基于颗粒与流体耦合作用的被动式微流控芯片设计理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微流控芯片系统近十年来在医学、生物和环境领域得到广泛应用。针对生物颗粒与细胞的检测,微流控芯片具有灵敏度高、试剂耗费低、方便携带、便于现场检测等优点。微流控芯片中对颗粒控制的方式分为主动式与被动式两种,其中被动式微流控芯片利用结构与流体交互作用对微米级尺度下流道内的流体运动与颗粒进行精确控制。本论文根据被动式微流控芯片控制方式的不同,研究了三种被动式微流控芯片。
     随着雷诺数的增加流场中颗粒的惯性效应逐渐增强,因此惯性升力可以应用于高通量颗粒汇聚与分离。为了分析惯性微流体芯片对颗粒控制作用,本论文提出流场内颗粒拟稳态计算模型,颗粒旋转角速度与流场速度和压强耦合求解。本文首先分析二维流场中的颗粒受力状态,针对不同的雷诺数流场,通过参数扫描算法获得颗粒的受力平衡位置。在二维算例的基础上,进一步分析了球形颗粒在三维流场中的受力与平衡状态。此方法的优点在于颗粒平衡位置的求解仅需要网格在单维方向上进行变形,因此网格畸变可控,数值计算量小,平衡点位置较为精确。
     液泳微流控芯片利用空间结构改变流场压力分布,进而改变颗粒表面受力。为了获得液泳微流控芯片中的颗粒轨迹,提高其对颗粒的汇聚效果,本文采用任意拉格朗日欧拉法(ALE)计算颗粒在液泳芯片的运动情况,系统分析了颗粒与管壁的交互作用,并通过实验验证了数值模拟的正确性。由于通过高速相机不能获得颗粒在流道深度方向上的运动轨迹,因此基于ALE的数值轨迹计算对于颗粒流芯片的设计具有重要的应用价值。通过详细对比颗粒轨迹与流线,表明仅在液泳芯片垂直面中心处流线可以替代垂直面中心处颗粒流固耦合计算。为了减少计算成本,本论文基于Faxen定律提出一个无量纲优化目标来优化障碍尺寸参数,设计了颗粒快速汇聚微流控芯片,其设计误差小于5%。
     收缩扩张结构能够对流体和颗粒产生惯性力与迪安(Dean)力作用,从而改变流体与颗粒的运动状态。本文首次采用拓扑优化方法对收缩扩张结构进行优化,并根据优化所得拓扑结构,提出由简单几何布尔运算构成的侧流结构,并依据此结构进行了单层混合器设计。依据混合单元,提出了三种不同的单元串行排列方式,探讨各自的混合效率随雷诺数的变化趋势。数值计算结果表明,优化后混合器相对原始的收缩扩张结构混合器可以在较大的雷诺数范围内实现混合效率为0.05。
The microfluidic system is wildly used in the field of biology, medical science,and environment science. In the past few years, it has gained significant advances. Thepassive microfluidic chips use the interaction between channel wall and hydrodynamicsto control the movement of particle. In this thesis, three types of the passive microflu-idic chips are discussed in succession.
     The inertia effect on the particle is strong when the Reynolds number is high.Therefore, the inertia lift force can be used for the high through separation and focus-ing. In order to know how to manipulate the particle by the inertia effect, the hypo-stable state mold is proposed which couples the particle movement and fluid field. Inthis thesis, the force on the particle in the2D fluid field is analyzed. And also, the pa-rameter sweep method is used to find the equilibrium position for difference Reynoldsnumbers. Furthermore, the equilibrium position and the force on the particle in the3Dfluid is analyzed based on the method for the2D mold. The mesh only deform in onedirection when the equation is solved to find the equilibrium position. So the meshdistortion can be easily controlled and the computational cost is low.
     For passive sheathless particles focusing in microfluidics, the equilibrium posi-tions of particles are typically controlled by micro channels with a V-shaped obstaclearray (VOA). The design of the obstacles is mainly based on the distribution of flowstreamlines without considering the existence of particles. We report an experimentallyverified particle trajectory simulation using the arbitrary Lagrangian-Eulerian (ALE)fluid-particle interaction method. The particle trajectory which is strongly influenced by the interaction between the particle and channel wall is systematically analyzed.The numerical experiments show that the streamline is a good approximation of parti-cle trajectory only when the particle locates on the center of the channel in depth. Asthe advantage of fluid-particle interaction method is achieved at a high computationalcost and the streamline analysis is complex, a heuristic dimensionless design objectivebased on the Faxen’s law is proposed to optimize the VOA devices. The optimizedperformance of particle focusing is verified via the experiments and ALE method.
     The contraction and expansion structure has the capability to twist flow streamlinevia the Dean and inertia effects. In this thesis, the topology optimization method isused to optimize the topology of the contraction and expansion structure. Based on theoptimized topology geometry, the detailed lateral flow structure is simplified based onthe boolean operation. One-layer mixer is designed via sequentially connected lateralstructure and bent channels. The mixing efficiency is optimized via key geometric pa-rameters of designed one-layer mixer. The numerical results illustrate that the proposedmixer has better mixing efficiency than the contraction-expansion mixer in relativelywide range of Re number cases.
引文
[1] G. M. Whitesides. The origins and the future of microfluidics.[J]. Nature,2006,442:368–373.
    [2] T. Squires, S. Quake. Microfluidics: Fluid physics at the nanoliter scale[J]. Re-views of Modern Physics,2005,77:977–1026.
