共轭对称延拓计算全息与全息水印
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全息显示是真三维立体显示的最终解决方案,计算全息与传统的光学全息相比在信息的数字存储和光电再现方面具有更大的优势。对计算全息新算法的探索具有重要的学术意义,基于计算全息的显示技术在三维电视和多媒体展示等领域具有广泛的应用前景。计算全息和数字水印相结合的全息水印是一种信息隐藏新技术,由于全息图的不可撕毁性等特点,全息水印具有很强的鲁棒性,特别是抗几何攻击能力,为保护数字图像、视频和硬拷贝的知识产权提供新的有效手段。
     本论文研究基于共轭对称延拓的Fourier计算全息新方法,提出将物光波进行共轭对称延拓,经快速Fourier变换直接生成实函数,对实函数进行适当的编码得到Fourier计算全息图,其中包含物光波的幅度和相位信息。与原先的基于干涉的计算全息不同之处在于,这里并不需要模拟物光和参考光的干涉,而是由物光波直接生成全息图,计算效率高。论文进行了理论推导,通过数字方法再现原始图像,并利用反射式电寻址LCD空间光调制器实现了光电再现。实验结果验证了共轭对称延拓Fourier计算全息算法的有效性和优良性能。
     论文中提出基于彩色图像RGB分量的彩色图像计算全息方法,重点解决了彩色图像光电再现中因光源波长差异引起空间缩放的配准和空间位移的补偿问题,实现了光电再现。将彩色图像分解成RGB三个分量,基于共轭对称延拓的Fourier计算全息算法分别计算三基色全息图,合成彩色全息图。在数字再现中,只需对全息图的三基色分量分别进行数字再现即可合成彩色图像。而对于光电再现,则必须考虑不同波长的激光对光电再现图像的影响,通过对不同颜色分量图像的空间间隔进行适当缩放,调整三基色全息图的空间频率,使它们的光电再现图像严格配准。同时控制再现参数对不同再现光引起的再现图像空间位移进行补偿。论文导出了波长与再现图像配准和位移补偿的关系,根据这些原理交替投射RGB三种再现激光并由计算机控制空间光调制器的时分复用,实现彩色图像的再现。
     论文将计算全息和数字水印技术相结合,在共轭对称延拓Fourier计算全息算法基础上提出了一种基于频谱分离的水印全息图空域嵌入的全息水印方法。为了实现水印的盲提取,将数字水印适当布局形成拓展的水印图像,由此生成水印全息图。根据其频谱特性对载体图像进行适当的预处理,在空域中将水印全息图嵌入。检测方不需要原始载体图像和水印信息即可提取水印。这种全息水印具有良好的透明性和很强的稳健性,能抵抗各种常见攻击如加噪声、锐化、平滑、灰度变化和JPEG压缩,以及包括剪切、缩放、旋转在内的几何攻击。尤为突出的是,能够抵抗喷墨打印-扫描攻击,以及对打印照片的剪切攻击,因此这种全息水印可用于图像硬拷贝版权归属的确认,对于平面媒体知识产权保护具有重要意义。全息水印还可用于判断图像是否受到攻击,以及攻击的性质和程度。论文中还提出了在载体图像的DCT域中采用量化调制法嵌入灰度的水印全息图。
Holography is considered one of the ultimate technologies for three-dimensional display. Compared to conventional methods, computer generated holography (CGH) is advantageous both in generation and reconstruction. CGH has applications in various areas. For example, CGH-based display techniques show a promising future of 3DTV and multimedia presentation. Combination of CGH and digital watermarking provides a novel method of information hiding.
     As developing effective algorithms is significant to the development of CGH technology, this dissertation first proposes a CGH algorithm based on conjugate symmetric extension and Fourier transform. The complex amplitude of the light wave to be recorded is extended to produce a conjugate symmetric function. The function is then Fourier transformed to generate a real valued distribution containing both amplitude and phase information of the light wave. The obtained real distribution is encoded to give a gray-scale hologram, which can be used to reconstruct the original light wave. Unlike previous algorithms that are based on interference between the object and reference light waves, the proposed method does not need to simulate interference to produce a hologram. The new algorithm is highly efficient since it makes use of the fast Fourier transform. Theoretical derivation is given, and good reconstructions are obtained both digitally and electroholographically. Electroholographic reconstruction is realized by using an electronic addressing reflective LCD spatial light modulator. Experimental results validate the proposed algorithm and show its good performance.
