协作通信系统中继选择与功率分配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于无线信道的衰落特性,无线通信的性能会受到严重影响。为了有效对抗无线信道衰落特性,研究者提出了多输入多输出(Multi-Input Multi-Output, MIMO)技术,但它的实现需要在终端安装多天线。在实际的应用中,由于终端受尺寸、功率等条件的限制而无法配置多天线,从而限制了MIMO的实用化。为了克服MIMO的这一缺点,协作通信的概念被提出并且引起了研究者的极大兴趣。它的主要思想是通过相邻节点间彼此相互转发信息,形成一个虚拟的MIMO系统,通过分布式的方式获得MIMO增益,从而提高系统性能。
     本文主要对协作通信中的中继选择和功率分配进行了研究。全文共分六章,主要工作体现在以下几点:
     首先,本文对协作通信的研究现状做了概要的阐述。结合本文的研究内容,对中继技术的研究进展、协作通信的中继选择和功率分配研究做了简单介绍。
     其次,介绍了协作通信的相关技术。其中包括常见的分集技术和合并方式,协作分集和协作转发协议,并对放大转发(Amplify-and-Forward, AF)和译码转发(Decoded-and-Forward, DF)协议的性能进行了简单的仿真并比较了它们的性能。
     接着,针对放大转发系统,结合最优中继选择分析了基于门限的中继选择,分析了M-PSK和M-QAM调制下系统的误符号率和带宽效率。仿真结果表明,门限较低时,系统的性能接近最优中继选择的性能。在不同的信噪比和中继节点数下,可以适当调整门限来获得较好的系统误符号率性能或带宽效率。
     最后,在系统总功率一定的条件下,分析了AF和DF系统的功率分配问题,并对不同的分配方案进行了仿真。针对AF系统,首先分析了最小化误符号率和最大化系统容量的功率分配方案,然后分析了综合考虑误符号率和系统容量的联合分配方案。对DF系统,分析了最大化系统容量和最小化误符号率的功率分配方案。结合功率分配问题,论文还分析了中继节点位置对系统性能的影响。
The performance of wireless communication will be seriously affected due to the fading characteristic of the wireless channel. In order to effectively combat the fading characteristics of wireless channel, Multi-Input Multi-Output (MIMO) technology has been proposed by researchers. However, the realization of MIMO need to configurate multi-antenna on terminals. In particular, due to the restrictions such as size, power etc, the terminals can not configure multiple antennas, which have limited the application of MIMO technology. To overcome this drawback, the concept of cooperative communications has recently been proposed and gained large interest in the research community. The main idea of cooperative communications is to form a virtual MIMO system by utilizing neighbor nodes mutually transfer information on each other. With this approach, the benefits of MIMO systems can be attained in a distributed fashion, thereby improving the system performance.
     This thesis focus on relay node selection and power allocation in cooperative communications systems carried out researching. The thesis is divided into six chapters, the main contents are listed as follows:
     Firstly, the research status of cooperative communications has been illustrated generally. With the contents of this sthesis, the research progress of relay as well as the relay selection and power allocation in cooperative communications have been introduced in a brief way.
     Secondly, a brief introduction has given to the related technologies of cooperative communications, which including the common diversity and combing methods as well as cooperative diversity and relaying procotols. The performance of Amplify-and-Forward (AF) and Decoded-and-Forward (DF) have simply simulated and compared.
     Next, combed with best relay selection, a threshold relay selection method has been analyzed in AF system. The symbol error rate as well as bandwidth efficiency have been analyzed for this method under M-PSK and M-QAM modulation schemes. Simulation results illustrate that the performance of the threshold method approaches to the best selection method in a low threshold condition. What's more, in different SNR region and relay nodes, better SER performance or bandwidth efficiency can be obtained by adjust the threshold to an appropriate value.
