预应力钢骨超高强混凝土梁抗弯性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将C100级超高强混凝土应用于预应力钢骨混凝土梁结构中,形成的预应力钢骨超高强混凝土梁能够发挥超高强混凝土的抗压性能、后张预应力筋的抗拉性能,同时通过钢骨改善预应力超高强混凝土梁的延性,体现了结构材料高强低耗的思想。预应力钢骨混凝土梁是一种新型结构体系,受力性能特殊,国内外在预应力钢骨混凝土结构受力方面的研究,相关文献报道较多,但是,将超高强混凝土应用在预应力钢骨混凝土结构方面的研究未见报道;同时,预应力钢骨混凝土结构缺乏相关设计规范,使得预应力钢骨混凝土结构设计、施工缺乏强有力的理论支持。因此,进行预应力钢骨超高强混凝土梁的力学性能研究是非常必要的。
     本课题组成功申请了国家自然科学基金项目——预应力钢骨超高强混凝土桥梁受力性能与设计计算方法研究,基于21根预应力钢骨超高强混凝土梁静力荷载试验结果,对其进行了非线性数值模拟分析,主要工作如下:
     (1)在试验研究的基础上,基于试验数据,利用大型通用有限元软件ANSYS对预应力钢骨超高强混凝土梁建立分离式有限元模型,并对其实行位移加载,模拟试验梁抗弯力学性能。并将数值模拟结果与试验结果对比分析,结果表明,该模型所得的开裂荷载、极限荷载、钢筋屈服荷载以及荷载位移曲线与试验结果接近,验证了此分离式有限元计算模型是正确可行的。
     (2)通过比较同一参数的不同水平条件下试验梁的荷载位移曲线,研究和分析了试验各设计参数对预应力钢骨超高强混凝土梁的承载能力极限状态和正常使用极限状态的影响情况。
Prestressed steel reinforced ultra-high-strength concrete beams can perform the compositive properties of ultra-high-strength concrete and post-tensioned tendons, since C100is used in prestressed reinforced concrete beam structure. This style of structure reflects the idea of high strength and low energy consumption of structural materials, furthermore, the steel can improve the ductility of prestressed ultra-high-strength concrete beams.
     Prestressed steel reinforced ultra-high-strength concrete structure is a new structural system, having special mechanical properties. At home and abroad, there are many research literatures in prestressed steel reinforced concrete structure, while almost no research literatures in prestressed steel reinforced ultra-high-strength concrete structure. Whether at home or abroad, the lack of design specifications makes the prestressed steel reinforced concrete structure lack of theoretical support in design and construction. So it is very necessary to do some research in mechanical properties of prestressed steel reinforced ultra-high-strength concrete beams.
     On the basis of the existing research, combined with the National Natural Science Foundation project-study on the mechanical behavior and calculation method of prestressed steel reinforced ultra-high-strength concrete bridge, static tests and non-linear numerical simulation on21prestressed steel reinforced ultra-high-strength concrete beams are operated. The main work is as follows:
     (1) On the basis of the existing study, the finite element program ANSYS is used to simulate the prestressed steel reinforced ultra-high-strength concrete beams subjected to bending under static load, and the calculated and experimental results are compared, in order to obtain comprehensive mechanical properties of prestressed steel reinforced ultra-high-strength concrete beams. The results, the cracking load, ultimate load, yield load of reinforcement and the load-displacement curve calculated from the analysis model are very close to the experimental results, which verifies the correctness of the finite element model.
     (2) Research and analysis are operated on the influence of the designed parameters over ultimate limit state and serviceability limit state of prestressed steel reinforced ultra-high-strength concrete beams, by comparing the load-displacement curves which have the same parameters but different levels.
引文
[1]贾金青,赵国藩.钢骨高强混凝土柱的力学性能[M].大连:大连理工大学出版社,2006.
    [2]Josef H., Claus G. Structural behavior of partially concrete encased composite sections with high strength concrete[C]. ASCE Conf. Proc.2006,186(33):346-355.