    [3]霍丹群,刘振,侯长军, et al.微流控芯片光学检测技术在细胞研究中的应用与进展[J].分析化学,2010,38(9):1357–1365.
    [4] N. Pamme. Continuous flow separations in microfluidic devices.[J]. Lab on achip,2007,7:1644–1659.
    [5]刘琳,厉坤鹏,胡志敏, et al.微流控芯片在细胞分选中的分析技术进展[J].中国细胞生物学学报,2013,5:026.
    [6] A. Lenshof, T. Laurell. Continuous separation of cells and particles in microflu-idic systems.[J]. Chemical Society reviews,2010,39:1203–1217.
    [7]刘文明,李立,任丽, et al.微流控细胞芯片生命分析应用多元化[J].分析化学,2012,40(1).
    [8]陈雪叶,刘冲,徐征, et al.微流控芯片设计方法研究进展[J].分析科学学报,2012,28(003):423–427.
    [9]姚琳,白亮,吴亮其, et al.微流控芯片技术在细胞生物学研究中的应用进展[J].中国细胞生物学学报,2011,33(11):1254–66.
    [10] K. A. Hyun, H. I. Jung. Microfluidic devices for the isolation of circulatingrare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis[J].Electrophoresis,2013,34(7):1028–1041.
    [11] K. A. Hyun, K. Kwon, H. Han, et al. Microfluidic flow fractionation devicefor label-free isolation of circulating tumor cells (CTCs) from breast cancer pa-tients[J]. Biosensors and Bioelectronics,2013,40(1):206–212.
    [12] a. Karimi, S. Yazdi, a. M. Ardekani. Hydrodynamic mechanisms of cell andparticle trapping in microfluidics[J]. Biomicrofluidics,2013,7:021501.
    [13] T. P. Lagus, J. F. Edd. A review of the theory, methods and recent applicationsof high-throughput single-cell droplet microfluidics[J]. Journal of Physics D:Applied Physics,2013,46:114005.
    [14] B. E. Layton, B. Lynch, T. Peter, et al. Red blood cell sorting with a multi-bed microfabricated filter[J]. Journal of Micromechanics and Microengineering,2012,22:025009.
    [15] M. G. Lee, J. H. Shin, C. Y. Bae, et al. Label-free cancer cell separation fromhuman whole blood using inertial microfluidics at low shear stress[J]. Analyticalchemistry,2013,85(13):6213–8.
    [16] B. K. Lin, S. M. McFaul, C. Jin, et al. Highly selective biomechanical separationof cancer cells from leukocytes using microfluidic ratchets and hydrodynamicconcentrator[J]. Biomicrofluidics,2013,7(3).
    [17] Z. Liu, F. Huang, J. Du, et al. Rapid isolation of cancer cells using microflu-idic deterministic lateral displacement structure[J]. Biomicrofluidics,2013,7:011801.
    [18] T. Morijiri, M. Yamada, T. Hikida, et al. Microfluidic counterflow centrifugalelutriation system for sedimentation-based cell separation[J]. Microfluidics andNanofluidics,2012.
    [19] S. Patel, D. Showers, P. Vedantam, et al. Microfluidic separation of live and deadyeast cells using reservoir-based dielectrophoresis[J]. Biomicrofluidics,2012,6:034102.
    [20]杨潞霞,郝晓剑,王春水, et al.具有三维聚焦功能的微流控芯片[J].光学精密工程,2013,21(9):2309–2316.
    [21] H. Minhas. Lab on a Chip–10years and flowing strong.[J]. Lab on a chip,2010,10:2189.
    [22] G. B. Salieb-Beugelaar, G. Simone, A. Arora, et al. Latest developments inmicrofluidic cell biology and analysis systems.[J]. Analytical chemistry,2010,82:4848–4864.
    [23] A. Arora, G. Simone, G. B. Salieb-Beugelaar, et al. Latest developments in micrototal analysis systems.[J]. Analytical chemistry,2010,82:4830–4847.
    [24] H. A. Pohl. THE MOTION AND PRECIPITATION OF SUSPENSOIDS INDIVERGENT ELECTRIC FIELDS[J]. Journal of Applied Physics,1951,22(7):869–871.
    [25] M. P. Hughes. Strategies for dielectrophoretic separation in laboratory-on-a-chipsystems[J]. Electrophoresis,2002,23(16):2569–2582.
    [26] P. R. C. Gascoyne, J. V. Vykoukal. Dielectrophoresis-based sample handlingin general-purpose programmable diagnostic instruments[J]. Proceedings of theIeee,2004,92(1):22–42.
    [27] C. H. Lin, G. B. Lee, L. M. Fu, et al. Vertical focusing device utilizing di-electrophoretic force and its application on microflow cytometer[J]. Journal ofMicroelectromechanical Systems,2004,13(6):923–932.
    [28] C. H. Yu, J. Vykoukal, D. M. Vykoukal, et al. A three-dimensional dielec-trophoretic particle focusing channel for microcytometry applications[J]. Jour-nal of Microelectromechanical Systems,2005,14(3):480–487.
    [29] D. Holmes, H. Morgan, N. G. Green. High throughput particle analysis: Com-bining dielectrophoretic particle focussing with confocal optical detection[J].Biosensors and Bioelectronics,2006,21(8):1621–1630.
    [30] N. Demierre, T. Braschler, R. Muller, et al. Focusing and continuous separationof cells in a microfluidic device using lateral dielectrophoresis[J]. Sensors andActuators B-Chemical,2008,132(2):388–396.
