栽培模式对黄土高原旱地春玉米养分累积规律及利用效率的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays)是黄土高原主要粮食作物之一。因玉米光合效率高,生长期与降水季节分布吻合性好;同时该区光照充足,热量适中,大气湿度低,昼夜温差大,呼吸损失少,有利于光合产物积累,其高产稳产性优于小麦和糜谷,玉米实际单产平均4800 kg.hm~(-2)左右,居于黄土高原禾谷类作物单产之首。但目前实际产量与潜力产量仍然存在较大差距,问题之一是缺乏适宜于本区的高产栽培体系及对不同栽培体系玉米养分吸收利用及管理的认识。本试验以黄土高原春玉米单作体系为对象,以理解不同栽培模式春玉米对养分吸收、累积及转运规律为重点,通过田间实验,不同栽培模式对春玉米对养分累积及养分效率的影响。研究结果对基于春玉米需肥规律,在设计高产栽培模式中,充分考虑养分管理,从而显著提高春玉米养分效率具有一定科学及应用价值。研究获得以下主要结论:
     1.不同栽培处理春玉米冠层生物量及籽粒产量显著不同,表现为补充灌溉>地膜覆盖>雨养>秸秆覆盖。方差分析表明,补充灌溉及地膜覆盖总生物量和籽粒产量均显著高于雨养处理,补充灌溉与地膜覆盖处理间差异不显著。说明在黄土旱塬地区,通过补充灌溉或者地膜覆盖能显著提高玉米产量。秸秆覆盖由于降低了土壤温度,对玉米生长并没有起到明显促进作用。
     2.土壤剖面NO_3~--N累积量虽然因栽培模式不同有所差异,但远不及随生育期变化显著,说明玉米对土壤NO_3~--N的吸收利用是控制玉米生长期土壤剖面NO_3~--N累积量变化的主要因子。与其它几种栽培模式相比,地膜覆盖由于对土壤水分,特别是对土壤温度的增加效应,在一定程度上可提高土壤剖面NO_3~--N累积量。由于玉米播种时施用基肥和种肥,且玉米苗期对土壤氮素消耗有限,因而土壤剖面NO_3~--N累积在玉米V6期仍然较高;尽管在拔节和抽雄期追施氮肥,但由于7~9月玉米旺盛生长及对氮素的大量吸收利用,土壤剖面中NO_3~--N累积在V6~R2期急剧下降;从R2到R6,由于玉米对养分吸收逐渐减弱,由于土壤有机氮的矿化作用,土壤NO_3~--N累积量呈一定程度上升趋势。
     3.玉米不同器官养分含量及累积量显著不同,各官养分含量主要受生育期及品种控制,而累积量同时受栽培模式及生育期影响。从冠层不同器官养分累积量分配看,地膜覆盖及补充灌溉有利于促进养分,特别是氮、磷养分在籽粒中的累积,这显然与这两种栽培模式有利于促进氮磷从营养体向籽粒转移及有利于增加籽粒产量有关。
     在玉米营养生长期,叶片全氮含量较高,且比较稳定;R2~R6期,叶片全氮含量出现显著下降趋势。茎秆中氮含量以V12期最高,随生长发育显著降低。春玉米冠层氮素累积趋势与生物量累积基本一致。不同栽培模式氮素累积量显著不同,表现为补充灌溉>地膜覆盖>雨养>秸秆覆盖。不同栽培模式显著影响R6期籽粒中氮素含量,地膜覆盖及补充灌溉,特别是地膜覆盖,有利于增加籽粒氮素含量。
     从V6到V12期各栽培处理叶片磷含量表现为明显下降趋势,而V12到VT期表现为增加趋势,其中雨养处理增幅最为明显;从VT期至R2期变化不明显;从R2期开始到R6期,4种栽培处理均呈大幅下降趋势。随玉米生长发育,茎秆中磷含量均呈下降趋势。各栽培处理冠层磷素累积随生育期推进总体呈增加趋势,至成熟期累积量最大。茎叶中钾含量变化相似,但茎干中钾含量明显高于叶片,且各栽培处理间差异不大。春玉米植株钾积累量随生育期推进而增加,春玉米钾素在VT期以前分配到叶片和茎秆中较多,抽雄期后,钾素分配到茎秆中较多。
     各营养器官中氮、磷最终绝大部分转移到籽粒,在R6期籽粒中所占比例很高,而钾素最终大部分转移到茎秆中,其所占比例较高。
     4.栽培模式显著影响养分效率,对不同养分效率指标的影响有所不同,并且其影响程度与品种有关。不同栽培模式显著影响养分收获指数。地膜覆盖处理氮素收获指数先玉335和沈单10分别达0.684和0.661,显著高于雨养和秸秆覆盖栽培模式,表明在旱地玉米生产中,地膜覆盖可促进玉米营养器官氮素向籽粒转移;地膜覆盖后磷收获指数也有一定程度增加,与雨养栽培相比,先玉335及沈单10号地膜覆盖栽培磷收获指数有一定程度增加。地膜覆盖及补充灌溉对钾收获指数间基本没有差异。
     栽培模式对沈单10号养分生产效率的影响较对先玉335的影响突出。先玉335雨养栽培磷素生产效率显著高于其它栽培模式,氮、磷、钾养分生产效率在不同栽培模式间基本没有差异;但地膜覆盖栽培沈单10可显著增加氮、磷、钾养分生产效率,说明地膜覆盖有利于促进沈单10号吸收的养分转化为生物量。
     5.从提高养分效率及产量角度考虑,补充灌溉和地膜覆盖是较理想的黄土高原旱地玉米种植模式,但考虑到该地区水资源缺乏,地膜覆盖仍然是最佳的春玉米种植方式。
Maize is a major grain crop on the Loess Plateau. It yields much more and with high stability than other major crops such as wheat and Mi which probably attributes to its high photosynthesis efficiency as well as accumulation of photosyntherate. The average yield is 4800 kg.hm-2; and can maintain the Despite the availability of modern hybrids and better agronomic practices, there existed large gaps between attainable yield of maize grown with recommended practices and potential productivity on the Loess Plateau. A field experiment was conducted for 2 years in Changwu, Shaanxi (35.2°N and 107.8°E). The field cultivation practices tested were: supplementary irrigating (SI), rain-fed (RF), plastic film mulching (FM), corn straw mulching (SM). The objective of this study were: (i) to validate of the Hybrid-Maize model in the maize production system and simulate the potential productivity of maize on the Loess Plateau, (ii) to determine the most important management yield-limiting factor(s) on maize grain production. The main results were showed as follow:
