聚合物改性沥青多相体系形成和稳定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改性沥青的性质主要受到温度、剪切力、剪切时间等生产工艺参数的影响。本文将溶剂法、双螺杆挤出机(母体法)、高速剪切机法、双螺杆挤出机法(直接)四种制备改性沥青的方法进行分析比较,结果表明溶剂法和双螺杆挤出机(母体法)要高于高速剪切机和双螺杆挤出机(直接)。但通过加入稳定剂,利用双螺杆挤出机法(直接)可以得到的改性沥青性能与溶剂法和母体法制备的改性沥青性能相同。母体法制备改性沥青过程中母体浓度对于改性沥青性质影响不大,随着剪切时间的增加,改性沥青的各方面性能都有所改善,随着加工温度的升高,改性沥青的软化点和延度都有所提高。
     选取双螺杆挤出机作为加工SBS改性沥青的生产设备,通过改变生产过程中的加工温度、剪切速率、加工时间等工艺条件,测定各条件下生产的改性沥青的性质,研究其变化规律。实验结果表明,通过双螺杆挤出机能够将改性剂较为均匀的分散在基质沥青中,使基质沥青的各方面性质得到改善。在考察的双螺杆挤出机三个操作条件中,对产品性质影响最大的是剪切时间和剪切速率。随剪切时间和剪切速率的增加,软化点上升,延度增加,针入度降低。加工温度在130℃到180℃之间时对产品性能的影响相对较小。
     本文在聚合物改性沥青多相体系性能研究方面主要研究了两种组分不同的基质沥青和两类聚合物改性剂。两种基质沥青是指四组分含量差别较大。两类聚合物改性剂包括热塑性弹性体,即两种结构的聚苯乙烯-丁二烯-苯乙烯(SBS)和树脂类改性剂如低密度聚乙烯和改性聚乙烯。改性聚乙烯主要是马来酸酐接枝低密度聚乙烯(MAH-g-LDPE)和甲基丙烯酸缩水甘油酯接枝低密度聚乙烯(GMA-g-LDPE)。
     本文主要通过改变基质沥青种类、SBS的种类、SBS的添加量,制备不同的改性沥青样品,分析和表征改性沥青样品的性质来研究热塑性弹性体SBS改性沥青性能变化规律。实验结果表明两种基质沥青经SBS改性后,软化点升高,针入度下降,延度先升高后降低。R-SBS改性沥青的软化点、延度高于L-SBS改性沥青的软化点、延度。当SBS含量较低时,加入稳定剂可以使SBS改性沥青高温稳定性合格,稳定剂加入量在0.6%-0.8%改性沥青性能比较好。
     荧光显微镜微观形貌分析发现双螺杆挤出机的强剪切作用使SBS以细小颗粒状均匀分散于改性沥青中,形成以SBS为分散相、沥青为连续相的多相体系。红外光谱显示SBS在稳定剂的存在下,有少量的聚合物大分子发生断裂,产生大分子自由基,从而与沥青发生化学反应。
     本文以双螺杆挤出机为加工设备分别研究了物理方法和化学方法改性沥青的性能变化。红外光谱显示低密度聚乙烯与沥青属于物理溶涨。而改性低密度聚乙烯(如马来酸酐接枝低密度聚乙烯、甲基丙烯酸缩水甘油酯接枝低密度聚乙烯)改性基质沥青的红外光谱显示GMA所含的906cm-1有环氧基吸收峰消失,说明GMA-g-LDPE的环氧基团与沥青中的官能团发生了反应。MAH-g-LDPE改性沥青体系中羧酸酐的特征吸收峰消失,说明MAH-g-LDPE分子中羧酸酐与沥青中的官能团发生了反应。与LDPE物理方法改性沥青相比,GMA-g-LDPE和MAH-g-LDPE通过官能团与沥青中官能团发生反应,形成化学键,为化学方法改性沥青。与物理方法制备的改性沥青相比,GMA-g-LDPE、MAH-g-LDPE化学法改性沥青能够大幅度提高基质沥青的软化点,降低了基质沥青的温度敏感性。MAH-g-LDPE和LDPE改性沥青的低温延度较低,而GMA-g-LDPE改性沥青的延度有所提高。
     软化点和动态剪切流变测试中高温抗车辙性能能够证明基质沥青经过化学方法改性后其高温性能得到大幅度提高,同时温度敏感度降低。改性LDPE含量高时沥青质含量高的沥青经改性后软化点升高明显。低温延度和弯曲蠕变试验实验结果表明GMA-g-LDPE改性沥青的低温性能没有降低而且略有提高。LDPE和MAH—LDPE改性沥青的低温性能有所降低。GMA-g-LDPE改性沥青的高温储存稳定性较好。荧光显微镜微观形貌分析发现MAH-g-LDPE改性沥青和LDPE改性沥青的颗粒大小不均匀,聚合物与沥青界面明显,而且MAH-g-LDPE改性沥青体系中出现比较大的颗粒并且形成连续相,表明MAH-g-LDPE改性沥青和LDPE改性沥青高温稳定性能较差,而GMA-g-LDPE改性沥青体系中聚合物颗粒大小均一,界面模糊,说明聚合物与沥青之间有较好的相容性。
The performances of the modified asphalt were mainly influenced by temperature, shear stress, shear time and producing technology. In this paper, The four modified asphalt methods such as high-speed shear mixer method, solvent method were studied for comparison. The results showed that The performances of modified asphalts made by solvent method and high polymer content method were better than those of modified asphalts made by high-speed shear mixer method and direct method.The performances of modified asphalt by adding stabilizer agent with twin screw extruder were good compared to those of modified asphalt by solvent method and high contents polymer modified asphalt.The concentration of basic material had little influence on the performances of modified asphalt. The performances of modified asphalt were enhanced with the increase of shear time of twin screw extruder. The softening-point and the ductility were improved slightly with increased temperature. The process method had large influence on the performances of modified asphalt. The The twin screw extruder was used to modify asphalt in this paper. The performances of modified asphalt at various conditions, such as temperature, shear velocity, shear time and the optimum operation technology