    [31] L. Wang, J. Lu, S. A. Marukenko, et al. Dual frequency dielectrophoresis with in-terdigitated sidewall electrodes for microfluidic flow-through separation of beadsand cells[J]. Electrophoresis,2009,30(5):782–791.
    [32] J. Voldman. Electrical forces for microscale cell manipulation[J]. Annual Re-view of Biomedical Engineering,2006,8:425–454.
    [33] S. Ozuna-Chacon, B. H. Lapizco-Encinas, M. Rito-Palomares, et al. Perfor-mance characterization of an insulator-based dielectrophoretic microdevice[J].Electrophoresis,2008,29(15):3115–3122.
    [34] D. A. Ateya, J. S. Erickson, J. Howell, Peter B., et al. The good, the bad, and thetiny: a review of microflow cytometry[J]. Analytical and Bioanalytical Chem-istry,2008,391(5):1485–1498.
    [35] J. Godin, C.-H. Chen, S. H. Cho, et al. Microfluidics and photonics for Bio-System-on-a-Chip: A review of advancements in technology towards a microflu-idic flow cytometry chip[J]. Journal of Biophotonics,2008,1(5):355–376.
    [36] H. Chu, I. Doh, Y.-H. Cho. A three-dimensional (3D) particle focusing chan-nel using the positive dielectrophoresis (pDEP) guided by a dielectric structurebetween two planar electrodes[J]. Lab on a Chip,2009,9(5):686–691.
    [37] K. H. Choi, M. A. A. Rehmani, I. Doh, et al. Numerical study of particle focusingthrough improved Lab-on-a-Chip device by positive dielectrophoresis[J]. Mi-crosystem Technologies-Micro-and Nanosystems-Information Storage and Pro-cessing Systems,2009,15(7):1059–1065.
    [38] J. G. Kralj, M. T. W. Lis, M. A. Schmidt, et al. Continuous dielectrophoreticsize-based particle sorting[J]. Analytical Chemistry,2006,78(14):5019–5025.
    [39] C. D. James, M. Okandan, S. S. Mani, et al. Monolithic surface micromachinedfluidic devices for dielectrophoretic preconcentration and routing of particles[J].Journal of Micromechanics and Microengineering,2006,16(10):1909–1918.
    [40] I. Doh, Y. H. Cho. A continuous cell separation chip using hydrodynamicdielectrophoresis (DEP) process[J]. Sensors and Actuators a-Physical,2005,121(1):59–65.
    [41] M. A. M. Gijs. Magnetic bead handling on-chip: new opportunities for analyticalapplications[J]. Microfluidics and Nanofluidics,2004,1(1):22–40.
    [42] N. Pamme, A. Manz. On-chip free-flow magnetophoresis: Continuous flow sep-aration of magnetic particles and agglomerates[J]. Analytical Chemistry,2004,76(24):7250–7256.
    [43] S. A. Peyman, A. Iles, N. Pamme. Rapid on-chip multi-step (bio)chemical pro-cedures in continuous flow-manoeuvring particles through co-laminar reagentstreams[J]. Chemical Communications,2008(10):1220–1222.
    [44] C. Carr, M. Espy, P. Nath, et al. Design, fabrication and demonstration of amagnetophoresis chamber with25output fractions[J]. Journal of Magnetismand Magnetic Materials,2009,321(10):1440–1445.
    [45] J. D. Adams, U. Kim, H. T. Soh. Multitarget magnetic activated cell sorter[J].Proceedings of the National Academy of Sciences of the United States of Amer-ica,2008,105(47):18165–18170.
    [46] X. Lou, J. Qian, Y. Xiao, et al. Micromagnetic selection of aptamers in microflu-idic channels[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2009,106(9):2989–2994.
    [47] C. W. Yung, J. Fiering, A. J. Mueller, et al. Micromagnetic-microfluidic bloodcleansing device[J]. Lab on a Chip,2009,9(9):1171–1177.
    [48] N. Pamme. Magnetism and microfluidics[J]. Lab on a Chip,2006,6(1):24–38.
    [49] K. H. Han, A. B. Frazier. Paramagnetic capture mode magnetophoretic mi-croseparator for high efficiency blood cell separations[J]. Lab on a Chip,2006,6(2):265–273.
    [50] J. H. Kang, S. Choi, W. Lee, et al. Isomagnetophoresis to discriminate subtle dif-ference in magnetic susceptibility[J]. Journal of the American Chemical Society,2008,130(2):396–397.
    [51] A. Ashkin. ACCELERATION AND TRAPPING OF PARTICLES BY RADIA-TION PRESSURE[J]. Physical Review Letters,1970,24(4):156.
    [52] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, et al. OBSERVATION OF ASINGLE-BEAM GRADIENT FORCE OPTICAL TRAP FOR DIELECTRICPARTICLES[J]. Optics Letters,1986,11(5):288–290.
    [53] J. E. Molloy, M. J. Padgett. Lights, action: optical tweezers[J]. ContemporaryPhysics,2002,43(4):241–258.
    [54] K. Dholakia, P. Reece, M. Gu. Optical micromanipulation[J]. Chemical SocietyReviews,2008,37(1):42–55.
    [55] A. Ashkin, J. M. Dziedzic. OPTICAL TRAPPING AND MANIPULATION OFVIRUSES AND BACTERIA[J]. Science,1987,235(4795):1517–1520.
    [56] M. M. Wang, E. Tu, D. E. Raymond, et al. Microfluidic sorting of mammaliancells by optical force switching[J]. Nature Biotechnology,2005,23(1):83–87.