     1. Plant biomass and yield formation of spring maize differed notably according to cultivation practices. Both shoot biomass and grain yield were significantly higher in supplementary irrigation and film mulching treatments than those in rain-fed treatment; there was no significant difference between those in two former treatments. However, straw mulching decreased the crop grain yield, likely because of reduction of the soil temperature.
     2. Accumulation of nitrate nitrogen in the soil profile varied according to the cultivation practices, though even more dramatically among plant growth stages, indicating dominant effect of nitrogen absorption by the plants with the growth process. Film mulching improved the soil moisture and especially thermal conditions, and hence promoted the accumulation of nitrate nitrogen. Nitrate nitrogen in the soil profile maintained at high level at the crop growth stage R6, likely because of the low rate of absorption of the base and seed fertilizer by the crop seedlings. However, nitrate nitrogen was decreased remarkably from V6 to R2 stage when the vigorously growing plants consumed large amount of nitrogen in spite of the additional manure applications at V10 and VT stages. And then it accumulated gradually in the soil profile at the late grow stages, e.g. from R2 to R6, likely because of slow nitrogen absorption by the plant and mineralization organic nitrogenous in the soil.
     3. Nutrient content and accumulation in plant organs were significantly different from each other. The content was affected by plant growth stage and crop variety, while the accumulation differed according to practices patterns as well as plant growth stages. Nutrient accumulation, especially for N and P, in the grain seeds were increased in film mulching and supplementary irrigation, indicating a promotion of nutrient transportation from vegetative organs to the seeds.
     Total N content in leaf was stable and rather higher at vegetative stage than the others; and it was significantly decreased from R2 to R6. In the stem, N content peaked at growth stage V12, and declined dramatically after that. Shoot N accumulation was in consistent with the dry matter evolving. Plant N accumulation in different cultivation practices varied, ranked as follows: supplementary irrigation > film mulching > rain-fed > straw mulching. Irrigation, especially mulching increased the N content in the grain seed compared to rain-fed treatment. P content in leaf declined notably from the crop growth stage V6 to V12, increased from V12 to VT especially in the rain-fed treatment, changed rarely from VT to R3, and then declined dramatically until physiological mature. In the stem, P content was decreased with the crop growth progress under all the practice patterns. On the contrary, shoot P accumulation increased with the plant growing and peaked at the R6 stage.