    [3]Aitcin P.C. Developments the application high-performance concretes[J]. Construction and Building Materials,.1995,9(1):13-17.
    [4]Melby K, Jordet E A, Hansvold C. Long-span bridges in Norway constructed in high-strength LWA concrete[J]. Engineering Structures,1996,18(11):845-849.
    [5]熊学玉.预应力结构原理与设计[M].北京:中国建筑工业出版社,2004,10
    [6]程文襄,王铁成.混凝土结构(上册)[M].北京:中国建筑工业出版社,2007,245-246.
    [7]Lin T. Y., Burns N. H., Design of Prestressed Concrete Structures[M]. Third Edition. New York, John Wiley and Sons,1981.
    [8]Collins M. P., Mitchell, D., Prestressed Concrete Structures[M]. Prentice-Hall, Inc, 1991.
    [9]Ramaswamy G. S., Modern Prestressed Concrete Design[M]. Pitman publishing Ltd.1976.
    [10]陶学康.后张预应力混凝土设计手册[M].北京:中国建筑工业出版社,1993.
    [11]杜拱辰.现代预应力混凝土结构[M].北京:中国建筑工业出版社,1988.
    [12]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [13]刘维亚.钢与混凝土组合结构理论与实践[M].北京:中国建筑工业出版社,2008.
    [14]赵世春,陈家夔.劲性钢筋混凝土短柱受剪承载力试验[J].西南交通大学学报.1994(4):342-347.
    [15]白国良,陈小英.空腹式钢骨混凝土(SRC)梁正截面承载力计算[J].钢结构.2000(1):50-53.
    [16]白国良,赵鸿铁,文双玲.实腹式钢骨混凝土(SRC)偏压柱正截面承载力计算[J].钢结构.1999(4):26-30.
    [17]白国良,赵鸿铁,文双玲.实腹式钢骨混凝土(SRC)梁正截面承载力计算[J].钢结构.1999(4):22-25.
    [18]郑山锁,邓国专,杨勇,等.钢骨混凝土结构粘结滑移性能试验研究[J].工程力学.2003(5):63-69.
    [19]薛建阳,杨勇,赵鸿铁,等.钢骨混凝土粘结滑移性能研究综述分析[J].结构工程师.2002(4):52-58.
    [20]徐再修,刘兴海,工博,等.SRC异形柱节点构造综述[J].四川建筑.2010(4):175-176.
    [21]李晨,白国良,朱佳宁.SRC十字异型节点试验研究[J].低温建筑技术.2010(10):36-38.
    [22]王博,刘兴海,徐再修,等.SRC实腹式T形节点抗震性能概述[J].四川建筑.2010(6):136-138.
    [23]闫长旺,贾金青,张菊.Seismic Behavior of Steel Reinforced Ultra High Strength Concrete Column and Reinforced Concrete Beam Connection[J]. Transactions of Tianjin University.2010(4):309-316.
    [24]闫长旺,贾金青,张菊.钢骨超高强混凝土柱-钢筋混凝土梁框架节点滞回性能的有限元分析[J].土木工程学报.2010:92-97.
    [25]中华人民共和国行业标准.型钢混凝土组合结构技术规程JGJ138-2001[S].北京,中国建筑工业出版社,2002.
    [26]中华人民共和国行业标准.钢骨混凝土结构设计规程YB9082-2006[S].北京,冶金工业出版社,2007.
    [27]陈剑雄,蒲心诚,甘昌成,等.向实用化迈进的高强与超高强混凝土[J].重庆建筑工程学院学报.1991(3):99-106.
    [28]蒲心诚.超高强混凝土的研究与应用[J].混凝土.1993(5):8-17.
    [29]王志军,蒲心诚.超高强混凝土单轴受压性能及应力应变曲线的试验研究[J].重庆建筑大学学报.2000,22(增刊):27-33.