    [57] T. D. Perroud, J. N. Kaiser, J. C. Sy, et al. Microfluidic-based cell sorting ofFrancisella tularensis infected macrophages using optical forces[J]. AnalyticalChemistry,2008,80(16):6365–6372.
    [58] M. P. MacDonald, G. C. Spalding, K. Dholakia. Microfluidic sorting in an opticallattice[J]. Nature,2003,426(6965):421–424.
    [59] K. Ladavac, K. Kasza, D. G. Grier. Sorting mesoscopic objects with periodicpotential landscapes: Optical fractionation[J]. Physical Review E,2004,70(1).
    [60] T. Laurell, F. Petersson, A. Nilsson. Chip integrated strategies for acoustic sep-aration and manipulation of cells and particles[J]. Chemical Society Reviews,2007,36(3):492–506.
    [61] F. Petersson, A. Nilsson, C. Holm, et al. Separation of lipids from blood u-tilizing ultrasonic standing waves in microfluidic channels[J]. Analyst,2004,129(10):938–943.
    [62] A. Nilsson, F. Petersson, H. Jonsson, et al. Acoustic control of suspended parti-cles in micro fluidic chips[J]. Lab on a Chip,2004,4(2):131–135.
    [63] M. Evander, A. Lenshof, T. Laurell, et al. Acoustophoresis in wet-etched glasschips[J]. Analytical Chemistry,2008,80(13):5178–5185.
    [64] N. R. Harris, M. Hill, S. Beeby, et al. A silicon microfluidic ultrasonic separa-tor[J]. Sensors and Actuators B-Chemical,2003,95(1-3):425–434.
    [65] A. Lenshof, A. Ahmad-Tajudin, K. Jaras, et al. Acoustic Whole Blood Plasma-pheresis Chip for Prostate Specific Antigen Microarray Diagnostics[J]. Analyti-cal Chemistry,2009,81(15):6030–6037.
    [66] H. Jonsson, C. Holm, A. Nilsson, et al. Particle separation using ultrasoundcan radically reduce embolic load to brain after cardiac surgery[J]. Annals ofThoracic Surgery,2004,78(5):1572–1578.
    [67] F. Petersson, L. Aberg, A.-M. Sward-Nilsson, et al. Free flow acoustophoresis:Microfluidic-based mode of particle and cell separation[J]. Analytical Chem-istry,2007,79(14):5117–5123.
    [68] J. Shi, H. Huang, Z. Stratton, et al. Continuous particle separation in a microflu-idic channel via standing surface acoustic waves (SSAW)[J]. Lab on a Chip,2009,9(23):3354–3359.
    [69] T. Franke, S. Braunmueller, L. Schmid, et al. Surface acoustic wave actuatedcell sorting (SAWACS)[J]. Lab on a Chip,2010,10(6):789–794.
    [70] S. Choi, J.-K. Park. Continuous hydrophoretic separation and sizing of mi-croparticles using slanted obstacles in a microchannel[J]. Lab on a Chip,2007,7(7):890–897.
    [71] S. Choi, S. Song, C. Choi, et al. Continuous blood cell separation by hy-drophoretic filtration[J]. Lab on a Chip,2007,7(11):1532–1538.
    [72] S. Choi, S. Song, C. Choi, et al. Hydrophoretic Sorting of Micrometer and Sub-micrometer Particles Using Anisotropic Microfluidic Obstacles[J]. AnalyticalChemistry,2009,81(1):50–55.
    [73] S. Choi, S. Song, C. Choi, et al. Microfluidic Self-Sorting of Mammalian Cellsto Achieve Cell Cycle Synchrony by Hydrophoresis[J]. ANALYTICAL CHEM-ISTRY,2009,81(5):1964–1968.
    [74] S. Choi, S. Song, C. Choi, et al. Sheathless focusing of microbeads and bloodcells based on hydrophoresis[J]. Small,2008,4(5):634–641.
    [75] S. Choi, J.-K. Park. Sheathless hydrophoretic particle focusing in a microchannelwith exponentially increasing obstacle arrays[J]. Analytical Chemistry,2008,80(8):3035–3039.
    [76] C.-H. Hsu, D. Di Carlo, C. Chen, et al. Microvortex for focusing, guiding andsorting of particles.[J]. Lab on a chip,2008,8:2128–2134.
    [77] L. R. Huang, E. C. Cox, R. H. Austin, et al. Continuous particle separationthrough deterministic lateral displacement[J]. Science,2004,304(5673):987–990.
    [78] D. W. Inglis, J. A. Davis, R. H. Austin, et al. Critical particle size for fractiona-tion by deterministic lateral displacement[J]. Lab on a Chip,2006,6(5):655–658.
    [79] K. J. Morton, K. Loutherback, D. W. Inglis, et al. Hydrodynamic metamaterial-s: Microfabricated arrays to steer, refract, and focus streams of biomaterials[J].Proceedings of the National Academy of Sciences of the United States of Amer-ica,2008,105(21):7434–7438.
    [80] K. J. Morton, K. Loutherback, D. W. Inglis, et al. Crossing microfluidic stream-lines to lyse, label and wash cells[J]. Lab on a Chip,2008,8(9):1448–1453.
    [81] L. R. Huang, P. Silberzan, J. O. Tegenfeldt, et al. Role of molecular size inratchet fractionation[J]. Physical Review Letters,2002,89(17).
    [82] M. Cabodi, Y. F. Chen, S. W. P. Turner, et al. Continuous separation ofbiomolecules by the laterally asymmetric diffusion array with out-of-plane sam-ple injection[J]. Electrophoresis,2002,23(20):3496–3503.
