基于二维LED屏旋转的体显示系统及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体显示技术将三维图像描绘在一个真实的三维空间内而非二维表面上,由此产生的体图像具有与现实世界三维物体相似的大部分特性,能够呈现所有视点信息,允许多人直接从不同方位同时观看,允许用户随意走动并且总能接收到维持图像三维外观的视觉深度暗示,能够促使对数据三维形态、空间分布和动态特性等的快速、准确感知,因而这一技术在气象分析、医学成像和空中交通控制等领域中具有广阔的应用前景。
     本论文对基于二维LED屏旋转的体显示技术进行了系统的研究,内容涵盖其理论设计、建模仿真、系统实现、系统优化、实验论证和特性分析等各个方面,取得了良好的阶段性进展,部分成果对基于其它二维有源屏旋转的体显示技术直接适用。
     建立了LED体显示仿真模型和软件仿真平台。分析了LED寻址模式、体素属性和LED屏特性对三维再现质量及系统整体性能的影响,为LED体显示系统的成功建立和后续性能评价奠定了重要的理论基础。研究结果表明,利用当前小尺寸LED器件的高速电光响应特性,配合高速的旋转扫描和矩阵寻址技术,并采用具有致密LED阵列的薄的平面显示屏,能显著减小因LED时序寻址和屏幕旋转而导致的体素位置偏差,得到具有良好的体素属性、能如实表述原始图像三维特性的体图像。
     在上述仿真基础上构建了LED体显示实验系统。完成了从体三维数据生成、透视模拟显示、图像数据传输、信号寻址控制到图像真实再现的整套流程。系统能显示包含839万体素的全方位可视图像,能对LED进行256级亮度调制以显示体三维灰度图像。既验证了利用旋转的二维LED屏进行体显示的可行性,又为以后显示体三维彩色图像奠定了基础,同时为LED体显示特性的进一步研究提供了有效的实验平台。系统具有整体结构简单、数据处理量适中、体图像分辨率能模块化扩展等优点。
     论文首次从三维空间的角度,系统地研究、分析了体显示各种特性与显示系统结构及发光器件光电性能之间的关系。论述了因LED屏配光曲线不理想引起的体素亮度差异,观察了因LED屏转速变化导致的体图像被压缩现象以及因LED屏偏轴旋转引起的体图像“近小远大”畸变。研究了影响图像点再现率和体素增长率的因素,分析了图像点和体素之间位置映射偏差的统计规律性,据此筛选出合适的系统参数值。针对体素位置和密度分布不均匀问题,提出了一种以加载在图像空间内的具有均匀点距的三维阵列为基准,按照设定的基准点相邻间距和位置偏差容许值来取舍体素以便得到均匀布局的方法,为真实空间三维显示技术的研究奠定一定的基础。
     实验表明,这些模型分析与系统研究,对消除因重复映射和体素位置重叠导致的图像局部过亮现象,减小随定位方式变化而变化的图像再现差异,以及克服三维显示中特有的显示空间误差等都具有很好的指导作用。
Volumetric display technique depicts three-dimensional (3D) images within an actual 3D space rather than upon a two-dimensional (2D) surface. The volumetric images created consequently have most characteristics similar to real-world 3D objects, providing all perspectives at once and allowing a group of viewers to directly perceive from different orientations simultaneously without the need of wearing any visual aids. Viewers can walk at will yet still receive visual depth cues to maintain the 3D appearance of images. Volumetric display technology can result in fast and accurate perception of the 3D form, spatial distribution and dynamic properties of image data, hence it has the potential to be widely used in such applications as meteorology analysis, medical imaging and air traffic control, etc.
     In this paper, a volumetric display technique based on the rotation of a 2D LED panel is systematically studied, concerning the theoretical design, modeling simulation, system realization, system optimization, experimental discussion and characteristics analysis, etc. Considerable staggered progress has been made. Part of this research is applicable to the volumetric display technique based on the rotation of other 2D active panels.
     A simulated model and a software platform of LED volumetric display system are set up in the computer. The influence of the addressing mode of LED, the attributes of voxels and the characteristics of LED panel on the reconstructed 3D image quality and the overall system performance are analyzed. These analyses provide an important theoretical basis for the successful establishment of a volumetric display system and its performance evaluation in succession. The research shows that in the case of using small LED devices of high-speed electrooptic response characteristic, adopting techniques of quick scanning and matrix addressing of a rotating thin panel which comprises a compact LED array, the position error of voxel due to the sequential addressing of LEDs and the rotation of the panel can be reduced significantly, consequently a volumetric image which has good voxel attributes and is capable of faithfully depicting the 3D characteristics of the original image will be generated.