     Patterns of K content in different growth stages were similar in the leaf and stem. And, K content was significantly higher in the stem than in the leaf, however no such difference was observed among the cultivation practices. K accumulation in the crop plants increased with plant growth process; distribution of K was rather more in the leaf than the stem at stages before VT, while it was right reversed that after.
     Both N and P in the vegetative organs was finally mobilized to the grain seeds, making the highest P content in it at the R6 stage. While K was transported to the stem in which the content was highest at R6 stage
     4. Nutrient use efficiencies varied significantly among cultivation practices, and the variance was also different according to crop variety. N harvest index was significantly higher in film mulching (0.0684 for maize variety Pioneer 335 and 0.6661 for variety Shendan 10) than in rain-fed and straw mulching treatment, indicating the improvement of N transportation from vegetative organs to the economic grain yield. Similarly, film mulching also enhanced the P harvest index in both the varieties compared to the rain-fed treatment. However, K harvest index was rather stable among all of the practices treatment.
     Effect of cultivation practices on the nutrient productive efficiency was much more notable in variety Xianyu 10 than Pioneer 335. P productivity efficiency was significantly higher in the rain-fed treatment than the others for maize variety Pioneer 335, while the productivity efficiency of both N and K was quite the same among all the treatment. However, in variety Shendan 10, N, P, K productivity efficiencies were significantly increased compared to the rain-fed treatment, indicating enhancement of convention of plant absorbed nutrient into plant biomass dry matter.
     5. These results show that both supplementary irrigation and film mulching practices were benefit for high yield in spring maize on the Loess Plateau. However, film mulching would be preferred with the consideration of shortage of available water resource in the area.
引文
[1]黄季焜.中国农业科技投资经济[M].北京:中国农业出版社, 2000.
    [2]郭清保.当前中国玉米产业发展现状及趋势[J].农业展望. 2008, 6, 29~33
    [3]黄明斌,党廷辉,李玉山.黄土区旱塬农田生产力提高对土壤水分循环的影响[J].农业工程学报, 2002, 18(6): 50~54.
    [4]李军,邵明安,张兴昌.黄土高原旱塬地冬小麦水分生产潜力与土壤水分动态的模拟研究[J].自然资源学报, 2004, 19(6): 52~55.
    [5]张树兰, Lars Lovdah,同延安.渭北旱塬不同田间管理措施下冬小麦产量及水分利用效率[J].农业工程学报, 2005, 21(4): 20~24.
    [6]樊军,郝明德,邵明安.黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报, 2004, 20(1): 61~64.
    [7]张仁陟,李小刚,胡恒觉.施肥对提高旱地农田水分利用效率的机理[J].植物营养与肥料学报, 1999, 5(3): 221~226.
    [8]夏自强,蒋洪庚,李琼芳,等.地膜覆盖对土壤温度、水分的影响及节水效益[J].河海大学学报, 1997, 25(2): 39~45.
    [9]赵聚宝,梅旭荣,薛军红.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学, 1996, 29 (2): 59~66.
    [10]谷杰,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报, 1998, 14(2): 160~164.
    [11]朱自玺,赵国强,邓天宏,等.秸秆覆盖麦田水分动态及水分利用率研究[J].生态农业研究, 2000, 8(1): 34~37.
    [12]逢焕成.秸秆覆盖对土壤环境及冬小麦产量状况的影响[J].土壤通报, 1999, 30(4): 174~175.
    [13]高亚军,李生秀.旱地秸秆覆盖条件下作物减产的原因及作用机制分析[J].农业工程学报,2005,21 (7):15~19.
    [14]张蔚,蒋志荣,陈锋,等.地面覆盖法调节土壤水热状况的研究进展[J].安徽农业科学, 2008, 36(19): 8184~8186.
    [15]蒋和平,辛岭.中国种植业生产的现状与政策建议[J].世界农业, 2008, (11): 34~37.
    [16]佟屏亚.我国玉米生产现状和发展策略[J].科技导报, 1997, (11): 22~25.
    [17]郭庆成等.中国玉米栽培学[M].上海:上海科学技术出版社. 2004.