    [83] A. Kummrow, J. Theisen, M. Frankowski, et al. Microfluidic structures for flowcytometric analysis of hydrodynamically focussed blood cells fabricated by ul-traprecision micromachining[J]. Lab on a Chip,2009,9(7):972–981.
    [84] D. Kohlheyer, S. Unnikrishnan, G. A. J. Besselink, et al. A microfluidic devicefor array patterning by perpendicular electrokinetic focusing[J]. Microfluidicsand Nanofluidics,2008,4(6):557–564.
    [85] J. Howell, Peter B., J. P. Golden, L. R. Hilliard, et al. Two simple and ruggeddesigns for creating microfluidic sheath flow[J]. Lab on a Chip,2008,8(7):1097–1103.
    [86] M. Yamada, V. Kasim, M. Nakashima, et al. Continuous cell partitioning usingan aqueous two-phase flow system in microfluidic devices[J]. Biotechnologyand Bioengineering,2004,88(4):489–494.
    [87] M. Yamada, M. Nakashima, M. Seki. Pinched flow fractionation: continuoussize separation of particles utilizing a laminar flow profile in a pinched mi-crochannel.[J]. Analytical chemistry,2004,76:5465–5471.
    [88] J. Takagi, M. Yamada, M. Yasuda, et al. Continuous particle separation in amicrochannel having asymmetrically arranged multiple branches[J]. Lab on aChip,2005,5(7):778–784.
    [89] X. L. Zhang, J. M. Cooper, P. B. Monaghan, et al. Continuous flow separationof particles within an asymmetric microfluidic device[J]. Lab on a Chip,2006,6(4):561–566.
    [90] S. Yang, A. Undar, J. D. Zahn. A microfluidic device for continuous, real timeblood plasma separation[J]. Lab on a Chip,2006,6(7):871–880.
    [91] S. S. Shevkoplyas, T. Yoshida, L. L. Munn, et al. Biomimetic autoseparation ofleukocytes from whole blood in a microfluidic device[J]. Analytical Chemistry,2005,77(3):933–937.
    [92] M. Yamada, M. Seki. Hydrodynamic filtration for on-chip particle concentrationand classification utilizing microfluidics[J]. Lab on a Chip,2005,5(11):1233–1239.
    [93] M. Yamada, M. Seki. Microfluidic particle sorter employing flow splitting andrecombining[J]. Analytical Chemistry,2006,78(4):1357–1362.
    [94] R. Aoki, M. Yamada, M. Yasuda, et al. In-channel focusing of flowing micropar-ticles utilizing hydrodynamic filtration[J]. Microfluidics and Nanofluidics,2009,6(4):571–576.
    [95] M. Yamada, J. Kobayashi, M. Yamato, et al. Millisecond treatment of cells usingmicrofluidic devices via two-step carrier-medium exchange[J]. Lab on a Chip,2008,8(5):772–778.
    [96] D. Di Carlo. Inertial microfluidics[J]. Lab on a Chip,2009,9(21):3038–3046.
    [97]黄炜东,张何,徐涛, et al.基于惯性微流原理的微流控芯片用于血浆分离[J].科学通报,2011,56(21):1711–1719.
    [98] D. Di Carlo, D. Irimia, R. G. Tompkins, et al. Continuous inertial focusing, order-ing, and separation of particles in microchannels[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2007,104(48):18892–18897.
    [99] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, I. Papautsky. Inertial microfluidicsfor continuous particle filtration and extraction[J]. Microfluidics and Nanoflu-idics,2009,7(2):217–226.
    [100] Z. Wu, B. Willing, J. Bjerketorp, et al. Soft inertial microfluidics for highthroughput separation of bacteria from human blood cells[J]. Lab on a Chip,2009,9(9):1193–1199.
    [101] J. S. Park, S. H. Song, H. I. Jung. Continuous focusing of microparticles usinginertial lift force and vorticity via multi-orifice microfluidic channels[J]. Lab ona Chip,2009,9:939–948. Park, Jae-Sung Song, Suk-Heung Jung, Hyo-Il.
    [102] M. Faivre, M. Abkarian, K. Bickraj, et al. Geometrical focusing of cells in amicrofluidic device: An approach to separate blood plasma[J]. Biorheology,2006,43(2):147–159.
    [103] T. Squires, S. Quake. Microfluidics: Fluid physics at the nanoliter scale[J]. Re-views of Modern Physics,2005,77:977–1026.
    [104] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, I. Papautsky. Continuous particleseparation in spiral microchannels using dean flows and differential migration[J].Lab on a Chip,2008,8(11):1906–1914.
    [105] A. Russom, A. K. Gupta, S. Nagrath, et al. Differential inertial focusing ofparticles in curved low-aspect-ratio microchannels.[J]. New journal of physics,2009,11:75025.
    [106] X. Z. Niu, Y. K. Lee. Efficient spatial-temporal chaotic mixing in microchannel-s[J]. Journal of Micromechanics and Microengineering,2003,13(3):454–462.
    [107] J. H. Tsai, L. W. Lin. Active microfluidic mixer and gas bubble filter drivenby thermal bubble micropump[J]. Sensors and Actuators a-Physical,2002,97-8:665–671.
    [108] Y. Wang, J. Zhe, B. T. F. Chung, et al. A rapid magnetic particle driven mi-cromixer[J]. Microfluidics and Nanofluidics,2008,4(5):375–389.
    [109] S. H. Wong, M. C. L. Ward, C. W. Wharton. Micro T-mixer as a rapid mixingmicromixer[J]. Sensors and Actuators B-Chemical,2004,100(3):359–379.