     In the next part of the dissertation, we study electroholographic reconstruction of color images. CGH algorithms of color images are developed based on the RGB components. Each color component is treated using the method of conjugate symmetric extension and Fourier transform. Digital reconstruction is straightforward, that is, to reconstruct the three color components and combine them to form the color image. In electroholographic reconstruction, however, there is a scaling and alignment problem due to different wavelengths of the three laser sources. Alignment of the reconstructed RGB components is achieved by matching the spatial size and compensating for the spatial offset. Holograms of RGB components are recalculated according to the wavelengths of the light sources, resulting in relevant sizes and offsets. Specifically, spatial spacing of each color component is properly scaled to adjust the spatial frequency of the corresponding hologram so that the reconstructed RGB images can match with each other. Compensation of spatial offset is achieved by controlling reconstruction parameters in the software. A color image is reconstructed using time division switching of reference lights and time division multiplexing of a spatial light modulator.
     As an application of CGH, we propose a new watermarking technique based on computer generated holography. A hologram of the watermark image is first generated by using the proposed conjugate symmetric extension and Fourier approach. The hologram is embedded into the cover image in the spatial domain. To ensure blind extraction, the spectral components of the embedded hologram and the cover image must be made separable. This is achieved by properly arrange the watermark in an extended mask and perform a slight frequency-domain filtering of the cover image prior to the embedding. The watermarked image has good transparency and robustness. Experiments show that the watermark can survive not only normal image processing such as grayscale transform, smoothing, sharpening, noise contamination, and JPEG compression, but also geometrical attacks including cropping, re-sizing, and rotation. More importantly, the hologram-based watermark is capable of resisting inkjet printing and scanning so that it provides a means of protecting copyright of hardcopy photographs. The proposed watermarking is also useful in detecting tampering as it can reveal details of the geometric transformation of the watermarked image. In addition, we describe an alternative hologram watermarking approach, which uses the quantization index modulation technique to insert a hologram into a cover image in the DCT domain.
引文
[1] J Konrad, M Halle, 3-D Displays and Signal Processing, IEEE Signal Processing Magazine, Vol. 24: 97-111, 2007
    [2] M Lucente, Interactive three-dimensional holographic displays: seeing the future in depth, ACM SIGGRAPH Computer Graphics, Vol. 31: 63-67, 1997
    [3]孙超,几种立体显示技术的研究,计算机仿真,Vol.25, No.4: 213-217, 2008
    [4] G E Favalora, Volumetric 3D Displays and Application Infrastructure, IEEE Computer Society, Vol. 38, No. 8: 37-44, 2005
    [5] I Sexton, P Surman, Stereoscopic and Autostereoscopic Display systems, IEEE Signal Processing, Vol. 16, No.3: 85-99, 1999
    [6]林远芳,刘向东,刘旭等,基于二维旋转屏的体三维显示系统像素属性分析,光子学报,Vol.33, No.4: 476-480, 2004
    [7] O S Cossairt, J Napoli, S L Hill, et al., Occlusion-capable multiview volumetric three-dimensional display, Applied Optics, 46(8):1244-1250, 2007
    [8] C D Cameron, D A Pain, M Stanley, et al., Computational challenges of emerging novel true 3D holographic displays, Proc. SPIE, Vol. 4109:129-140, 2000
    [9] D Gabor, A new microscope principle, Nature, Vol.161: 777-778, 1948
    [10]陈家璧,苏显渝,光学信息技术原理及应用,高等教育出版社,2002