     LED volumetric display experimental systems are set up based on the above-mentioned simulation. The whole process of generating volumetric 3D data, emulating a perspective display, transfering image data, addressing the LEDs and reconstructing a volumetric image are presented. One of the two experimental systems is capable of displaying images that consist of about 8.39 million voxels and can be viewed from nearly any arbitrary angle. The other is able to modulate the brightness of LED into 256 levels to display volumetric 3D gray images. The implementions of these systems have not only proved the feasibility of achieving volumetric 3D display based on the rotation of a 2D LED panel, but also establish the possibility of displaying volumetric color images in the futurer. In addition, they provide effective experimental platforms upon which the characteristics of LED volumetric display may be studied. The main advantages of these two systems are as follows. The system structure is simple and compact, the requirements of data processing are moderate, and the volumetric image display resolution is scalable, etc.
     The relationship of volumetric display characteristics to the system structure and the optoelectrical characteristics of the light emitting device is first studied systematically from the aspect of 3D space. The brightness difference among voxels result from the undesirable distribution curve flux of the LED panel is analyzed. The image shrink due to the variations in the LED panel's rotational speed, and the image distortion that the nearer objects seems smaller caused by an off-axis rotating LED panel are observed. In order to single out suitable values of system parameters, factors that impact on the reconstruction percent of image points and the increment percent of voxels, along with statistical rules of the position mapping error between image points and voxels are discussed. To solve the problems involved in the inhomogeneous voxel placement and density, we put forward a method based on a homogeneous quadrate 3D array. Through keeping or abandoning potential voxel positions according to the predefined space of array pixels and the position error tolerance, voxel placement can be made almost uniform. These contents have laid a considerable basis for the researches of the 3D display technology in the real space.
     Experimental results show that the above-mentioned model analyses and system reseaches provides good guidelines for eliminating the phenomenon of the localized image areas are excessively brighter than the other areas due to duplicate mapping and overlap of voxels, overcoming the variations in image reconstruction effects with the changes of the image orientation, and reducing the exclusive spatial display error in 3D display.
引文
[1](美)卡洛琳·布鲁墨著,张功矜译.视觉原理.北京:北京大学出版社,1987,pp.46,75
    [2]周昌乐.无心的机器.长沙:湖南科学技术出版社,2000,pp.31,15,26,28,20
    [3]章明.视觉认知心理学.上海:华东师范大学出版社,1991,p.2
    [4]路耀华.思维模拟与知识工程.北京:清华大学出版社,1997,p.129
    [5]C.D.Wickens.Three-dimensional stereoscopic display implementation:Guidelines derived from human visual capabilities.Proceedings of SPIE,1990(1256),pp.2-11
    [6]P.B.Luis.Human factors involved in perception and action in a natural stereoscopic world:an up-to-date review with guidelines for stereoscopic displays and stereoscopic virtual reality.Proceedings of SPIE,2001(4297),pp.251-275
    [7]蔡履中,刘华光.光学三维显示技术.现代显示,1996(17),3(1),pp.39-54
    [8]侯春萍,俞斯乐.一种平面图像立体化的新方法.电子学报,2002(30),12(12),pp.1861-1864
    [9]王元庆.自由立体显示器的应用与现状.现代显示,2003(24),2(1),pp.38-41
    [10]丁明跃,杨丽霞.三维立体成像及其应用.电子学报,1995(23),10(10),pp.124-128
    [11]赵国英,陈世红.裸眼可视立体技术的发展概况.北方工业大学学报,2002(14),3(1),pp.51-56
    [12]李克斌,李世其.3D显示技术的最新研究进展.计算机工程,2003(29),7(12),pp.179-181
    [131伊大成.最新的立体显示器技术窥视.电子制作,2002,3,pp.41-42
    [14]N.A.Dodgson.Autostereo displays:3D without glasses.EID'97(Electronic Information Displays),Esher,Surrey,1997,11