    [18]赵致,张荣达,吴盛黎,等.紧凑型玉米高产栽培理论与技术研究[J].中国农业科学, 2001, 34(5): 465~468.
    [19]吴明泉.紧凑型玉米的高产特性[J].玉米科学, 1996, 4 (3): 41~44.
    [20]李潮海,苏新宏,孙敦立.不同基因型玉米间作复合群体生态生理效应[J].生态学报, 2002, 22(12): 2096~2103.
    [21]黄智鸿,申林,曹洋,等.超高产玉米与普通玉米源库关系的比较研究[J].吉林农业大学学报, 2007, 29(6): 607~611.
    [22]李军,王立祥,邵明安,等.黄土高原地区玉米生产潜力模拟研究[J].作物学报, 2002, 28(2): 555~560
    [23]吴绍洪,靳京,戴尔阜.基于PS123作物生长模型的黑龙江海伦市玉米生产潜力计算[J].农业工程学报, 2005, 21(8): 93~97
    [24]戴明宏,陶洪斌,廖树华,等.基于CERES-Maize模型的华北平原玉米生产潜力的估算与分析[J].农业工程学报, 2008, 24(4): 30~36.
    [25] Evans, L.T. Crop Evolution, Adaptation, and Yield. Cambridge University Press, Cambridge, UK. 1993.
    [26] Cassman, K.G., Dobermann, A., Walters, D.T., Yang, H.S. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28.
    [27] Cassman Kenneth G.. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture [J]. Proc. Natl. Acad. Sci. 1999, 96: 5952~5959.
    [28]李维岳.玉米高产稳产的土壤条件分析及调控措施探讨[J].吉林农业科学, 1999, 24(3): 3 ~4.
    [29]郭金瑞,边秀芝,闫孝贡,等.吉林省玉米高产高效生产土壤调控技术研究[J].玉米科学, 2008, 16(4): 140 ~142.
    [30]孟祥盟,赵洪祥,方向前,等.春玉米超高产栽培技术研究与高产因素分析[J].玉米科学, 2008, 16(5): 112 ~114.
    [31] Lynne C B, Joseph L P, Jr, et al.. Soil nitrogen mineralization influenced by crop rotation and nitrogen fertilization[J]. Soil Science Society of America Journal,2000, 64(6): 2038-2045.
    [32]李志宏,王兴仁,曹一平.冬小麦一夏玉米轮作条件下氮肥后效的定量研究[J].北京农业大学学报, 1995, 21(增刊): 29-32.
    [33]黄生斌,陈新平,张福锁.冬小麦施氮对下茬夏玉米的后效[J].中国农业大学学报, 2002, 7(1): 54-58.
    [34]潘家荣,巨晓棠,刘学军,等.高肥力土壤冬小麦/夏玉米轮作体系中化肥氮的去向研究[J].核农学报. 2001,15(4):207-212.
    [35] Alva A K, Collins H P. Corn, wheat, and potato crops residue decomposition and nitrogen mineralization in sandy soils under irrigated potato rotation[J]. Communications in Soil Science and Plant Analysis, 2002, 35(6): 420-427.
    [36] Ma B L, Ying J, Dwyer L M, et al. Crop rotation and soil N amendment effects on maize production in eastern Canada[J]. Canada Journal of Soil Science, 2003, 83: 483-495.
    [37] Carsky R J, Oyewole B, Tian G. Effect of phosphorus application in legume cover crop rotation on subsequent maize in the savanna zone of West Africa[J]. Nutrient Cycling in Agroecosystems, 2001, 59(2): 151-159.
    [38]董钻,谢甫绨.大豆氮磷钾吸收动态及模式的研究[J].作物学报, 1996, 22(1): 89-95.
    [39]褚贵新,吕新,刘建国,等.冬小麦套作玉米作物氮磷吸收分配规律和施肥运筹[J].新疆农业科学, 2000, 5: 199-202.
    [40]王贵平,张胜,王圣瑞,等.地膜覆盖对春玉米氮磷钾吸收累积和化肥利用率的影响[J].内蒙古农业大学学报, 2000, 21(5): 157-161.
    [41]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦吸收及氮肥利用率的影响[J].作物学报, 2004, 30(5): 449-454.
    [42]胡田田,李岗,韩思明,等.冬小麦氮磷营养特征及其与土壤养分动态变化的关系[J].麦类作物学报, 2000, 20(4): 47-50.