    [11] B E A Saleh, M C Teich, Fundamentals of photonics, New York: Wiley Press, 1991
    [12] W H Lee, Computer-generated holograms: Techniques and applications, Progress in Optics, Vol.16: 119-132, 1978
    [13] G Tricoles, Computer generated holograms: a historical review, Applied Optics, Vol.26: 4351-4360, 1987
    [14] U Schnars, W Juptney, Direct recording of holograms by a CCD target and numerical reconstruction, Applied Optics, 33:179-181, 1994
    [15] U Schnars, W Juptney, Digital recording and numerical reconstruction of holograms, Meas. Sci. Technol., 13: 85-101, 2002
    [16] M Sutkowski, M Kujawinska, Application of liquid crystal (LC) devices for optoelectronic reconstruction of digitally stored holograms, Optical and lasers in engineering, Vol.33:191-201, 2000
    [17]钟丽云,张以谟,吕晓旭等,数字全息中的一些基本问题分析,光学学报,Vol.24:465-471, 2004
    [18]石建平,陈旭南等,原子束计算全息技术的原理与实现,物理学报,Vol.52: 844-848, 2003
    [19]虞祖良,金国藩,计算机制全息图,清华大学出版社,1984
    [20] B R Brown, A W Lohmann, Complex spatial filtering with binary masks, Applied Optics, Vol.5:967-969, 1966
    [21] A W Lohmann, D P Paris, Binary Fraunhofer Holograms generated by computer, Applied Optics, 6(10):1739-1748, 1967
    [22] A W Lohmann, D P Paris, Computer generated spatial filters for coherent optical data processing, Applied Optics, Vol.7:651-655, 1968
    [23] B R Brown, A W Lohmann, Computer-generated binary holograms, IBM J.Res. Develop., 160-168, 1969
    [24] A W Lohmann, A Pre-History of Computer-Generated Holography, Optics and Photonics News, Vol. 19: 36-41, 2008
    [25]苏显渝,李继陶,信息光学,科学出版社,1999
    [26] J P Waters, Holographic image synthesis utilizing theoretical methods, Applied Physics Letters, Vol.9: 405-407, 1966
    [27] J J Burch, A computer algorithm for the synthesis of spatial frequency filters, Proc. IEEE, Vol. 55: 599-600, 1967
    [28] Y Ichioka, M Izumi, Y Suzuki, Scanning Halftone Plotter and Computer Generated Continuous Tone Hologram, Applied Optics, Vol.10, No.2: 403-411, 1971
    [29] L P Yaroslavsky, N S Merzlyakov, Methods of digital holography,Consultants Bureau, New York, 1980
    [30] W J Dallas, Computer Generated Holograms, the Computer in Optical Research, Vol. 41 of Springer series Topics in Applied Physics:291-366, 1980
    [31] D Leseberg, C Frere, Computer-generated holograms of 3-D objects composed of tilted planar segments, Applied Optics, Vol.27:3020-3024, 1988
    [32] T Tommasi, B Bianco, Spatial frequency analysis for the computer-generated holography of 3-D objects, Proc. SPIE, Vol.1507:136-141,1991
    [33] D Abookasis, J Rosen, Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints, Optical Society of America, Vol.20: 1537-1545, 2003
    [34] D Abookasis, J Rosen, Computer-Generated Three Types of Holograms of Three-Dimensional Objects Synthesized by Multiple Perspectives, Proc. IEEE 23rd, 254-257, 2004
    [35] D Abookasis, J Rosen, Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene, Applied Optics, Vol. 45, No. 25, 6533-6538 , 2006
    [36] Y Sando, M Itoh, T Yatagai, Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects, Opt. Lett., Vol.28: 2518-2520, 2003
    [37] Y Sando, M Itoh, T Yatagai, Color computer-generated holograms from projection images, Opt. Express, Vol.12:2487-2493, 2004
    [38] Y Sando, M Itoh, T Yatagai, Full-color computer-generated holograms using 3-D Fourier spectra, Opt. Express, Vol.12: 6246-6251, 2004
    [39] T Shimobaba, A Shiraki, N Masuda, et al., Electroholographic display unit for three-dimensional display by use of special-purpose computational chip for holography and reflective LCD panel, Opt. Express, Vol.13:4196-4201, 2005
    [40] V Sainov, E Stoykovaa, L Onuralb, et al., Trends in development of dynamic holographic displays, Proc. of SPIE, Vol. 6252:62521C-1-62521C-7, 2006