     Finally, the power allocation issue has been analyzed in AF and DF systems under the conditon that the total system power is constant. The performance of different power allocation schemes have simulated. For AF system, the allocation schemes based on minimize the symbol error rate and maximize the system capacity have been analyzed, and then a joint allocation scheme has been analyzed. For DF system, the power allocation schemes for the purpose of maximize the system capacity and minimize the symbol error rate have been analyzed. Combined with the power allocation issue, this thesis analyzed the location of the relay nodes impact on the system performance both for AF and DF system.
引文
[1]张汉毅,粟欣,B3G的关键技术及其发展趋势.移动通信,2008,pp.26-31.
    [2]沈嘉,索士强,全海洋,3GPP长期演进(LTE)技术原理与系统设计,人民邮电出版社,2008.
    [3]ITU-R Rep. M.2134, Requirements Related to Technical Performance for IMT-Advanced Radio Interface,2008.
    [4]Foschini G J., Gans M. J., on Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas, Wireless Personal Communication,1998, pp.311-335.
    [5]J. Hwang, R. R. Consulta, and H. Yoon,4G Mobile Networks Technology Beyond 2.5G and 3G, In PTC, January,2007.
    [6]Gold Smith A., Jafar S A., Jinal N., et al., Capacity limits of MIMO channels, IEEE Journal on Communications,2003, pp.684-702.
    [7]Gowrishankar R., Demirkol M. F., Yun Z., Adaptive Modulation for MIMO Systems and Throughput Evaluation with Realistic Channel Model, International Conference on Wireless Networks, Communications and Mobile Computing,2005, pp.851-856.
    [8]Cover T., Gamal A.E., Capacity Theorems for the Relay Channel, IEEE Transactions on Information Theory, vol.25, Sep 1979, pp.572-584.
    [9]Sendonaris A., Erkip E., Aazhang B., User cooperation diversity Part I-System description, IEEE Transactions on Communications, vol.51, Nov.2003, pp.1927-1938.
    [10]Sendonaris A., Erkip E., Aazhang B., User cooperation diversity Part II-Implementation aspects and performance analysis, IEEE Transactions on Communications, vo.51, Nov.2003, pp.1939-1948.
    [11]Fitzek, F. and M. Katz, Cooperation in Wireless Networks:Principles and Applications-Real Egoistic Behavior is to Cooperate, Springer,2006, pp.14-21.
    [12]IEEE P802.16j/D1, Part 16:Air Interface for Fixed and Mobile Broadband Wireless Access Systems, Multihop Relay Specification,2007.
    [13]IST-2003-507581 WINNER D3.1, Description of identified new relay based radio network deployment concepts and first assessment by comparison against benchmarks of well known deployment concepts using enhanced radio interface technologies, Oct.,2004.
    [14]IST-2003-507581 WINNER D3.2, Description of deployment concepts for future radio scenarios integrating different cellular infrastructure including definition, comparison of RAN protocols for relay based relaying technologies in a assessment and performance systems, Feb.,2005.
    [15]3GPP TR 36.814 V1.2.1, Further Advancements for EUTRA:Physical Layer Aspects,Tech. Spec.n Group Radio Access Network Rel.9, June 2009.
    [16]A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, A simple Cooperative diversity method based on network path selection, IEEE Journal on Selected Areas in Communications, vol.24,2008, pp.659-672.
    [17]E. Beres and R. S. Adve, On Selection Cooperation in Distributed Networks, in Proc.2006 Conference Information Sciences and Systems (CISS), Mar.2006, pp.1056-1061.
    [18]Seunghoon Nam, Mai Vu, Tarokh V., Relay selection methods for wireless cooperative communications, Conference on Information Sciences and Systems(CISS),2008, pp.859-864.
    [19]Yindi Jing, Hamid Jafakhani, Single and multiple relay selection schemes and their achievable diversity orders, IEEE trans.on wireless communications,2009, vol.8, pp.1414-1420.
    [20]Z. Lin, E. Erkip, Relay Search Algorithms for Coded Cooperative Systems, GLOBCOM2005, pp.1314-1319.
