孔网钢带耐热聚乙烯预制保温管线膨胀系数和弹性模量分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孔网钢带耐热聚乙烯预制保温管是一种新型供热管道,由孔网钢带耐热聚乙烯复合管(含管件)、聚氨酯硬质泡沫塑料保温层和聚乙烯保护壳组成。孔网钢带耐热聚乙烯复合管是预制保温管的核心,是以冷轧冲孔钢带焊接的孔网管作为增强骨架,耐热聚乙烯(PE-RT)为主体材料复合而成。由于引入了增强骨架和耐热聚乙烯,管材的耐压强度和耐热性能都得到显著提高,可用于热水输送管道、供热二次网管道等。
     孔网钢带耐热聚乙烯预制保温管在直埋供热应用领域缺乏足够的理论依据和实践案例,保温层和保温外壳对管道力学性质的影响也是未知的。因此,以预制保温管整体为研究对象,对其进行力学性能分析是十分必要的。本文从有限元分析、实验研究和复合材料细观力学理论三个方面对两种规格的孔网钢带耐热聚乙烯预制保温管进行了较为系统的研究。主要研究内容和结论有:
     1、利用有限元软件对dn110和dn200两种规格的孔网钢带耐热聚乙烯预制保温管进行热分析和结构分析。对模型外壁施加20℃温度载荷,内壁分别施加50℃,70℃,90℃温度载荷,模拟出温度场在管道的径向分布。以温度场为边界条件,模拟出模型的轴向热位移,并根据模拟结果计算出孔网钢带耐热聚乙烯预制保温管的线膨胀系数有限元值。另对模型施加压力载荷和温度载荷,根据模拟结果计算弹性模量有限元值。
     2、设计了孔网钢带耐热聚乙烯预制保温管实验室实验台,通过实验得出dn110和dn200两种规格的线膨胀系数和弹性模量实验值。根据复合材料细观力学理论,计算出不同规格线膨胀系数和弹性模量的理论计算值。
     用Origin软件对dn110和dn200两种规格孔网钢带耐热聚乙烯预制保温管线膨胀系数和弹性模量的有限元值、实验值和理论计算值进行分析,对复合材料细观力学理论公式进行修正,推导出不同规格管道的线膨胀系数和弹性模量修正值。为孔网钢带耐热聚乙烯预制保温管应用于直埋供热工程提供设计计算参数。
     3、设计了孔网钢带耐热聚乙烯预制保温管地坑实验。通过模拟dn110和dn200两种规格管道在直埋供热工程中的运行状态,测得复合管的过渡段长度、热伸长和管道的轴向力。并和理论计算的复合管道最大过渡段长度、热伸长以及轴向力进行比较,验证了复合管道实验室实验结果、过渡段长度、热伸长量、弹性模量以及线膨胀系数等结论的准确性和正确性。
Steel-plastic composite pre-insulated pipe is a new heating pipe. It comprises of steel-plastic composite pipe (including pipe fittings), rigid polyurethane foam plastic insulation layer and the polyethylene protection shell. The steel-plastic composite pipe is the key of steel-plastic composite pre-insulated pipe. It compose of borehole net steel pipe and PE-RT. Borehole net steel pipe is enhanced framework, it is made from cold-rolled punched hole steel sheet. And heat-resistant polyethylene (PE-RT) is main material. Owing to using of an enhanced framework and the heat-resistant polyethylene, compressive strength and heat-resistance of pipe have been significantly improved. Steel-plastic composite pre-insulated pipes can be used as hot water pipes, the secondary heating network pipes etc.
     Steel-plastic composite pre-insulated pipe lacks of theory evidence and practical cases in application of direct-buried heating area. Effects of pipeline mechanical properties coming from insulation layer and insulation shell are also unknown. Therefore, analyzing mechanical properties of pre-insulated pipe as a whole is extraordinary essential. This paper studies two type steel-plastic composite pre-insulated pipes from three aspects, including finite element analysis, experimental research and composite materials micromechanics theory. The main contents and conclusions are:
     1. Using the finite element analysis software to analyze dn110 and dn200 steel-plastic composite pre-insulated pipes for thermal analysis and structural analysis. Imposed 20 degrees temperature load on the model outer wall and 50 degrees,70 degrees,90 degrees temperature load on inner wall separately. It simulates the radial temperature distribution in the pipeline. Then it takes temperature as boundary conditions to simulate the model axial thermal displacement and calculates the finite element value of linear expansion coefficient of steel-plastic composite pre-insulated pipes according simulation results. Moreover, Imposed pressure load and temperature load on the model, to calculate the finite element value of elastic modulus according simulation results.
     2. Designing laboratory bench for steel-plastic composite pre-insulated pipes. It obtains the experimental value of linear expansion coefficient and elastic modulus of dn110 and dn200 two types pipes by experiment. On the basis of composite materials micromechanics theory, it calculates the theoretical value of linear expansion coefficient and elastic modulus of different types pipes.
     Analyzing finite element values, the experimental values and the theoretical values of linear expansion coefficient and elastic modulus of dn110 and dn200 steel-plastic composite pre-insulated pipes by the Origin, it corrects micromechanics theory formula of composite materials. It derives modifier of linear expansion coefficient and elastic modulus of different types pipes. It provides designed and calculated parameters for steel-plastic composite pre-insulated pipes applying in the direct-buried heating area.
     3. Paper designs pit experiment of steel-plastic composite pre-insulated pipes. It simulates running condition of dn110 and dn200 two type pipes in the direct-buried heating engineering. Through observing experimentation, it obtains transition length, thermal expansion and axial force of the composite pipes. And comparing with the theoretical values of the maximal transition length, thermal expansion and axial force of the composite pipe, the result verifies the accuracy of the laboratory experiment for composite pipes.