    [41] C W Slinger, C D Cameron, M Stanley, Computer-Generated Holography as a Generic Display Technology, IEEE Computer, Vol.38: 46-53, 2005
    [42] C W Slinger, C D Cameron, S D Coomber et al., Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization, Proc. SPIE, Vol.5290:27-41, 2004
    [43] M Lucente, Interactive holographic displays: the first 10 years, book chapter in Holography-The first 50 years, Springer Series in Optical Sciences, Vol. 78, 2004
    [44] M Lucente, Interactive computation of holograms using a look-up table, Journal of Electronic Imaging, Vol.2(1): 28-34, 1993
    [45] P Hariharan, Optical Holography: principles, techniques, and applications, Cambridge: Cambridge University Press, 1984
    [46] S C Kim, E S Kim, Effective generation of digital holograms of three–dimensional objects using a novel look-up table method, Applied Optics, Vol. 47, No.19: D55-D62, 2008
    [47] S C Kim, J H Yoon, S H Lee, et al., Fast computation of computer-generated holography using novel look-up table, Proceedings of SPIE, Vol.6695:66950L 2007
    [48] S C Kim, J K Lee, E S Kim, Fast Generation of Computer Generated Hologram with Reduced Look-up Table, Optical Society of America, in OSA Topical Meeting, Digital Holography and Three-Dimensional Imaging , 2007
    [49] T Ito, T Yabe, M Okazaki, et al., Special-purpose computer HORN-1 for reconstruction of virtual image in three dimensions, Comput. Phys. Commun., 82:104-110, 1994
    [50] T Ito, H Eldeib, K Yoshida, et al., Special-purpose computer for holography, HORN-2, Comput. Phys. Commun., 93:13-20, 1996
    [51] T Shimobaba, S Hishinuma and T Ito, Special-Purpose Computer for Holography HORN-4 with recurrence algorithm, Comput. Phys. Commun., 148/2:160-170, 2002
    [52] T Ito, N Masuda, K Yoshimura, et al., Special purpose computer HORN-5 for a real-time electroholography, Opt. Express, 13:1923-1932, 2005
    [53] L Ahrenberg, P Benzie, M Magnor, et al., Computer generated holography using parallel commodity graphics hardware, Optics Express, Vol.14:7636-7641, 2006
    [54] N Masuda, Computer generated holography using a graphics processing unit, Optics Express, Vol.14:603-608, 2006
    [55] M Lucente, Diffraction Specific fringe computation for electro-holography, Doctoral Thesis Dissertation, MIT Dpet of Electrical Engineering and Computer Science, 1994
    [56] M Lucente, Holographic bandwidth compression using spatial subsampling, Opt. Engineering,Vol.35, No 6:1529-1537,1996
    [57] M Lucente, Computational holographic bandwidth compression, IBM Systems Journal, Vol.35:349-365, 1996
    [58]柴晓冬,韦穗,基于离散衍射光的全息光栅的带宽压缩,光学学报,Vol.24: 304-308, 2004
    [59] M Kovachev, R Ilieva, L Onural, et al., Reconstruction of Computer Generated Holograms by Spatial Light Modulators, Springer-Verlag Berlin Heidelberg, Vol. 4105: 706-713, 2006
    [60] J S Kollin, S A Benton, M L Jepsen, Real-Time Display of 3-D Computed Holograms by Scanning the Image of an Acousto-Optic Modulator, Proc. SPIE, 1136:178-185, 1989
    [61] P S Hilaire, S A Benton, M Lucente, et al., Real-time holographic display: improvements using a multichannel acousto-optic modulator and holographic optical elements, Proc. SPIE Int. Soc. Opt. Eng., Vol. 1461: 254-261, 1991
    [62] P S Hilaire, S A Benton, M Lucente, et al., Color Images with the MIT Holographic Video Display, Proc. SPIE, 1667:73-84, 1992
    [63] M Lucente, P S Hilaire, S A Benton, et al., New approaches to holographic video, Proc. SPIE Int. Soc. Opt. Eng., Vol. 1732 :377-386, 1992
    [64] K Sato, Animated color 3D image using kinoforms by liquid crystal devices, J. Inst. Telev. Eng. Jpn., 48:1261-1266, 1994
    [65] K Maeno, N Fukaya, O Nishikawa, et al., ELECTRO-HOLOGRAPHIC display using 15MEGA pixels LCD, Proc.SPIE, 2652:15-13, 1996