    [110] T. Tofteberg, M. Skolimowski, E. Andreassen, et al. A novel passive micromixer:lamination in a planar channel system[J]. Microfluidics and Nanofluidics,2010,8(2):209–215.
    [111] B. He, B. J. Burke, X. Zhang, et al. A picoliter-volume mixer for microfluidicanalytical systems[J]. Analytical Chemistry,2001,73(9):1942–1947.
    [112] A. O. El Moctar, N. Aubry, J. Batton. Electro-hydrodynamic micro-fluidic mix-er[J]. Lab on a Chip,2003,3(4):273–280.
    [113] R. H. Liu, R. Lenigk, R. L. Druyor-Sanchez, et al. Hybridization enhancementusing cavitation microstreaming[J]. Analytical Chemistry,2003,75(8):1911–1917.
    [114] J. C. Rife, M. I. Bell, J. S. Horwitz, et al. Miniature valveless ultrasonic pumpsand mixers[J]. Sensors and Actuators a-Physical,2000,86(1-2):135–140.
    [115] G. G. Yaralioglu, I. O. Wygant, T. C. Marentis, et al. Ultrasonic mixing in mi-crofluidic channels using integrated transducers[J]. Analytical Chemistry,2004,76(13):3694–3698.
    [116] H. H. Bau, J. H. Zhong, M. Q. Yi. A minute magneto hydro dynamic (MHD)mixer[J]. Sensors and Actuators B-Chemical,2001,79(2-3):207–215.
    [117] L. D. Scampavia, G. Blankenstein, J. Ruzicka, et al. A COAXIAL JET MIXERFOR RAPID KINETIC-ANALYSIS IN FLOW-INJECTION AND FLOW IN-JECT ION CYTOMETRY[J]. Analytical Chemistry,1995,67(17):2743–2749.
    [118] W. Buchegger, C. Wagner, B. Lendl, et al. A highly uniform lamination mi-cromixer with wedge shaped inlet channels for time resolved infrared spec-troscopy[J]. Microfluidics and Nanofluidics,2011,10(4):889–897. Lendl,Bernhard/A-4069-2013.
    [119] J. Melin, G. Gimenez, N. Roxhed, et al. A fast passive and planar liquid samplemicromixer[J]. Lab on a Chip,2004,4(3):214–219.
    [120] A. Bertsch, S. Heimgartner, P. Cousseau, et al. Static micromixers based onlarge-scale industrial mixer geometry[J]. Lab on a Chip,2001,1(1):56–60.
    [121] V. Mengeaud, J. Josserand, H. H. Girault. Mixing processes in a zigzag mi-crochannel: Finite element simulations and optical study[J]. Analytical Chem-istry,2002,74(16):4279–4286.
    [122] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, et al. Chaotic mixer for microchan-nels[J]. Science,2002,295(5555):647–651.
    [123] Y. Z. Liu, B. J. Kim, H. J. Sung. Two-fluid mixing in a microchannel[J]. Inter-national Journal of Heat and Fluid Flow,2004,25(6):986–995.
    [124] C. C. Hong, J. W. Choi, C. H. Ahn. A novel in-plane passive microfluidic mixerwith modified Tesla structures[J]. Lab on a Chip,2004,4(2):109–113.
    [125] R. A. Vijayendran, K. M. Motsegood, D. J. Beebe, et al. Evaluation of athree-dimensional micromixer in a surface-based biosensor[J]. Langmuir,2003,19(5):1824–1828.
    [126] R. H. Liu, M. A. Stremler, K. V. Sharp, et al. Passive mixing in a three-dimensional serpentine microchannel[J]. Journal of MicroelectromechanicalSystems,2000,9(2):190–197.
    [127] C. P. Jen, C. Y. Wu, Y. C. Lin, et al. Design and simulation of the micromixer withchaotic advection in twisted microchannels[J]. Lab on a Chip,2003,3(2):77–81.
    [128] S. J. Park, J. K. Kim, J. Park, et al. Rapid three-dimensional passive rotationmicromixer using the breakup process[J]. Journal of Micromechanics and Mi-croengineering,2004,14(1):6–14.
    [129] S. Hardt, H. Pennemann, F. Schonfeld. Theoretical and experimental character-ization of a low-Reynolds number split-and-recombine mixer[J]. Microfluidicsand Nanofluidics,2006,2(3):237–248.
    [130] C. N. Baroud, F. Gallaire, R. Dangla. Dynamics of microfluidic droplets.[J]. Labon a chip,2010,10:2032–45.
    [131]林雪松,陈殿强,何峰, et al.固液两相流中颗粒浓度分布统一公式的研究[J].水资源与水工程学报,2013,24(4):82–84.
    [132] P. Yue. Arbitrary Lagrangian-Eulerian simulations of particle and bubble dy-namics in non-Newtonian fluids[J]. Bulletin of the American Physical Society,2013,58.
    [133] S. Takagi, K. Sugiyama, S. Ii, et al. A review of full Eulerian methods forfluid structure interaction problems[J]. Journal of Applied Mechanics,2012,79(1):010911.
    [134]项楠,朱晓璐,倪中华.惯性效应在微流控芯片中的应用[J].化学进展,2011,23(9):1945–1958.
    [135] E. S. Asmolov. The inertial lift on a spherical particle in a plane Poiseuilleflow at large channel Reynolds number[J]. Journal of Fluid Mechanics,1999,381:63–87.
    [136] D. Di Carlo, J. Edd, K. Humphry, et al. Particle Segregation and Dynamics inConfined Flows[J]. Physical Review Letters,2009,102:1–4.