    [30]朱航征.100-150 MPa级超高强混凝土与高性能AE减水剂[J].建筑技术开发.2009(4):68-70.
    [31]贾金青,姜睿,刘毅,等.纤维超高强混凝土框架短柱抗震性能的试验研究[J].铁道科学与工程学报.2006(5):50-54.
    [32]姜睿.高轴压比钢纤维超高强混凝土短柱延性的试验研究[J].建筑结构学报.2007:230-235.
    [33]姜睿,徐世娘,贾金青.高轴压比PVA纤维超高强混凝土短柱延性的试验研究[J].土木工程学报.2007(8):54-60.
    [34]林鸿斌,王冲,曾毅娟.钢纤维超高强混凝土的收缩变形及开裂研究[J].混凝土.2011(5):80-83.
    [35]杜修力,田予东,窦国钦.纤维超高强混凝土的制备及力学性能试验研究[J].混凝土与水泥制品.2011(2):44-48.
    [36]贾金青Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns[J]四川大学学报(工程科学版).2009(3):875-879.
    [37]贾金青,关萍,王建胜.低周反复荷载作用下SRHC短程延性的试验研究[J].工业建筑.2002(9):18-20.
    [38]贾金青,姜丽君.配箍率对SRHC短柱延性的影响[J].工业建筑.2002(9):21-23.
    [39]贾金青,姜丽君,赵国藩.钢骨高强混凝土短柱轴压力系数与配箍率关系研究[J].建筑结构.2002(10):218-222.
    [40]贾金青,孙洪梅,李大永.钢骨高强混凝土短柱轴压力系数限值[J].大连理工大学学报.2002(2):67-70.
    [41]蒋东红,王连广,刘之洋.高强钢骨混凝土框架柱的抗震性能[J].东北大学学报.2002(1):56-61.
    [42]李俊华,薛建阳,赵鸿铁.钢骨高强混凝土柱抗震性能的试验研究[J].世界地震工程.2004(4):56-58.
    [43]李俊华,王新堂,薛建阳,等.低周反复荷载下钢骨高强混凝土柱受力性能试验研究[J].土木工程学报.2007(7):90-94.
    [44]Choulli Y., Antonio R. M., Cladera A. Shear behavior of full-scale pre-stressed I-beams made with self compacting concrete[J]. Materials and Structures,2008, 41:131-141.
    [45]Choulli Y. Shear behavior of pre-stressed I-beams made with high strength self compacting concrete[D]. PHD Thesis, Technical University of Catalonia, Barcelona, 2005.
    [46]Wafa F. F., Shihata S. A., Ashour S. A. Pre-stressed high-strength concrete beams under torsion[J]. Journal of Structural Engineering,1995,121(9):1280-1286.
    [47]Hasnat A., Wafa F. F., Akharuzzaman A. A. Pre-stressed concrete beams containing a small opening under torsion[J]. Journal of Structural Engineering,1988,114(7): 1926-1943.
    [48]Wafa F. F., Ashour S. A. Mechanical properties of high strength fiber reinforced concrete[J]. ACI Material Journal,1992,89(2):449-454.
    [49]Manfredi G., Pecce M. Low cycle fatigue of RC beams in NSC and HSC[J]. Engineering Structures,1997,19(3):217-223.
    [50]Cosenza E., Manfredi G., Ramasco R. The use of damage function in earthquake engineering:a comparison between different methods [J]. Earthquake Engineering and Structural dynamic,1993,22:855-868.
    [51]Doinghaus P., Goralski C., Will N. Design rules for composite structures with high performance steel and high performance concrete [J]. ASCE Conf. Proc.2001,122(13): 139-150.
    [52]Lee P. G., Shim C. S., Chang S. P. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridges[J]. Journal of Constructional Steel Research,2005, (61):1270-1285.
    [53]Shim C. S., Chang S. P., Lee P. G. Design of shear connection in composite steel and concrete bridges with precast decks [J]. Journal of Constructional Steel Research,2001,57:203-19.