    [66] T Ito, T Shimobaba, H Godo, et al., Holographic reconstruction with a 10-um pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light, Opt. Lett., Vol. 27:1406-1408, 2002
    [67] H D Zheng, Y J Yu, C X Dai, A novel three-dimensional holographic display system based on LC-R2500 spatial light modulator, Optik-International Journal for Light and Electron Optics, Elsevier, Vol. 2008
    [68] T Ito, K Okano, Color electroholography by three colored reference lights simultaneously incident upon one hologram panel, Opt. Express, Vol.12:4320-4325, 2004
    [69] T Shimobaba, A Shiraki, N Masuda, et al., An electroholographic colour reconstruction by time division switching of reference lights, J. Opt. A: Pure Appl. Opt., 9:757–760, 2007
    [70] A Georgiou, J Christmas, J Moore, et al., Liquid crystal over silicon device characteristics for holographic projection of high-definition television images, Appl. Optics, Vol. 47, No. 26: 4793-4803, 2008
    [71] D Dudley, W Duncan, J Slaughter, Emerging Digital Micromirror Device (DMD) Applications, Proc. SPIE, Vol.4985: 14-25, 2003
    [72] M L Huebschman, B Munjuluri, H R Garner, Dynamic Holographic 3-D Image Projection, Optics Express, Vol. 11, No 5: 437-445, 2003
    [73] B Munjuluri, M L Huebschman, H R Garner, Rapid hologram updates for real-time volumetric information displays, Appl. Optics, Vol. 44, No. 24: 5076-5085, 2005
    [74]张北晨,张之江,于瀛洁,数字全息光电再现中像的大小调整方法的研究,光子学报,Vol. 37, No. 1: 129-132,2008
    [75]王大鹏,韦穗,数字微镜器件在视频全息中的应用,光学学报,Vol. 28: 50-55, 2008
    [76] D Kahn, The History of Steganography, Proceedings of the First International Workshop on Information Hiding, Lecture Notes In Computer Science, Vol.1174: 1-5, 1996
    [77] H Podbielska, J Kobel, Review of optical techniques for protection of documents and otherobjects, Proc. SPIE, Vol. 4535: 93-97, 2001
    [78] B Javidi, Securing information by use of digital holography, Opt. Lett., Vol.25 (1): 28-30, 2000
    [79] P Refregier, B Javidi, Optical image encryption based on input plane and Fourier plane random encoding, Optics Letters, Vol. 20(7): 767-769, 1995
    [80] L G Neto, Y Sheng, Optical implementation of image encryption using random phase encoding, Opt. Eng., Vol. 35: 2459-2463, 1996
    [81] G Unnikrishnan, J Joseph, K Singh, Optical encryption by double random phase encoding in the fractional Fourier domain, Opt. Lett., Vol. 25(12): 887-889, 2000
    [82] S Kishk, B Javidi, Information hiding technique with double random phase encoding, Appl. Opt., Vol.41(26):5462-5470, 2002
    [83] S Kishk, B Javidi, Watermarking of three-dimensional object by digital holography, Opt . Lett . , Vol.28 (3): 167-169, 2003
    [84] S Kishk, B Javidi, 3D object watermarking by a 3D hidden object, Optics Express, Vol.11:874-888, 2003
    [85] X F Meng, L Z Cai, M Z He, et al., Cross-talk free image encryption and watermarking by digital holography and random composition, Optics Communications, Vol.269:47-52, 2007
    [86] X F Meng, L Z Cai, M Z He, et al., Cross-talk-free double-image encryption and watermarking with amplitude-phase separate modulations, J. Opt. A: Pure Appl. Opt., Vol. 7: 624-631, 2005
    [87] L Z Cai, M Z He, Q Liu, et al., Digital Image Encryption and Watermarking by Phase-Shifting Interferometry, Applied Optics, Vol. 43:3078-3084, 2004
    [88] Y S Shi, G H Situ, J J Zhang, Optical image hiding in the Fresnel domain, J. Opt. A: Pure Appl. Opt., Vol.8:569-577, 2006
    [89] H Zhang, L Z Cai, X F Meng, et al., Image watermarking based on an iterative phase retrieval algorithm and sine–cosine modulation in the discrete-cosine-transform domain, Optics Communications, Vol.278:257-263, 2007
    [90] X Zhou, J G Chen, Information hiding based on double-random phase encoding technology, Journal of Modern Optics, Vol.53: 1777-1783, 2006