    [43]周顺利,张福锁,王兴仁,等.高产条件下不同品种冬小麦氮素吸收与利用特性的比较研究[J].土壤肥料, 2000(6): 20-24.
    [44]李截然,李文雄.氮肥施用期对春小麦氮素利用率和蛋白质产量的影响[J].东北农学报, 1991, 22(30): 205-215.
    [45]中国农业科学院土壤肥料研究所.中国肥料[M].上海科学技术出版社, 1994: 261-262, 451-464.
    [46]张颖.不同产量类型春玉米养分吸收特点及其分配规律的研究[J].玉米科学, 1997, 5(3): 70-72.
    [47]郭李萍,王兴仁,张福锁,等.不同年份是施肥对作物增产效应及肥料利用率的影响[J].中国农业气象, 1999, 20(4): 20-23.
    [48]张云桥.氮素化肥基施对小麦氮吸收、干物质积累与产量的影响[J].江苏农业科学, 1987, 11: 17-19.
    [49]黄德明,俞仲林,朱德锋.淮北地区高产小麦植株氮素吸收及土壤供氮特性[J].中国农业科学, 1988, 21(5): 59-67.
    [50]赵俊晔,于振文,李延奇,等.施氮量对小麦氮磷钾养分吸收利用和产量的影响[J].西北植物学报, 2006, 26(1): 98-103.
    [51]宋海星,李生秀.不同水、氮供应条件下夏玉米养分累积动态研究[J].植物营养与肥料学报, 2002, 8(4): 399-403.
    [52]时正元,鲁如坤,顾益初.土壤积累态磷研究:Ⅰ.一次大量施磷的产量效应[J].土壤, 1995, 27(2): 57-59.
    [53]鲁如坤,时正元,顾益初.土壤积累态磷研究:Ⅱ.磷肥的表观积累利用率[J].土壤, 1995, 27(6): 286-287.
    [54] Bolland M D A. Residual value of superphosphate for wheat and lupin grain production on a uniform yellow sandplain soil[J]. Fertilizer Research, 1992, 31(3): 331-340.
    [55] Sahtawat K L, Rego T J, Burford J R, et al. Response of sorghum to fertilizer phosphorus and its residual value in a Verisol[J]. Fertilizer Research, 1995, 41(1): 41-47.
    [56]顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累,形态转化和有效性[J].土壤, 1997, 1: 13-17.
    [57]陈欣,宇万太,沈善敏.磷肥低量施用制度下土壤磷库的发展变化:Ⅱ.土壤有效磷及土壤无机磷组成[J].土壤学报, 1997, 34(1): 81-87.
    [58] Mckenzie R H, Stewart J W B, Dormaar J F, et al. Long-term crop rotation and fertilizer effects on phosphorus transformation in a chernozmic soil[J]. Can. J soil Sci., 1992, 72: 569-579.
    [59] N J Kabengi, R A Zurayk, R A Baalbaki, et al. Phosphorus dynamics and characterization under long-term rotation trial[J]. Communications in Soil Science and Plant Analysis, 2000, 34(3-4): 375-392.
    [60] Bowman, R A, Halvorson, A D. Crop rotation and tillage effects on phosphorus distribution in the central Great Plains[J]. Soil Science Society of America Journal, 1997, 61(5): 1418-1422.
    [61]李云,张宁,邢文英.冬小麦磷肥利用率主要影响因素的研究[J].植物营养与肥料学报, 2002, 8(4): 424-427.
    [62] Dhillon N S, Dev G. Transformation of soil inorganic P fractions under various crop rotations[J]. J Indian Soc Soil, 1988, 36: 709-713.
    [63] Magid J. Vegetation effects on phosphorus fractions in ser-aside soils[J]. Plant and Soil, 1992, 149: 111-119.
    [64]张会民,刘红霞,苗艳芳,等.施钾对旱地冬小麦养分含量及吸收量的影响[J].干旱地区农业研究, 2002, 20(40): 25, 34-37.
    [65]李秋梅,陈新平,张福锁,等.冬小麦-夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报, 2002, 8(2): 152-156.
    [66]何萍,李玉影,等.钾肥用量对面包强筋小麦产量和品质的影响[J].土壤肥料, 2002, 2: 20-22.