    [15]Z.J.Wartell.Stereoscopic head-tracked displays:analysis and development of display algorithms.Ph.D.dissertation,Georgia Institute of Technology,2001
    [16]S.J.Battersby,H.Heath.Autostereosopic display apparatus.U.S.Patent 6069650,2000
    [17]I.Saxton,P.Surman.Stereoscopic and autostereoscopic display systems.IEEE Signal Processing Magazine,1999,pp.85-89
    [18]H.Hoshino,F.Okano,H.Isono,et al.Analysis of resolution limitation of integral photography.Journal of Optical Society of AmericaA,1998(15),pp.2059-2065
    [19]于美文.光学全息及信息处理.北京:国防工业出版社,1984,p.1
    [20]P.Hariharan.Basics of Holography.Cambridge University Press,2004
    [21]J.Yan.Three-dimensional display systems implemented with a micromirror array.Ph.D.dissertation,University of Alabama in Huntsville,1999
    [22]王辉,应朝福,万旭,等.数字全息显示中的三维物体信息量及其压缩.中国激光.2003(30),9(9),pp.823-828
    [23]刘守.光全息术最新研究动向及应用.厦门大学学报(自然科学版).2001,2,pp.277-282
    [24]谢敬辉,孙萍.全息术的新进展.北京理工大学学报,2003(23),4(2),PP.133-142
    [25]P.S.Hilaire,S.A.Benton,M.Lucente.Real-time holographic display:Improvement using a multichannel acousto-optic modulator and holographic optical elements.Proceedings of SPIE.1991(1461),pp.254-261
    [26]S.A.Benton,J.S.Kollin.Three-dimensional display system.U.S.Patent 5172251,1992
    [27]P.S.Hilaire.Scalable optical architecture for electronic holography.Optical Engineering,1995(34),pp.2900-2911
    [28]M.L.Huebschrnan,B.Munjunluri,H.R.Garner.Dynamic holographic 3-D image projection.Optics Express,2003(11),3(5),pp.437-445
    [29]李颖,薛海斌,朱伯立,等.OpenGL技术应用实例精粹.北京:国防工业出版社,2001,pp.42
    [30]M.C.Carswell,C.D.Wickens.Information integration and the object display:an integration of task demands and display superiority.Ergonomics,1987(30),3,pp.511-527
    [31]M.W.McGreevy,S.R.Ellis.Direction judgment errors in perspective displays.20th annual conference on manual control,Ames research center,Moffett Field,Ca,1984
    [32]M.W.McGreevy,C.R.Ratzlaff,S.R.Ellis.Virtual space and two-dimensional effects in perspective displays,Proceedings of the 21st annual conference on manual control,NASA Conference Publication 2428,Moffett Field,Ca,June 1985
    [33]A.J.Grunwald,S.R.Ellis,S.Smith.Spatial orientation from pictorial perspective displays.22nd annual conference on manual control,Dayton,Ohio,July 1986
    [34]A.J.Grunwald,S.R.Ellis.Interactive orbital proximity operations planning system.Proceedings of the 1988 IEEE conference on systems man and cybernetics,Peking,China,August 1988
    [35]M.W.McGreevy,S.R.Ellis.The effect of perspective geometry on judged direction in spatial information instruments.Human Factors,1986(28),pp.439-456
    [36]C.D.Wickens,S.Todd,K.Seiler.Three-dimensional displays:Perception,implementation,and applications,CSERIAC SOAR 89-001 Technical Report,Wright-Patterson AFB,Ohio,1989
    [37]M.G.Eley.Determining the shapes of landsurfaces from topographical maps,Ergonomics,1989(31),pp.355-376
    [38]S.N.Roscoe,L.Corl,R.S.Jensen.Flight display dynamics revisited.Human Factors,1981(23),pp.341-353
    [39]S.R.Ellis,M.W.McGreevy,R.J.Hitchcock.Perspective traffic display format and airline pilot traffic avoidance.Human Factors,1987(29),pp.371-382
    [40]C.D.Wickens,I.Haskell,K.Harte.Ergonomic design for perspective flight-path displays.IEEE Control Systems Magazine,1989(9),pp.3-8
    [41]刘慎权,李华,唐卫清,等.可视化技术及其发展前景述评,CT理论与应用研究,1995(4),2(1),pp.7-9
    [42]D.Bahr,K.Langhans,D.Bezecny,et al.FELIX:a volumetric 3D imaging technique.Proceedings of SPIE,1997(3101),pp.202-209
    [43] B. G. Blundell, A. J. Schwarz. Volumetric three-dimensional display systems. New York: John Wiley & Sons, Inc., 2000
    