    [21]M. Zorzi and R. R. Rao, Geographic random forwarding(geraf) for ad hoc and sensor networks: multi-hop performance, IEEE Trans.on Mobile Computing,2003, pp.337-348.
    [22]Zhang Peng, Wang Fu-rong, Tu Lai, Li Ke-wei, Diouba S., khider I., Opportunistic Virtual Antenna Array with Optimal Relay Mobile Terminals Selection, IEEE WiCOM.2008, pp.1-4.
    [23]Amarasuriya G., Ardakani M., Tellambura C., Output Threshold Multiple Relay Selection Scheme for Cooperative Wireless Networks, IEEE Transactions on Vehicular Technology, vol.59,2010, pp.3091-3097.
    [24]Tianxi Liu, Lingyang Song, Bingli Jia, Yuping Zhao, A Threshold-Based Hybrid Relay Selection Scheme, IEEE WCNC 2010, pp.1-5.
    [25]Theodore, S. Rappaport, Wireless Communications:Principles and Practice,2nd Edition, Prentice Hall,2001.
    [26]吴伟陵,牛凯,移动通信原理,电子工业出版社,2005.
    [27]David Tse, Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press,2004, pp.278-288.
    [28]Laneman J. N., Tse D., Wornell G W., Cooperative Diversity in Wireless Networks:Efficient Protocols and Outage Behavior, IEEE Transactions on Information Theory,2004, pp.3062-3080.
    [29]Hunter T. E., Coded Cooperation:A New Framework for User Cooperation in Wireless Networks, PhD. Thesis, the University of Texas at Dallas,2004.
    [30]H. Mheidat and M. Uysal, Impact of Receive Diversity on the Performance of Amplify-and-Forward Relaying under APS and IPS Power Constraints, IEEE Communications Letters, vol.10,2006, pp.468-470.
    [31]Z. Lizhong and D. N. C. Tse, Diversity and multiplexing:a fundamental tradeoff in multiple-antenna channels, IEEE Transactions on Information Theory,2003, pp.1073-1096.
    [32]R. U. Nabar, H. Bolcskei, and F. W. Kneubiihler, Fading Relay Channels:Performance Limits and Space-Time Signal Design, IEEE J. Sel. Areas Commun., vol.22,2004, pp.1099-1109.
    [33]Mischa Dohler, Yonghui Li, Cooperative Communications:Hardware, Channel & PHY, Wiley, 2010, pp.1-22.
    [34]P. Anghel and M. Kaveh, Exact Symbol Error Probability of a Cooperative Network in a Rayleigh Fading Environment Fading Channels, IEEE Transactions on Wireless Communications, vol.3, 2004, pp.1416-1421.
    [35]Torabi. M, Ajib.W., Haccoun. D., Performance Analysis of Amplify-and-Forward Cooperative Networks with Relay Selection over Rayleigh Fading Channels, IEEE VTC 2009, pp.1-5.
    [36]Ibrahim, A. S. Sadek, A. K., Weifeng Su, Liu K. J.R., Relay Selection in Multi-node Cooperative Communications:When to Cooperate and Whom to Cooperate With, IEEE GLOBECOM 2006, pp.1-5.
    [37]Ibrahim, A. S. Sadek, A. K., Weifeng Su, Liu K. J.R., Cooperative Communications With Relay-Selection:When to Cooperate and Whom to Cooperate With, IEEE Transactions on Wireless Communications,2008, pp.2814-2827.
    [38]K. J.Ray Liu, Ahmed K. Sadek, Weifeng Su, Cooperative Communications and Networking, Cambridge University Press,2009.
    [39]M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels:A Unified Approach to Performance Analysis,2nd ed, New York:Wiley Press,2005.
    [40]S. Ikki and M. Ahmed, Performance analysis of cooperative diversity wireless networks over Nakagami fading channel, IEEE Comm. Letters, vol.11,2007, pp.334-336.