    [67]于振文,张炜,余松烈.钾营养对冬小麦养分吸收分配、产量形成和品质的影响[J].作物学报, 1996, 22(4): 442-447.
    [68]韩宝文,邢竹,郭建华,等.冬小麦-夏玉米轮作中的施钾效应及钾素平衡[J].河北农业科学, 2004, 8(3): 25-27.
    [69] Osaki M, Shinano T, Tadano T, et a1. Redistribution of carbon and nitrogen compounds from the shoot to the harvesting organs during maturation in field crops[J]. Soil Sci. P1ant Nutr., 1991, 37: 117-128.
    [70] Osaki M, Morikawa K, Shinano T, et a1. Productivity of high-yielding crops. II. Comparison of N,P,K,Ca and Mg accumulation and distribution among high-yielding crops[J]. Soil Sci. Plant Nutr., 1991, 37: 445-454.
    [71]宋海星,李生秀.不同水、氮供应条件下夏玉米养分累积动态研究[J].植物营养与肥料学报, 2002, 8(4): 399-403.
    [72]杜金哲,李文雄,胡尚连,等.春小麦不同品质类型氮的吸收、转化利用及与籽粒产量和蛋白质含量的关系[J].作物学报, 2001, 27(2): 253-260.
    [73]金继运,何萍,刘海龙,等.氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响[J].植物营养与肥料学报, 2004, 10(6): 568-57.
    [74]李世清,王瑞军,张兴昌,等.小麦氮素营养与籽粒灌浆期氮素转移的研究进展[J].水土保持学报, 2004, 18(3): 106-111.
    [75] Simpson R J, Lambers H, Dalling M J. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.)[J]. Plant Phvsiol., 1983, 71: 7-14.
    [76] Austin R B, Ford M A, Edrich J A, et al. The nitrogen economy of winter wheat[J]. J. Agric. Sci.(Cambridge), 1977, 88: 159-167.
    [77] Cox M C, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. II. Nitrogen assimilation in relation to grain yield and protein[J]. Crop Sci., 1985b, 25: 435-440.
    [78] Papakosta D K, garianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling[J]. Agron. J., 1991, 83: 864-870.
    [79] Cox M X, Qualset C O, Rains D W. Genetic variation for nitrogen assimilation and translocation in wheat. III. Nitrogen translocation in relation to grain yield and protein[J]. Crop Sci., 1986, 26: 737-740.
    [80] Rodgers C O, Barneix A J. Cultivar difference in the rate of nitrate uptake by intact wheat plants as related to growth rate[J]. Physiol. Plant, 1988, 72: 121-126.
    [81]李世娟,周殿玺,诸叶平,等.水分和氮肥运筹对小麦氮素吸收分配的影响[J].华北农学报, 2002, 17(1): 69-75.
    [82] Sinchair T R, Dewit C T. Photosynthesis and nitrogen requirements for seed production by various[J]. Crops Science, 1975, 189: 565-567.
    [83]韩碧文,段留生,等.氮磷的再利用[A].娄成后,王学臣.作物产量形成的生理学基础[M].北京:中国农业出版社, 2001.
    [84]佟屏亚,凌碧莹.夏玉米氮、磷、钾积累和分配态势研究[J].玉米科学, 1994, 2(2): 65-69.
    [85]戴良香.冬小麦对氮素养分吸收分配规律的比较研究[J].河北农业技术师范学院学报, 1997, 11(3): 8-13.
    [86] Aude B, Christophe L, Christine B, et al. Nitrogen remobilization during grain filling in wheat: genotypic and environmental effects. Crop Science, 2005, 45(3):1141-1150.
    [87]米国华,汤利,张福锁.两种熟相小麦籽粒建成期的氮素吸收与转运[J].中国农业大学学报, 1999, 4(3): 53-57.
    [88]姜鸿明,李晴棋.高产小麦品种熟相类型的比较研究[J].山东农业大学学报, 1993, 24: 437-445.
    [89] Smart C M. Gene expression during leaf Senescence[J]. New Phytol, 1 994, 126: 419-448.
    [90] Gan S, Amasino R M. Making sense of Senescence: Molecular genetic regulation and manipulation of leaf senescence[J]. Plant Physiol, 1997, 113 : 313-319.
    [91] Desai R M, Bhatia C R. Nitrogen uptake and nitrogen harvest index in durum wheat cultivars varying in their grain protein concentration[J]. Euphytica, 1978, 27: 561-566.