    [54]Albrecht P., Li W., Saadatmanesh H. Fatigue strength of pre-stressed composite steel-concrete beams[J]. Journal of Structural Engineering,1995,121(12): 1850-1856.
    [55]Albrecht P., Lenwari A. Fatigue strength of repaired pre-stressed composite beams[J]. Journal of Bridge Engineering,2008,13(4):409-417.
    [56]Zona A., Ragni L., Dall'Asta A. Simplified method for the analysis of externally pre-stressed steel-concrete composite beams[J]. Journal of Constructional Steel Research,2009,65:308-313.
    [57]Dall'Asta A., Ragni L., Zona A. Simplified method for failure analysis of concrete beams pre-stressed with external tendons[J]. Journal of Structural Engineering, 2007,133(1):121-131.
    [58]Dall'Asta A., Zona A. Finite element model for externally pre-stressed composite beams with deformable connection[J]. Journal of Structural Engineering,2005, 131(5):706-714.
    [59]Dall'Asta A., Dezi L. Nonlinear analysis of beams pre-stressed by unbonded cables[J]. Journal of Engineering Mechanics,1993,119(4):720-732.
    [60]Nie J. G., Cai C. S., Wu H. Experimental and theoretical study of steel-concrete composite beams with openings in concrete flange [J]. Engineering Structures,2006, 28:992-1000.
    [61]Nie J. G., Cai C. S., Zhou T. R. Experimental and analytical study of pre-stressed steel-concrete composite beams considering slip effect[J]. Journal of Structural Engineering,2007,133(4):530-540.
    [62]余志武,周凌宇,罗小勇.钢-部分预应力混凝土连续组合梁内力重分布研究[J].建筑结构学报,2002,23(6):64-69.
    [63]余志武,郭风琪.部分预应力钢-混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报,2004,25(4):64-69.
    [64]许伟,王连广,许峰,等.预应力钢与高强混凝土组合梁变形性能[J].东北大学学报,2005,26(4):291-294.
    [65]慕光波,王连广,周乐.预应力钢骨混凝土受弯构件承载力计算[J].东北大学学报,2008,29(11):1648-1651.
    [66]孙建渊,李国平,范立础.后张预应力钢骨混凝土拉弯梁承载力试验研究[J].同济大学学报,2006,34(1):17-21.
    [67]傅传国,李玉莹,梁书亭.预应力钢骨混凝土简支梁受弯性能试验研究[J].建筑结构学报,2007,28(3):62-71.
    [68]秦士洪,丁智潮,何熊.预应力钢骨混凝土构件收缩徐变试验[J].中国公路学报,2008,21(4):74-80.
    [69]王钧,邬丹,郑文忠.预应力H钢骨混凝土简支梁正截面受力性能试验[J].哈尔滨工业大学学报,2009,41(6):22-27.
    [70]ANSYS非线性分析指南ANSYS中国,2000.
    [71]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [72]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [73]李围ANSYS土木工程应用实例[M].北京:中国水利水电出版社,2005.
    [74]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2005.
    [75]ANSYS理论分析手册ANSYS中国,2000.
    [76]王志军,蒲心诚.超高强混凝土单轴受压性能及应力应变曲线的试验研究[J].重庆建筑大学学报,2000,22(增刊):27-33.
    [77]王勇威,蒲心诚,王志军.单轴压力56.3_164.9MPa混凝土的应力_应变关系[J].建筑结构学报,2005,26(1):97-102.
    [78]余志武,丁发兴.混凝土受压力学性能统一计算方法[J].建筑结构学报,2003(4):41-46.
    [79]丁发兴,余志武.混凝土受拉力学性能统一计算方法[J].华中科技大学学报(城市科学版),2004(3):29-34.
    [80]聂建国,刘明,叶列平.钢—混凝土组合结构[M].北京:中国建筑工业出版社,2005:217-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700