    [91] L NShen, J Li, H S Chang, Double-image encryption based on joint transform correlation and phase-shifting interferometry, Chinese Optics Letters, Vol.5: 687-689, 2007
    [92] H Kim, D H Kim, Y H Lee, Encryption of digital hologram of 3-D object by virtual optics, Optics Express, Vol.12: 4912-4921, 2004
    [93] H Kim, Y H Lee, Optimal watermarking of digital hologram of 3-D object, Optics Express, Vol.13: 2881-2886, 2005
    [94] X Peng, Z Y Cui, T Tan, Information encryption with virtual-optics imaging system, Opt. Commun., Vol.212: 235-245, 2002
    [95]彭翔,张鹏,牛憨笨,基于虚拟光学的三维空间数字水印系统,光学学报, Vol.24: 1507-1510, 2004
    [96] S G Deng, L R Liu, H T Lang, et al., Watermarks encrypted in the cascaded Fresnel digital hologram, Optik, 118:302-305, 2007
    [97] Y Aoki, Watermarking technique using computer-generated holograms, electronics and communications in Japan, part III - fundamental electronic science, Vol.84: 21-31, 2001
    [98] N Takai, Y Mifune, Digital watermarking by a holographic technique, Applied Optics, Vol.41(5): 865-873, 2002
    [99] H T Chang, C L Tsan, Image watermarking by use of digital holography embedded in the discrete cosine transform domain, Applied Optics, Vol.44(29):6211-6219, 2005
    [100]尉迟亮,顾济华,刘薇等,基于数字全息及离散余弦变换的图像数字水印技术,光学学报,Vol.26(3): 355-361, 2006
    [101]刘晓珂,苏显渝,基于图像部分加入的数字全息水印技术,光子学报,Vol.37: 740-744, 2008
    [102] M Liu, G LYang, H Y Xie, et al., Computer-generated hologram watermarking resilient to rotation and scaling, Optical Engineering, Vol. 46(6):060501, 2007
    [103]孙刘杰,庄松林,双随机相位加密同轴傅里叶全息水印防伪技术,光学学报,Vol.27(4):621-624, 2007
    [104] L J Sun, S L Zhuang, Watermarking by encrypted Fourier holography, Opt. Eng., Vol. 46:085801, 2007
    [105]黄清龙,刘建岚,基于菲涅耳全息图和离散余弦变换的“盲数字水印”技术,光子学报,Vol.36(12):2261-2265, 2007
    [106]位恒政,彭翔,张鹏,基于菲涅耳数字全息的水印技术,系统仿真学报,Vol.19: 5351-5354, 2007
    [107] O E Okman, G B Akar, Quantization index modulation-based image watermarking using digital holography, J. Opt. Soc. Am. A, Vol.24:243-252, 2007
    [108] C J Cheng, L C Lin, W T Dai, Construction and detection of digital holographic watermarks, Optics Communications, 248:105-116, 2005
    [109] United States Patent 6775393 (Filing date: April 23, 2001. Publication date: August 10, 2004)
    [110] A Miniewicz, A Gniewek, J Parka, Liquid crystals for photonic applications, Optical Materials, Vol.21:605-610, 2002
    [111]王丽,液晶光调制器的调制特性及应用研究,现代显示,Vol.85:41-43, 2008
    [112] I J Cox, M L Miller, Digital Watermarking, New York: Academic Press, 248-253, 2002
    [113] Q Cheng, T Huang, Robust optimum detection of transform domain multiplicative watermarks, IEEE Trans. Signal Process, Vol. 51:906-924, 2003
    [114] P Moulin, R Koetter, Data- hiding codes, Proceedings of the IEEE, Vol. 93(12): 2083-2126, 2005
    [115] C I Podilchuk, E J Delp, Digital watermarking: algorithms and application, IEEE Signal Process. Mag., Vol. 18, 33-46, 2001
    [116] V M Potdar, S Han, E Chang, A survey of digital image watermarking techniques, 2005 3rd IEEE International Conference on Industrial Informatics, 709-716, 2005
    [117]冯雪,朱新山,汤帜,多媒体数字水印技术研究进展,计算机工程与应用,Vol.43( 13): 1-6, 2007
    [118]杨义先,钮心忻,多媒体信息伪装综论,通信学报, 23(5): 32-38, 2002
    [119]孙圣和,陆哲明,牛夏牧,数字水印技术及应用,科学出版社,2004
    [120] S Wang, X Zhang, T Ma, Image Watermarking using Dither Modulation in Dual-Transform Domain, Journal of Imaging Society of Japan, Vol.41:398-402, 2002
    [121] F A P Petitcolas, Watermarking schemes evaluation, IEEE Signal Processing, Vol. 17, No. 5: 58-64, 2000
    [122] F A P Petitcolas, M Steinebach, F Raynal, et al., A public automated web-based evaluation service for watermarking schemes: StirMark Benchmark, Proceedings of SPIE, Vol. 4314: 22-26, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700