were investigated. The changing rules were explored as well. The experimental results showed that the SBS could be dispersed evenly by twin-screw extruder and the performances of asphalt could be improved. Shear time, shear velocity and producing temperature were three factors influencing the modified asphalt performances. Shear time and shear velocity were the most important factors. The softening point and ductility were enhanced with the increase of shear time and shear velocity, but the penetration was decreased. The effect of temperature from 130℃to 180℃on the modified asphalt performances was little comparelly.
     Two kinds asphalt with different components and two kinds polymer modifier were explored in this paper. The asphaltene contents in one kinds asphalt was higher than another asphalt. Two kinds polymers modifier were thermoelastomer such as SBS and thermoresin modifier. The thermoresin included low density polyethylene and maleic anhyride graft polyethylene and glycidyl methyacrylate graft polyethylene.
     The performances of different modified asphalts were analysised and demonstrated by altering base asphalt and SBS species,the SBS content, respectively.The results showed the modified agent could be evenly dispersed in asphalt by twin-screw extruder and the properties of modified asphalt were developed. Two kinds aspahlts were modified by SBS and the softening points were enhenced and the penetration values were down. The ductility was up and down with the SBS content increasing .The softening points and ductily values of R-SBS modified asphalt were bigger than those of L-SBS modified asphalt. The storage performance in high temperature of SBS modified asphalt was better by using stability agent when the SBS content was low. The performances of modified asphalt were best when stability agent content was 0.6%-0.8%.
     The morphologies of SBS modified asphalt showed that the SBS particles were fine and the particles were dispersed evenly in asphalt for the strong shear force of twin screw extruder. And the SBS particles were dispersing phase and the asphalt was continuous phase in multiphase system. Little polymer molecular bonds had broken and the macromolecular radical was produced for the stability agents exitence, so the chemical reaction had happened between the SBS and asphalt in FTIR result.
     The changing performances of modified asphalt by physical methods and chemical methods respectively were studied. The FTIRs results showed no reactions had bappened between the asphalt and LDPE in LDPE modified asphalt system and the polymer had been swollen . The absorbing peak in 906cm-1 which was belonged to epoxy group was disappear in FTIR of GMA-g-LDPE modified asphalt. So the paper deduced the reaction had happened between the GMA-g-LDPE and aspahlt in GMA-g-LDPE modified asphalt system. The absorbing peak of anhydride in MAH-g-LDPE modified asphalt was disappear in FTIRs results which demonstrated the reaction had happened between the MAH-g-LDPE and aspahlt. So the paper thought that the ways of MAH-g-LDPE and GMA-g-LDPE modified asphalt belonged to chemical methods for forming chemical link.