引文
[1]贺平,孙刚,王飞.供热工程(第四版)[M].北京:中国建筑工业出版社,2009:224.
    [2]中国建设报.国内外城市主要供热方式现状及发展趋势[N/OL].http://info.hvacr.hc360.com/2008/06/13081590741-2.shtml,2008-06-13.
    [3]顾丽晴.浅谈分户热计量中遇到的问题[OL].http://www.studa.net/Constructs/060701/15534875.html,2006-07-01.
    [4]闫冠龙.钢塑复合管供热直埋的能耗及几种力学性能研究[D].太原:太原理工大学,2010.
    [5]北方地区城市集中供热管网改造规划.中华人民共和国住房和城乡建设部.
    [6]张军.直埋热水供热管道弹性敷设设计方法[OL].http://dbspace.cn/new/kongdiaosheji/2010/1221/256.html,2010-12-21.
    [7]卢玉斌,马歆,方晓斌等.塑料基金属复合管研究进展[J].化工机械,2005,23(2):125-129.
    [8]Shanmugam N E, Thevendran V, Tan Y H. Design formula for axially compressed perforated plates[J]. Thin-Walled Structures,1999,34:1-20.
    [9]Jeom Kee Paik. Ultimate strength of perforated steel plates under edge shear loading[J]. Thin-Walled Structures,2007,45:301-306.
    [10]Kopp R, Wiedner C, El-Maged E. Comparison between visioplasticity measurements and finite element computations for tensile tests on cold rolled perforated ferritic chromium steel[J]. Computational Materials Science,2004,31: 439-306.
    [11]董大伟,闫牧夫.复合管金属增强体结构优化设计[J].机械工程师,2003,9:56-59.
    [12]邓凡平ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007:24,187.
    [13]韩曙东ANSYS热分析指南[M].:1-6.
    [14]段进,倪栋,王国业ANSYS10.0结构分析从入门到精通[M].北京:兵器工业 出版社,北京科海电子出版社,2006:174.
    [15]半导体技术天地ANSYS结构分析基础知识[OL].http://www.2ic.cn/html/63/t-328863.html,2007-6-17.
    [16]王瑞,陈海霞,王广峰.ANSYS有限元网格划分浅析[J].天津工业大学学报,2002,21(4):8-11.
    [17]王飞,张建伟.直埋供热管道工程设计[M].北京:中国建筑工业出版社,2007:36.
    [18]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2005:1,50.
    [19]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006:3-15.
    [20]GB/T4339-2008,金属材料热膨胀特征参数的测定[S].北京:中国标准出版社,2009.
    [21]GB/T 1036-2008,塑料-30℃-30℃线膨胀系数的测定石英膨胀计法[S].北京:中国标准出版社,2008.
    [22]GB/T 1040.4-2006,塑料拉伸性能的测定第4部分[S].北京:中国标准出版社,2006.
    [23]陈友明.建筑环境测试技术[M].北京:机械工业出版社,2009:33-35.
    [24]刘渊.误差理论与数据[D].大连:大连理工大学,2008.
    [25]师卿,王飞.孔网钢带耐热聚乙烯复合管的线膨胀系数实验[J].山西建筑,2011,37(7):90.
    [26]刘旭东,张劲松.有限元法预测复合材料的有效弹性模量[J].沈阳工程学院学报(自然科学版),2009,5(2):175.
    [27]张鑫.基于ANSYS的复合材料仿真分析[D].西安:西安电子科技大学,2009.
    [28]Eshelby J D. The elastic field outside an ellipsoidal inclusion[J]. Proc Roy Soc,1959,A252:561-567.
    [29]Eshelby J D. The determination of the elastic field of an ellipsoidal inclusion and related problems [J]. Proc Roy Soc,1957, A240:376-381.
    [30]Hill R. A self-consistent mechanics of composite[J]. J Mech Phys Solids,1965,13:213-218.
    [31]Budiansky B. On the elastic moduli of some heterogeneous materials[J]. J Mech Phys Solids,1965,13:223-229.
    [32]Roscoe R A. The viscosity of suspensions of rigid spheres[J]. J Appl Phys,1952,3:267-273.
    [33]Mori T,Tanaka K. Average stress in matrix and average energy of materials with misfitting inclusions [J]. Act Metal],1973,21:571-576.
    [34]林谋金,刘荣凤,王晓春.孔网钢增强复合材料的弹性模量研究[J].实验力学,2011,26(1):26-30.
    [35]林谋金,李想,王晓春.孔网钢带聚乙烯复合管的弹性模量修正公式[J].特种结构,2010,27(5):12-16.
    [36]周金将,徐绍锋.等效模量法计算冷弯薄壁开孔槽钢柱屈曲应力[J].科研开发,2010,25(130):27-31.
    [37]刘锡礼,王秉权.复合材料力学基础[M].北京:中国建筑工业出版社,1984:1-3.
    [38]田云德,秦世伦.复合材料等效弹性模量的改进混合律方法[J].西南交通大学学报,2005,40(6):783-787.
    [39]刘平,万泽清.复合材料等效弹性模量预测方法的改进[J].扬州大学学报(自然科学版),2007,10(1):21-23.
    [40]明艳.孔网钢带耐热聚乙烯复合管的力学分析及保温层计算[D].太原:太原理工大学,2010.
    [41]CJJ-T81-98,城镇直埋供热管道工程技术规程[S].北京:中国建筑工业出版社,1999.
    [42]王飞.直埋供热砂箱实验台研制及力学性能实验[D].哈尔滨:哈尔滨工业大学,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700