    [41]Y.Zhao, R. Adve, and T. Lim, Improving Amplify-and-Forward Relay Networks Optimal Power Allocation Versus Selection, IEEE Trans. Wireless Commu. vol.6, no.8,2007.
    [42]S. Ikki and M. Ahmed, Performance of Multiple-Relay Cooperative Diversity Systems with Best Relay Selection over Rayleigh Fading Channels, Eurasip Journal on Advances in Signal Processing,2008, pp.1-7.
    [43]K. G. Seddik, A. K. Sadek, Weifeng Su, K. J. Ray Liu, Outage Analysis and Optimal Power Allocation for Multi-node Relay Networks, IEEE Signal Processing Letters, vol.14, No.6, June 2007, pp.377-380.
    [44]Farhadi G., Beaulieu N. C., Ergodic Capacity Analysis of Wireless Relaying Systems in Rayleigh Fading, IEEE ICC2008, pp.3730-3735.
    [45]Weifeng Su, Ahmed K. Sadek, and K. J. Ray Liu, SER Performance Analysis and Optimum Power Allocation for Decode-and-Forward Cooperation Protocol in Wireless Networks, IEEE WCNC2005, pp.984-989.
    [46]J. N. Laneman, G. W. wornell, Energy-Efficient Antenna Sharing and Relaying of Wireless Network, IEEE Wireless Communciations Networking Conference,2000, pp.7-12.
    [47]Hui HUI, Shihua Zhu, Guobing Li, Distributed Power Allocation Schemes for Amplify-and-Forward Networks, IEEE WCNC 2009, pp.1-6.
    [48]Katiyar H, Bhattacharjee R., Power Allocation Strategies for Non-regenerative Relay Network in Nakagami-m Fading Channel, IETE Journal of Research, vol.55,2009, pp.205-211.
    [49]石钧,林霏,路安琼,刘泽民,放大转发协同通信中协同时机的选择与误码率性能分析,电路与系统学报,2010年第3期.
    [50]Yan Wang, Fei Lin, SER Performance Analysis and Power Allocation for Amplify-and-Forward Relay Networks, WiCOM 2007, pp.1274-1277.
    [51]Liang Wang, Huimin Chen, Weihao Xie, Zhuo Wu, Low Complexity Real-time Power Allocation Algorithm to Improve BER Performance in Cooperative Communication Systems, IET CCWMC2009, pp.373-376.
    [52]Y Li, B.Vucetic, M. Dohler, Distributed adaptive power allocation for wireless relay networks, IEEE Trans. Wireless Commun.,2007, vol.6, pp.948-958.
    [53]惠鏸,朱世华,吕刚明,孙晓东,一种多源协作网络的分布式功率分配与中继选择算法,电子与信息学报,2010年第10期.
    [54]R. Annavajjlal, C. Cosman, L. B. Milstein., Statistical Channel Knowledge-Based Optimum Power Allocation for Relaying Protocols in the High SNR Regime, IEEE J. Select. Areas Comm., vol.25,2007, pp.292-305.
    [55]Y. Li, W. Wang, J. Kong, W. Hong, X. Zhang, M. Peng, Power Allocation and Subcarrier Pairing in OFDM-Based Relaying Networks, IEEE ICC2008, pp.2602-2606.
    [56]Hasna M.O., Alouini M.S., Optimal Power Allocation for Relayed Transmissions over Rayleigh Fading Channels, IEEE Trans. Wireless Commun., Nov.,2004, pp.1999-2004.
    [57]马宇,刘真,黄沛,中继系统中基于折中因子的功率分配方案,广东通信技术,2011.01.
    [58]Politis C., Oda T., Dixit S., Schieder A., Lach H.Y, Smirnov M. I., Uskela S., Tafazolli R., Cooperative Networks for the Future Wireless World, IEEE Communications Magazine, Sept., 2004, pp.70-79.
    [59]I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,7th ed. Academic Press,Inc.,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700