     The reaction happened between functional group in modified polyethylene and asphalt and the chemical bonds had been formed,which had been thought as chemical methods modified asphalt. And polyethylene modified asphalt were thought as physical methods. Softing points of MAH-g-LDPE and GMA-g-LDPE modified asphalt were improved largely by chemical methods compared to LDPE modified asphalt and the temperature sensitivity was reduced. The high temperature performances of modified asphalt were enhenced largely by chemical modified methods which were demonstrated by softening points values and dynamic shear rheometer test. The temperature sensitivity of modified asphalt was lower. the softening point were promoted obviously for high content asphaltene in asphalt when the modified LDPE content were high. The ductility test in low temperature and bending beam rheometer test showed the performances in low temperature of GMA-g-LDPE modified asphalt were not decreased and promoted while the performances of LDPE modifed asphalt and MAH-g-LDPE modifed asphalt decreased largely. The stability performances in high temperature of GMA-g-LDPE modified asphalt was better. The particles of MAH-g-LDPE and LDPE in modified asphalt systems were not evenly and the boundery between the polymer particles and asphalt was obviously in observing microsurface experiment, which indicted the stability performances were worse. There were many bigger particles in continuouse phase whch showed the crosslink had happened in polymer extruding process. And the particle of GMA-g-LDPE were evenly and the boundery between the polymer and asphalt which showed the better comodified Asphaltbility between the polymer and asphalt.
引文
[1]陈惠敏.国外聚合物改性道路沥青技术和应用动向[J] .石油沥青,1992,4:59-64.
    [2]杨京伟,徐瑞清,鲍浪.SBS改性道路沥青[J] .北京化工大学学报,1997,24(4):38-44.
    [3] Terrel.Modified Asphalt Pavement Materials in the European Experience[A] . AAPT[C], 1989, l58.
    [4] Gordon D. Airey. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J] . Fuel,2003,82:1709–1719.
    [5] Isacsson U, Lu X. Testing and appraisal of polymer modified road bitumen-state of the art [J] . Materials and Structure, 1995, 28:139-159.
    [6]黄卫东,吕伟民,李套岭.国外聚合物改性沥青的研究与应用[J].国外公路,1999,4:44-49.
    [7] Whiteoak CD. The shell bitumen handbook. Surrey, UK: Shell Bitumen:1990.
    [8] Cavaliere M.G. Polymer modified bitumens for improved road application[A]. Proc Fifth Eurobitume Congr[C], UK:Stockholm, 1993,1A(23):138–142.
    [9] X.Lu,Isacsson.U.Rheological characterization of SBS copolymer modified bitumens[J].Construction and building Materials,1997, 11 (1):23-32.
    [10]吕伟民,李立寒.几种聚合物改性沥青性能的比较[J].石油沥青,1998,12(3):7-11.
    [11] Woodhams RT, Hesp SA.Effect of particle Morphology on SBS modified bitumen[J], Colloid Polym.Sci,1991, 269: 825.
    [12]郝培文,改性剂SBS与沥青相容性的研究[J].石油炼制与化工, 2001,32(3):54-56.
    [13] Lu X,Isacsson.U. Phase separation of SBS polymer modified bitumen [J]. J. of Mat, in Civil Eng, 1999 (1):51-57.
    [14]吉永海,郭淑华,李锐.SBS改性沥青的相容性和稳定性机理[J].石油学报(石油加工),2002,18(3):23-28.
    [15]吉永海,郭淑华,李锐.SBS改性沥青稳定性机理的研究[J].石油沥青,2001,15(4):34-39.
    [16] Martin L.G. New polymer-modified functionalized asphalt compositions and methods of preparation[P]. USP:5348994,1995.
    [17]张玉贞,王翠红,黄小胜.聚合物SBS改性沥青相容性研究[J].石油沥青,2000,14(2):1-5.
    [18]郭淑华,吉永海,王子军.SBS的结构对改性沥青性能的影响[J].石油沥青,2001,15,(3):29-32.
    [19]饶枭宇,周进川,张智强.星、线型SBS改性效果对比研究[J].重庆交通学院学报,2005,24(6):79-82.
    [20]冯新军,郝培文.不同类型SBS对改性沥青技术性能的影响[J].石油炼制与化工,2004,35(10):60-63.
    [21]孙大权,吕伟民.反应性SBS改性沥青的研制[J].石油沥青,2002,16(1):30-32.
    [22]刘尚乐.聚合物沥青及其建筑防水材料[M].北京:中国建材工业出版社,2003:142-150.
    [23]温贵安,张勇,张隐西.丁苯橡胶改性沥青的高性能化和稳定化[J].合成橡胶工业,2003,26(5):296-300.
    [24]lewandowski,L.H. Polymer modification of paving asphalt binders[J].Rubber Chemical and Technology,1999,67(3):447-480.