    [44] K. F. Van Orden, J. W. Broyles. Visuospatial task performance as a function of two- and three-dimensional display presentation techniques. Displays. 2000,12, pp. 17-24
    
    [45] G. E. Favalora, D. C. Lewis. Spatial 3D: the end of flat-screen thinking. Actuality Systems, Inc. whitepaper, 2003, 7, pp.1-9
    
    [46] G. Russell, Volumetric visualization of scientific data, Ph. D. dissertation, Princeton University, 1989
    
    [47] M. Halle. Autostereoscopic displays and computer graphics. Computer Graphics, 1997(31), 5 (2), pp.58-62
    
    [48] B. G. Blundell, A. J. Schwarz. The classification of volumetric display systems: characteristics and predictability of the image space. IEEE transactions on visualization and computer graphics, 2002 (8), 1 (1), pp.66-75
    
    [49] A. J. Schwarz, B. G. Blundell. Considerations for accurate voxel positioning on a rotating-screen volumetric display system. IEE Proceeding-Optoelectron., 1994 (141), 10 (5), pp.336-344
    
    [50] E. Luzy, C. Dupuis. Procede pour obtenir des projections en relief. French Patent 461600, 1914
    [51] C. Fuchtbauer. Excitation of mercury spectral lines. Z. Phys., 1920 (21), pp.635-638
    
    [52] R. W. Wood. Controlled orbital transfer of electrons in optically excited mercury atoms. Proc. R. Soc. London, 1924 (106), pp.679-694
    
    [53] F. S. Howell. Three-dimensional indicator tube and circuit therefore. U.S. Patent 2604607, 1952
    
    [54] R. Zito. Rate analysis of multiple-step excitation in mercury vapor. Journal of Applied Physics, 1963 (34), pp.1535-1543
    
    [55] J. Fajans. Luminous spot display device. U.S. Patent 3123711,1964
    
    [56] M. R. Brown, G. S. Waters. Three-dimensional visual display systems. U.S. Patent 3474248, 1969
    
    [57] M. A. Dugay, J. A. Giordmaine, P. M. Rentzepis. Display system using two-photon fluorescent materials. U.S. Patent 3541542,1970
    
    [58] J. D. Lewis, A. H. Adelman. Method and apparatus for generating three-dimensional patterns. U. S. Patent 3609707, 1971
    
    [59] R. H. Barnes, C. E. Moeller, J. F. Kircher, et al. Two-step excitation of fluorescence in iodine monochloride vapor. Applied Physics Letters, 1974 (24), pp.610-612
    
    [60] W. K. Swainson. Method, media and apparatus for producing three-dimensional figure product. U.S. Patent 4041476, 1977
    
    [61] W. G. Rowe. Three-dimensional display devices. U.S. Patent 4063233, 1977
    [62] E. Korevaar. Three-dimensional display apparatus. U.S. Patent 4881068, 1989
    
    [63] D. L. Macfarlane, G. R. Schultz, P. D. Higley et al. Voxel-based spatial display. Proceedings of SPIE, 1994 (2177), pp. 196-202
    