    [137] X. C. Xuan, J. J. Zhu, C. Church. Particle focusing in microfluidic devices[J].Microfluidics and Nanofluidics,2010,9(1):1–16.
    [138] Y. Ai, S. Joo, Y. Jiang, et al. Pressure-driven transport of particles through aconverging-diverging microchannel[J]. Biomicrofluidics,2009,3:022404.
    [139] Y. Ai, A. Beskok, D. T. Gauthier, et al. Dc Electrokinetic Transport of CylindricalCells in Straight Microchannels.[J]. Biomicrofluidics,2009,3:44110.
    [140] Y. Ai, S. Qian, S. Liu, et al. Dielectrophoretic choking phenomenon in aconverging-diverging microchannel.[J]. Biomicrofluidics,2010,4:13201.
    [141] S. Patel, D. Showers, P. Vedantam, et al. Microfluidic separation of live and deadyeast cells using reservoir-based dielectrophoresis[J]. Biomicrofluidics,2012,6:034102.
    [142] M. Li, S. Li, W. Cao, et al. Improved concentration and separation of particles ina3D dielectrophoretic chip integrating focusing, aligning and trapping[J]. Mi-crofluidics and Nanofluidics,2012,14:527–539.
    [143] T. Liu, C. Li, H. Li, et al. A microfluidic device for characterizing the invasionof cancer cells in3-D matrix.[J]. Electrophoresis,2009,30:4285–91.
    [144] Y. Song, R. Peng, J. Wang, et al. Automatic particle detection and sorting in anelectrokinetic microfluidic chip.[J]. Electrophoresis,2013,34:684–90.
    [145] C. P. Jen, N. a. Maslov, H. Y. Shih, et al. Particle focusing in a contactlessdielectrophoretic microfluidic chip with insulating structures[J]. MicrosystemTechnologies,2012,18:1879–1886.
    [146] S. Liao, I. Cheng, H. Chang. Precisely sized separation of multiple particlesbased on the dielectrophoresis gradient in the z-direction[J]. Microfluidics andNanofluidics,2011,12:201–211.
    [147] Q. Lu, A. Terray, G. E. Collins, et al. Single particle analysis using fluidic,optical and electrophoretic force balance in a microfluidic system.[J]. Lab on achip,2012,12:1128–34.
    [148] A. H. C. Ng, K. Choi, R. P. Luoma, et al. Digital microfluidic magnetic separa-tion for particle-based immunoassays.[J]. Analytical chemistry,2012,84:8805–12.
    [149] Q. Ramadan, M. a. M. Gijs. Microfluidic applications of functionalized magneticparticles for environmental analysis: focus on waterborne pathogen detection[J].Microfluidics and Nanofluidics,2012,13:529–542.
    [150] S. Choi, S. Song, C. Choi, et al. Hydrophoretic Sorting of Micrometer and Sub-micrometer Particles Using Anisotropic Microfluidic Obstacles[J]. AnalyticalChemistry,2009,81(1):50–55.
    [151] M. Masaeli, E. Sollier, H. Amini, et al. Continuous Inertial Focusing and Sepa-ration of Particles by Shape[J]. Physical Review X,2012,2:031017.
    [152] J. Zhou, I. Papautsky. Fundamentals of inertial focusing in microchannels.[J].Lab on a Chip,2013,13:1121–32.
    [153] R. Yang, H. H. Hou, Y. N. Wang, et al. A hydrodynamic focusing microchannelbased on micro-weir shear lift force[J]. Biomicrofluidics,2012,6:034110.
    [154] K. W. Seo, Y. S. Choi, S. J. Lee. Dean-coupled inertial migration and transientfocusing of particles in a curved microscale pipe flow[J]. Experiments in Fluids,2012,53:1867–1877.
    [155] J. M. Martel, M. Toner. Inertial focusing dynamics in spiral microchannels.[J].Physics of fluids,2012,24:32001.
    [156] D. Di Carlo. Inertial microfluidics.[J]. Lab on a chip,2009,9:3038–3046.
    [157] M. Worner. Numerical modeling of multiphase flows in microfluidics and microprocess engineering: a review of methods and applications[J]. Microfluidics andNanofluidics,2012,12(6):841–886.
    [158] T. Forbes, J. Kralj. Engineering and analysis of surface interactions in a mi-crofluidic herringbone micromixer[J]. Lab on a Chip,2012,12:2634–2637.
    [159] Z. Liu, J. G. Korvink. Adaptive moving mesh level set method for structuretopology optimization[J]. Engineering Optimization,2008,40:529–558.
    [160] W. L. W. Hau, Z. Liu, J. G. Korvink, et al. Near-wall velocity of suspendedparticles in microchannel flow[C]. Micro Electro Mechanical Systems,2008.IEEE21st International Conference..,2008.633–636.
    [161] H. H. Hu. Direct simulation of flows of solid-liquid mixtures[J]. InternationalJournal of Multiphase Flow,1996,22(2):335–352.
    [162] A. Masud, T. J. R. Hughes. A space-time Galerkin/least-squares finite elemen-t formulation of the Navier-Stokes equations for moving domain problems[J].Computer Methods in Applied Mechanics and Engineering,1997,146(1-2):91–126.
    [163] Y. Liu, Y. Deng, P. Zhang, et al. Experimental investigation of passive micromix-ers conceptual design using the layout optimization method[J]. Journal of Mi-cromechanics and Microengineering,2013,23:075002.