    [25]Heitzman M.Design and Constuction of Asphalt Paving Materials with Crumb Rubber Modifier[A]. Transportation Research Record[C]. 1992,1:1339.
    [26]T.C,Billiter. Investigation of the Curing Variables of Asphalt-Rubber Binder[A]. ACS Division of Fuel Chemistry Preprints[C].1996,41(4):1221-1226.
    [27]Green E. The chemical and physical properties of Asphalt-Rubber Mixture.part-I Basix Material Bahavior[R], FHWA-AI-HPR14-162,Arizona Department to Trans-portation, 1977,March.
    [28]Travis Clarence Billiter.the Characterization of Asphalt-Rubber Binder[P].English: 960000, 1996.
    [29]Magdy.Engineering Chracterization of the Interaction of Asphalt with Crumb English[d] .US:Univercity of Illinoisat Urbana-Chamodified Asphaltign,1996,255.
    [30]张争奇.聚乙烯塑料改性沥青性能研究[J].西安公路交通大学学报,2000,21 (4) :14-18.
    [31]丁永红,承民联,何明阳等.新型引发剂DMDPB在LLDPE熔融接枝MAH中的应用[J].中国塑料,2001,15(10):71-74.
    [32]翟燕,PP/SBS共交联体系的研究[J].塑料工业,2005,33(5):88-91.
    [33]刘念才,黄华,周持兴等.甲基丙烯酸缩水甘油酯熔融接枝粉末聚丙烯研究[J].高分子材料科学与工程,1997,13(1):27-32.
    [34]张凯琳,张学健,赵季若.CPE系列聚合物改性路用沥青[J].弹性体,2005:15(3):8-12.
    [35]虞文景.改性沥青现状及发展前景(上)[J].交通世界,2004,5:38-40.
    [36]黄卫东,吕伟民,李套岭.EVA改性沥青的研究[J].上海公路,2002,04:31-33.
    [37]王立志,钦兰成,高光涛.制备储存稳定的LDPE/SBS共混物改性沥青[J].石油沥青,2002,16(4):41-45.
    [38]高光涛,朱玉堂,王立志等.LDPE/SBS共混物改性沥青体系的反应共混行为合成橡胶工业[J].合成橡胶工业,2003,26(2):98-100.
    [39]李昕跃,王德胜.SBS与EVA复合改性沥青的性能研究[J].大连大学学报,2002,(4):53-56.
    [40]党劲.DOUBLE-G-8型移动式改性沥青设备[J].筑路机械与施工机械化,2000,17(86):10-12.
    [41]徐鸣,张平,俞国平等.FGL-12型移动式复合改性沥青设备技术开发与应用[J].中国市政工程,2004,(5):10-12.
    [42]程盛,梁清源,孟朝锋.浅谈沥青改性方法中的胶体磨与高速剪切[J].湖南交通科技.2005,1(31):40-41.
    [43]温贵安,张勇,张隐西.橡胶反应共混改性沥青的机理[J].合成橡胶工业,2004,27(4):221-224.
    [44]Mizuno.S. Reactive Extrusion Principles and practice[M]. New York, Stockholm Press,1992:254-256.
    [45]耿孝正,张沛.塑料混合及设备[M].北京:中国轻工业出版社, 1992.
    [46]赵启辉,王锡臣.双螺杆挤出机与反应性挤出加工技术[J].塑料加工,2000增刊:46-47.
    [47]W. Michaell. Twin Screw Extruder for Reactive Extrusion [J]. Poly. Eng. Sci, 1995, 35 (19): 1485-1504.
    [48]Todd.D.B. Reactive Extrusion of Polymers [J]. Chemical Engineering Progress, 1992(8):72-76.
    [49]王志平.用途广泛的双螺杆挤出机[J] .塑料加工应用,1998,4:21-25.
    [50]罗望群,黄婉利.母粒法SBS改性沥青的性能[J].石油沥青,2003,17(3):44-46.
    [51]张敬义,何宗华,郑绍宽.SBR母料的研制与应用[J].新型建筑材料,1994,11:30-33.
    [52]张敬义,何宗华,郑绍宽等.SBR母料改性道路沥青的研究[J].齐鲁石油化工,1997,25(3):170-173.
    [53]张登良.改性沥青机理及应用[J].石油沥青,2003,17(2):36-38.
    [54]沈金安.APAO改性沥青的研究[J] .公路,1997,4(4):44.
    [55]吴春生.DOUBLE-G-8型移动式改性沥青设备[J].建筑机械,2000,6:29-31.