    [92] Austin R B. Physiological limitations to cereal yields and ways of reducing them by breeding. In Hurd R G, et al eds. Opportunities for Increasing Crop Yield[M], 1980: 3-l9.
    [93] Wang Z J, Wang J H, Huang W J, et al. Study on nitrogen distribution in leaf, stem and sheath at different layers in winter wheat canopy and their influence on grain quality[J]. Agricultural Sciences in China, 2003, 2(8): 859-866.
    [94]陈国平.玉米的干物质生产与分配(综述)[J].玉米科学, 1994, 2(1): 48-53.
    [95]金继运,何萍.氮钾互作对春玉米生物产量及其组分动态的影响[J].玉米科学, 1999, 7(4): 57-60, 72.
    [96]朱兆良.农田中氮肥的损失与对策[J].土壤与环境, 2000, 9(1): 1-6.
    [97]易秀,薛澄泽.氮肥在塿土中渗漏污染研究[J].农业环境保护, 1993, 12(6): 250-253.
    [98] Simon J C et al. Effect of pastures on the drainage of nitrate to groundwater[J]. Forurrages, 1989, 119: 227-241.
    [99]张玉良.地下水系统的污染控制[M].北京:中国环境科学出版社, 1991.
    [100]吕殿青,杨学云,张航,等.陕西塿土中硝态氮运移特点及影响因素[J].植物营养与肥料学报, 1996, 2(4): 289-296.
    [101]张福珠,熊先哲,戴同顺,等.应用15N研究土壤-植物系统中氮素淋失动态[J].环境科学, 1984, 5(1): 21-24.
    [102]胡春胜,程一松,高鹭,等.太行山山前平原冬小麦田深层土体硝态氮累积特征研究[J].中国生态农业学报, 2001, 9(1): 19-20.
    [103]张文英,张庆江.小麦-夏玉米两熟制土壤-作物系统的氮素平衡[J].华北农学报, 1994, 9(增刊): 109-114.
    [104]张智猛,戴良香,张电学,等.冬小麦-夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究[J].土壤通报, 2004, 35(1): 38-42.
    [105]赵竟英,宝德俊,张鸿程,等.潮土硝态氮移动规律及对环境的影响[J].农业环境保护, 1996, 15(4): 166-169.
    [106]潘家荣,巨晓棠,刘学军,等.高肥力土壤冬小麦/夏玉米轮作体系中化肥氮去向研究[J].核农学报, 2001, 15(4): 207-212.
    [107]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中硝态氮在土壤剖面的累积及移动[J].土壤学报, 2003, 40(4): 538-546.
    [108]张树兰,同延安,梁东丽,等.氮肥用量及施用时间对土体中硝态氮移动的影响[J].土壤学报, 2004, 41(2): 270-277.
    [109]袁新民,同延安,杨学云,等.有机肥对土壤NO3--N累积的影响[J].土壤与环境, 2000, 9(3): 197-200.
    [110]袁新民,同延安,杨学云,等.施用磷肥对土壤NO3--N累积的影响[J].植物营养与肥料学报, 2000, 6(4): 397-403.
    [111]刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与累积[J].土壤肥料, 2001(1): 9-12.
    [112]古巧珍,杨学云,孙本华,等.旱地塿土长期定位施肥土壤剖面硝态氮分布与累积研究[J].干旱地区农业研究, 2003, 21(4): 48-52.
    [113]刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报, 1996, 27(5): 216-218.
    [114]杨学云,张树兰,袁新民,等.长期施肥对塿土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报, 2001, 7(2): 134-138.
    [115]李方敏.肥料氮素在塿土中的淋溶[J].湖北农学院学报, 1997, 17(3): 189-195.
    [116] Blumfield T J, Xu Z H. Impact of harvest residues on soil mineral nitrogen dynamics following clear fall harvesting of a hop pine plantation in subtropical Australia[J]. Forest Ecology and Management, 2003, 179(1-3): 55-67.
    [117] Van E H M, Czymmek K J. Ketterings Q M. Management effects on nitrogen leaching and guide lines for a nitrogen leaching index in New York[J]. Journal of Soil and Water Conservation, 2002, 57(6): 499-504.
    [118]黄绍敏,张鸿程,宝德俊,等.氮肥对土壤硝态氮含量及分布的影响及合理施肥研究[J].土壤与环境, 2000, 9(3): 201-203.