    [164] Y. Ai, S. W. Joo, Y. Jiang, et al. Transient electrophoretic motion of a chargedparticle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.[J]. Electrophoresis,2009,30:2499–506.
    [165] A. P. Sudarsan, V. M. Ugaz. Fluid mixing in planar spiral microchannels.[J]. Labon a chip,2006,6:74–82.
    [166] A. P. Sudarsan, V. M. Ugaz. Multivortex micromixing.[J]. Proceedings of theNational Academy of Sciences of the United States of America,2006,103:7228–7233.
    [167] M. G. Lee, S. Choi, J.-K. Park. Rapid laminating mixer using a contraction-expansion array microchannel[J]. Applied Physics Letters,2009,95(5).
    [168] M. G. Lee, S. Choi, J.-K. Park. Rapid multivortex mixing in an alternatelyformed contraction-expansion array microchannel[J]. Biomedical Microdevices,2010,12(6):1019–1026.
    [169] M. G. Lee, S. Choi, J.-K. Park. Three-dimensional hydrodynamic focusing witha single sheath flow in a single-layer microfluidic device[J]. Lab on a Chip,2009,9(21):3155–3160.
    [170] M. G. Lee, S. Choi, J.-K. Park. Inertial separation in a contraction-expansionarray microchannel[J]. Journal of Chromatography A,2011,1218(27):4138–4143.
    [171] T. Borrvall, J. Petersson. Topology optimization of fluids in Stokes flow[J]. In-ternational Journal for Numerical Methods in Fluids,2003,41(1):77–107.
    [172] A. Gersborg-Hansen, O. Sigmund, R. B. Haber. Topology optimization ofchannel flow problems[J]. Structural and Multidisciplinary Optimization,2005,30(3):181–192.
    [173] G. Pingen, A. Evgrafov, K. Maute. Adjoint parameter sensitivity analysis for thehydrodynamic lattice Boltzmann method with applications to design optimiza-tion[J]. Computers&Fluids,2009,38(4):910–923.
    [174] C. S. Andreasen, A. R. Gersborg, O. Sigmund. Topology optimization of mi-crofluidic mixers[J]. International Journal for Numerical Methods in Fluids,2009,61(5):498–513.
    [175] Y. Deng, Z. Liu, P. Zhang, et al. A flexible layout design method for passivemicromixers[J]. Biomedical microdevices,2012,14(5):929–945.
    [176] I.-F. Cheng, H.-C. Chang, D. Hou, et al. An integrated dielectrophoretic chipfor continuous bioparticle filtering, focusing, sorting, trapping, and detecting[J].Biomicrofluidics,2007,1(2):021503.
    [177] A. Jonas, P. Zemanek. Light at work: The use of optical forces for particlemanipulation, sorting, and analysis[J]. Electrophoresis,29(24):4813–4851.
    [178] S. M. Hagsater, A. Lenshof, P. Skafte-Pedersen, et al. Acoustic resonances instraight micro channels: Beyond the1D-approximation[J]. Lab on a Chip,2008,8(7):1178–1184.
    [179] C. Grenvall, P. Augustsson, J. R. Folkenberg, et al. Harmonic Microchip A-coustophoresis: A Route to Online Raw Milk Sample Precondition in Proteinand Lipid Content Quality Control[J]. Analytical Chemistry,2009,81(15):6195–6200.
    [180] A. A. S. Bhagat, S. S. Kuntaegowdanahalli, I. Papautsky. Inertial microfluidicsfor continuous particle filtration and extraction[J]. Microfluidics and Nanoflu-idics,2008,7:217–226.
    [181] Z. Yang, S. Matsumoto, H. Goto, et al. Ultrasonic micromixer for microfluidicsystems[J]. Sensors and Actuators a-Physical,2001,93(3):266–272.
    [182] B. Xu, T. N. Wong, N.-T. Nguyen, et al. Thermal mixing of two miscible fluidsin a T-shaped microchannel[J]. Biomicrofluidics,2010,4(4).
    [183] Y. Song, R. Peng, J. Wang, et al. Automatic particle detection and sorting in anelectrokinetic microfluidic chip.[J]. Electrophoresis,2013,34:684–90.
    [184]34:684–90.
    [185] S. T. T. Ollila, C. Denniston, T. Ala Nissila. One-and two-particle dynamics inmicrofluidic T-junctions[J]. Physical Review E,2013,87:050302.
    [186] S. Sugaya, M. Yamada, M. Seki. Observation of nonspherical particle behaviorsfor continuous shape-based separation using hydrodynamic filtration.[J]. Biomi-crofluidics,2011,5:24103.
    [187] a. Karimi, S. Yazdi, a. M. Ardekani. Hydrodynamic mechanisms of cell andparticle trapping in microfluidics[J]. Biomicrofluidics,2013,7:021501.
    [188] S. T. T. Ollila, C. Denniston, T. Ala-Nissila. One-and two-particle dynamics inmicrofluidic T-junctions[J]. Physical Review E,2013,87:050302.
    [189] X. Zhang, a. Kim, D. Garmire. Particle-train dynamics in curved microfluidicchannels at intermediate Reynolds numbers[J]. Chemical Engineering Science,2013,98:69–76.
    [190] Z. Liu, Q. Gao, P. Zhang, et al. Topology optimization of fluid channels withflow rate equality constraints[J]. Structural and Multidisciplinary Optimization,2010,44:31–37.
    [191] S. Bhattacharya, A. Datta, J. M. Berg, et al. Studies on surface wettability ofpoly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment andcorrelation with bond strength[J]. Journal of Microelectromechanical Systems,2005,14(3):590–597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700