    [56]Amiel B.S. Effect of particle Morphology on the emulsion stability and mechanical performance of polyolefin modified asphalts[J].Polymer Engineering andScience,1998.38(5):709-715.
    [57]原健安.PE改性沥青中几个问题的讨论.西安公路交通大学学报,1999,19(1):14-16.
    [58]Giovanni Polacco,Stefano Berlincioni,Dario Biondi.Asphalt modification with different polyethylene-based polymwes[J].European Polymer Journal,2005,41:2381-2844.
    [59]Giovanni Polacco,Stastna S,Biondi D,et al.Rheology of asphalts modified with glycidylmethacrylate functionalized polymers[J]. Journal of Colloid and Interface Science,2004,280:366-373.
    [60]李水平,范维玉,陈树坤.SBS改性沥青微观形态结构及性能的研究[J].石油与天然气化工,2003,32(3):147-149.
    [61]吴福让,张稳健.改性沥青的数码显微照相检测[J].筑路机械与施工机械化,2001,18(95):45-46.
    [62]孔宪明.改性沥青的显微观测[J].新型建筑材料,1998,8:43-44.
    [63]黄卫东,孙立军.聚合物改性沥青的相态结构[J].公路交通科技,2001,18(5):1-3.
    [64]黄卫东,孙立军.聚合物改性沥青显微结构及量化研究[J].公路交通科技,2002,19(3):9-11.
    [65]余剑英,孔宪明,薛理辉.聚合物改性沥青显微结构与性能关系的研究[J].武汉工业大学学报,1995,17(1):21-24.
    [66]肖鹏,康爱红,李雪峰.基于红外光谱法的SBS改性沥青共混机理[J].江苏大学学报(自然科学版),2005,26(6):529-532.
    [67]杨哲,程国香.聚合物改性沥青生产现状与发展趋势[J].石油沥青, 2001,15,4.
    [68]王重平,李永林,翁惠新.SBS改性沥青新型稳定剂的工业试验研究[J].炼制技术与工程,2005,35(8):48-51.
    [69]徐晶,张蓉,徐清.沥青车辙因子在高温范围的经验回归关系[J].公路,2004,3:80-84.
    [70]傅丽,徐黎明.两种流变仪在沥青评价方面的应用[J].石油化工高等学校学报,2003,16(1):27-30.
    [71]原健安,刘地成,纪东.动态剪切流变仪在评价SBS改性沥青中存在的一个问题.公路,2003,8:139-142.
    [72]饶枭宇,周进川,张永兴.SBS改性沥青常规指标与Sharp性能指标的关系[J].重庆交通学院学报.2006,25(1):48-51.
    [73]肖鹏,李雪峰.SBS物理和化学改性沥青混合料抗车辄能力分析[J].扬州大学学报(自然科学版),2005,8(4):79-82.
    [74]邹桂莲,张肖宁,韩传代.应用DSR评价沥青胶浆路用性能的研究[J].哈尔滨建筑大学学报,2001,34(3):112-115.
    [75]段守荣,任瑞波.应用动态剪切流变仪(DSR)评价沥青胶浆路用性能的研究[J],中南公路工程,2001,26(4):81-83.
    [76]田小革.老化对沥青结合料粘弹性的影响[J].交通运输工程学报,2004,4(1):3-6.
    [77]黄卫东,孙立军.SBS与沥青、软沥青质的相互作用及其过程[J].同济大学学报,2002,30(7):819-823.
    [78]克劳斯·劳温代尔.塑料挤出[M].北京:中国轻工业出版社,1995.
    [79]吴培熙.聚合物共混改性[M].北京:轻工业出版社.1996.
    [80]张洪斌.流动场中高分子共混物分散相的形态变化[J].高分子材料科学与工程,1999, 15(4):4-7.
    [81]You Sefia. Effect of used-tire-derived pyrolytic oil residue on the properties of polymer modified asphalts [J ]. Fuel, 2000, 79 (8):975-986.
    [82]O.Gonzalez,M.E.Munoz,A.Santamaria.Rheology and stability of bitumen/EVA blends[J].Eur.Poly.J,2004,40(10):2365-2372.
    [83]Sinan Hinislio,Emine Agar.Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix[J].Mat.Lett,2004,58(3):267-271.
    [84]陈佩茹,刘绍宇.关于沥青感温性指标的讨论[J].交通运输工程学报,2002,2(2):23-26,66.
    [85]林远芳.沥青针入度指数的分析与计算[J].茂名学院学报,2005,15(3):19-22.
    [86]李福普.评价沥青质量的核心指标-沥青感温性[J],石油沥青,1997,11(2):12-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700