    [64] E. A. Downing, L. Hesselink, R. M. Macfarlane, et al. A solid-state three-dimensional upconversion display. Nonlinear Optics: Materials, Fundamentals, and Applications, IEEE, 1994, 7, pp.409-411
    [65]T.Honda,T.Doumuki,A.Akella,et al.One-color one beam pumping of Er(3+)-doped ZBLAN glasses for a 3D two-step excitation display.Optics Letters,1998(23),14(14),pp.108-110
    [66]陈晓波,张光寅,李美仙,等.三维立体显示--频率上转换研究的新进展.光谱学与光谱分析.1998(18),6(3),pp.257-260
    [67]E.J.Whitesell,R.Scheps.Three dimensional volumetric display.U.S.Patent 6466184,2002
    [68]K.Langhans,C.Guill,E.Rieper,et al.SOLID FELIX:a static 3D-laser display.Proceedings of SPIE,2003(5006),pp.161-174
    [69]M.S.Leung,N.A.Ives,G.Eng.Three-dimensional real-image volumetric display system and method.U.S.Patent 5745197,1998
    [70]R.S.Gold,J.E.Freeman.Layered display system and method for volumetric presentation.U.S.Patent 5813742,1998
    [71]A.Sullivan.Multi-planar volumetric display system and method of operation.U.S.Patent 6100862,2000
    [72]M.Ruderfer.Apparatus for producing three-dimensional visual patterns.U.S.Patent 2749480,1956
    [73]E.J.Whitesell.Electroluminescent arrays layered to form a volumetric display.U.S.Patent 5929572,1999
    [74]I.Kim,E.Korevaar,H.Hakakha.Three-dimensional volumetric display in rubidium vapor.Proceedings of SPIE,1996(2650),pp.274-284
    [75]E.A.Downing,L.Hesselink,J.Ralston,et al.A three-color,solid-state,three-dimensional display.Science,1996(273),30,pp.1185-1189
    [76]B.G.Blundell,A.J.Schwarz,D.K.Horrell.Volumetric three-dimensional display systems:their past,present and future.Engineering and Education Journal,1993(10),pp.196-200
    [77]E.L.Withey.Cathode-ray tube adds third dimension.Electronics Engineering Edition,1958,5,pp.81-83
    [78]M.Martin.Three-dimensional fiber optic display.U.S.Patent 3604780,1971
    [79]E.A.Woloshuk,G.J.Walz,R.O.Kretzschmar.3-D display apparatus.U.S.Patent 4294523,1981
    [80]C.C.Tsao,J.Chen.Moving Screen Projection:a new approach for volumetric three-dimensional imaging.Proceedings of SPIE,1996(2650),pp.254-261
    [81]E.J.Parker,P.A.Wallis.Three-dimensional cathode-ray tube displays.The Journal of the Institution of Electrical Engineers,1948(95),pp.371-390
    [82]Author unknown.New display gives realistic 3-D effect.Aviation Week,1960,10,pp.66-67
    [83]M.Hirsch.Three dimensional display apparatus.U.S.Patent 2967905,1961
    [84]R.J.Schipper,J.L.Coddington.Three-dimensional display.U.S.Patent 3097261,1963
    [85]R.D.Ketchpel.Three-dimensional cathode ray tube.U.S.Patent 3140415,1964
    [86]E.P.Berlin.Three-dimensional display.U.S.Patent 4160973,1979
    [87]P.Nicolas.Rotary screen for receiving optical images particularly advertising images.U.S.Patent 4160973,1982
    [88] F. Garcia. Three dimensional color display and system. U.S. Patent 4871231,1989
    
    [89] D. J. Solomon. Three-dimensional volumetric display system. U.S. Patent 4983031,1991
    
    [90] R. G. Batchko. Rotating flat screen fully addressable volume display. U.S. Patent 5148310, 1992
    
    [91] C. C. Tsao, J. Chen. Volumetric display by Moving Screen Projection with a fast-switching spatial light modulator. Proceedings of SPIE, 1998 (3296), pp. 191-197
    
    [92] G. E. Favalora. Multiplanar autostereoscopic imaging. U.S. Patent 5936767,1999
    
    [93] G. E. Favalora, D. M. Hall, M. G. Giovinco, et al. A multi-megavoxel volumetric 3D display system for distributed collaboration. Presented at the "Application of Virtual Reality Technologies for Future Telecommunication System" workshop, a part of IEEE Globecom 2000 Conference, 2000,11
    
    [94] 林远芳,刘旭,刘向东,等. 基于旋转二维发光二极管陈列的体显示系统. 光学学报, 2003 (23), 10(10), pp.1158-1162
    
    [95] D. W. Perkins. 3-D display. Space/Aeronautics, 1962,9, pp.60-67
    
    [96] R. L. de Montebello. Optical dissector. U.S. Patent 3428393, 1969
    
    [97] W. D. Chase. Full color hybrid display for aircraft simulators. U.S. Patent 4055004,1977
    
    [98] U. Brinkmann. A laser-based 3-D display. Lasers & Applications, 1983 (2), 3 (3), pp.41-42
    
    [99] R. A. Morton. Three dimensional display system. U.S. Patent 4922336, 1990
    
    [100] R. D. Williams, D. Donohoo. Image quality metrics for Volumetric laser displays. Proceedings of SPIE. 1991 (1457),pp.210-220
    
