P.C.Young,M.J.Lees.1996.Silmplicity out of complexity in glasshouse climate modelling.Acta Horticulturae.(406):15-28
    [109]Penman.1948.Natural evaporation from open water.bare soil and grass.Proc.Roy.Soc.London,A193:120-146
    [110]Probert M E,et al,APSIM s 1998.Water and mtrogen modules and simution of the dynamics of water and nitrogen in fallow systems.Agn,System.50(1),28
    [111]SigrimisN.1989.Greenhouse control optimization.ASAE Paper,No.89-4017
    [112]S.Imrark ,A.Imrark,R.G.AllenJ,W.Jones.Solar and Net Rdaiation-Based Equations to Estimate Refernce EvaPotrnas Piartion in Humid Climates[J].Jounral of Irrigation and Darinage Engineering,ASCEVol,129(5):336-347
    [113]S.Irmak,R.G.Allen,E.B.Whitty.Daily Grass and Alfalfa-Reference Evapotranspiration estimates and Alfalfa-to-Grass Evapotranspiration Ratios in Florida[J].Journal of Irrigation and Drainage Engineering,AS-CE,129(5):360-370
    [114]Spitters C.J.T,Toussaint H.A.J.M,Goudriann J.1986.Separating the diffuse and direct component of global radiation and its implication for modeling canopy photosynthesis Part Ⅰ :Components of incoming radiation[J].Agricultural and Forest Meteorology,38(1-3):217-229
    [115]Takakura.T.et al,1971.Atime dependent analysis of greenhouse thermal environment.Transaction of the ASAE,14(5),964-971
    [116]Takakura.T,Kurata,K.and HonjoT.1985.Physical models and the greenhouse climate.Aeta Hort,174,97-104
    [117]T.Takakura.1989.Technical models of the greenhouse environment.Aeta Horticulture,248,49-53
    [118]T.Boulard.et al.1995.Modeling of air exchage of greenhouse equipped with continuous roof vents.J.agricEngng Res.vol,6(1):27-36
    [119]T.Boulard.et al.1996.Characterization of the Mechanisms Involved in the Natural Ventilation of Greenhouse.Aeta Horticulture
    [120]T.Boulard.etal.1996.The mechanisms involved in the natural ventilation of greenhouse.Agricultural and Forest Meteorology,79,61-77
    [121]T.Boulard.et al.1997.Air flow and associated sensible heat exehange in a naturally ventilated greenhouse.Agricultural and Forest Meteorology.88,111-119
    [122]T.Boulard.etal.1998.Natural ventilation by Thermal Effect in a one-half Scale Model Mono-span Greenhouse.Transaction of the ASAE,41(3),773-781
    [123]T.Boulard.et al.1998.Pressure Field and Airflow at the opening of a Naturally Ventilated Greenhouse.J.Agie.Engng Res.7,193-102
    [124]T.Boulard.et al.1999.M.A.Lamrani,J.C.RoyandA.Jaffrin.Characterization and Modeling of the Air Fluxes in duced by Natural Ventilation in a Greenhouse.Journal of Agricultural Engineering Research,Vol,74(2):135-144
    [125]Thornthwaite.1948.An approach toward rational classification of climate Geogr.Rev,(38):55-94
    [126]Xie X L,Beni G1991.A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,13(8):841-847
    [127]YoungP.C.1984.Recursive Estimation and Time Series Analysis (Communication and Control Engineering Series).Springer-Verlag,Berlin

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700