    [101] P. Soltan, J. Trias, W. Robinson, et al. Laser based 3-D volumetric display system. Proceedings of SPIE, 1992 (1664), pp.177-187
    
    [102] D. Bahr, K. Langhans, M. Gerken, et al. FELIX: A volumetric 3D laser display. Proceedings of SPIE, 1996 (2650), pp.265-273
    
    [103] Z. J. Geng. Method and apparatus for high resolution 3D display. U.S. Patent 6064423,2000
    
    [104] G. E. Favalora, J. Napoli, D. M. Hall, et al. 100 Million-voxel volumetric display. Proceedings of SPIE. 2002 (4712), pp.300-312
    
    [105] K. Langhans, D. Bezecny, D. Homann, et al. New portable FELIX 3D display. Proceedings of SPIE, 1998 (3296), pp.204-216
    
    [106] M. Lasher, P. Soltan, W. Dahlke, et al. Laser projected 3-D volumetric displays. Proceedings of SPIE, 1996 (2650), pp.285-295
    
    [107] K. Langhans, D. Bahr, D. Bezecny, et al. FELIX 3D display: an interactive tool for volumetric imaging. Proceedings of SPIE, 2002 (4660), pp. 176-190
    
    [108] R. D. Williams, F. L. Wefer, T. E. Clifton. Direct volumetric visualization. IEEE, 1992, pp.99-106
    
    [109] P. Soltan, M. Lasher, W. Dahlke, et al. Improved second-generation 3-D volumetric display system. Technical Report 1763, Space and Naval Warfare Systems Center, San Diego, CA 92152-5001, 1998
    [1]林远芳,刘旭,刘向东,等.基于旋转二维发光二极管阵列的体显示系统.光学学报,2003(23),10(10),pp.1158-1162
    [2]Y.F.Lin,X.Liu,Y.Yao,et al.Key factors in the design of volumetric 3D emissive display system.Proceedings of SPIE,2004(5632),pp.147-154
    [3]林远芳,张晓洁,徐韡,等.体显示中点阵扫描模式对体素方位的影响.浙江大学学报(工学版),2005(39),8(8),pp.1273-1276
    [4]林远芳,刘向东,刘旭,等.基于二维旋转屏的体显示系统像素属性分析.光子学报,2004(33),4(4),pp.476-479
    [5]林远芳,刘旭,刘向东,等.利用旋转发光屏再现三维图像及其偏差分析.光电工程,2004(31),5(5),pp.64-67
    [1]Y.F.Lin,X.Liu,X.J.Zhang,et al.Volumetric 3D display system based on rotating dot-matrix LEDs.Asia Display / IMID'04 Digest,2004,pp.440-441
    [2]Y.Yao,X.Liu,Y.F.Lin,et al.Data acquirement and remodeling on volumetric 3D emissive display system.Proceedings of SPIE,2004(5632),pp.184-191
    [3]乔林,费广正,林杜,等.OpenGL程序设计.北京:清华大学出版社,2000,pp.67-69,196-212
    [4]李颖,薛海斌,朱伯立,等.OpenGL技术应用实例精粹.北京:国防工业出版社,2001,pp.5,14,32,36,140-143
    [5](美)R.S.Wrigrit,M.Sweet著,潇湘工作室译.OpenGL超级宝典.北京:人民邮电出版社,2001.pp.120-122
    [6]雷勇.3D Studio MAX综合使用.北京:人民邮电出版社,2000,pp.99,169-174,229-234
    [7]张晓洁,林远芳,刘旭,等.基于时序效应的空间三维显示系统.仪器仪表学报(增刊),2003(24),8(4),pp.217-219
    [1]雷勇.3D Studio MAX综合使用.北京:人民邮电出版社,2000,p.100
    [2](美)D.Hanselman,B.Littlefield著.张航,黄攀译.精通MATLAB 6.北京:清华大学出版社,2002,Pp.199-212
    [3]沈恒范.概率论讲义.北京:高等教育出版社,1991,pp.59,78
    [4]林远芳,刘向东,刘旭,等.基于二维旋转屏的体显示系统像素属性分析.光子学报,2004(33),4(4),pp.476-479
    [5]李颖,薛海斌,朱伯立,等.OpenGL技术应用实例精粹.北京:国防工业出版社,2001,p.45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700