    [119] Fu G M, Yuan F M, Yao Z H, et al. Downward movement and leaching of NO3--N from nitrogen-fertilized corn on dryland soil[J]. Pedosphere, 1998, 8(1): 59-64.
    [120]袁新民,同延安,杨学云,等.灌溉与降水对土壤NO3--N累积的影响[J].水土保持学报, 2000, 14(3): 71-74.
    [121]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报, 2000, 2: 240-242.
    [122]吕殿青,杨进荣,马林英.灌溉对土壤硝态氮淋吸效应影响的研究[J].植物营养与肥料学报, 1999, 5(4): 307-315.
    [123] Bauder J W, Schneider R P. Nitrate-nitrogen leaching following urea fertilization and irrigation[J]. Soil Sci Soc Am J, 1979, 43:348-352.
    [124]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报, 1998, 4(1): 16-21.
    [125]刘敏超,曾长立,王兴仁,等.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究, 2000, 21(5): 309-312.
    [126]巨晓棠,刘学军,王朝辉,等.冬小麦/夏玉米轮作体系中的氮素损失途径分析[J].中国农业科学, 2002, 35(12): 1493-1499.
    [127] Richter J, Roelcke M. The N-cycle as determined by intensive agriculture-examples from central Europe and China[J]. Nutr. Cycl. Agroecosyst, 2000, 57: 33-46.
    [128] Wehhrmann J, Scharpf H C. The Nmin method-An aid to integrating various objectives of nitrogen fertilization[J]. Z Pflanzener. Bodenk, 1986, 149: 428-440.
    [129] Hallberg. Agrichemicals and water quality. Proc. Colloquium on Agrichemical Management and to protect water quality[M]. Board of Agriculture, National Research Council, Washington, DC. 1986.
    [130] Bouchard, et al. Nitrate contamination of groundwater: sources and potential health effects[J]. Journal AWWA, 1992: 85-90.
    [131] Puckett, L J. Nonpoint and Point Source of Nitrogen in Major Watersheds In The United States[M]. U. S. Geological Survey Water Resources Investigations Report 94-4001. Washington, DC. 1994.
    [132]同延安.氮肥与环境[A].冯锋,张福锁,杨新泉编著.植物营养研究-进展与展望[C].中国农业大学出版社, 2001.
    [133]彭琳.黄土区氮磷钾化肥肥效研究的历史回顾与前景展望[J].西北农业学报, 1995, (4): 9-14.
    [134]朱兆良,文启军等.中国土壤氮.南京:江苏科学技术出版社[M], 1992: 213-249.
    [135]巨晓棠,潘家荣,刘学军,等.北京郊区冬小麦/夏玉米轮作体系中氮肥去向研究[J].植物营养与肥料学报, 2003, 9(3): 264-270.
    [136]介晓磊,韩燕来,谭金芳,等.不同肥力和土壤质地条件下麦田氮肥利用率的研究[J].作物学报, 1998, 24(6): 884-888.
    [137]韩晓日,郭鹏程,陈恩凤,等.长期不同施肥对氮肥利用率的影响[J].土壤肥料, 1997, 5: 12-15.
    [138] Li Y E, Liu E D. Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China[J]. Nutrient Cycling in Agroecosystems, 2000, 57: 99-106.
    [139] Kong W P, Saffegna P G, Wood A W, et al.. Evaluation of methods for control of ammonia volatilization from surface-applied nitrogen fertilizers to sugarcane trash in North Queensland[J]. Pedosphere, 1993, 3(4): 321-330.
    [140] Mosier A R, Zhu Z L. Changes in patterns of fertilizer nitrogen use in Asia and its consequences for N2O emissions from agricultural systems[J]. Nutrient Cycling in Agroecosystems, 2000, 57: 107-117.
    [141]梁东丽,同延安, Ove Emteryd,等.塿土土壤剖面中N2O浓度的时间和空间变异[J].生态学报, 2003, 23 (4): 731-737.
    [142]巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学, 2002, 35(11): 1361-1368.
    [143]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作体系中土壤氮素矿化及预测[J].应用生态学报, 2003, 12(14): 2241-2245.
    [144]刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报, 2002, 22(7): 1122-1128.
    [145]卜玉山,苗果园,邵海林,等.对地膜和秸秆覆盖玉米生长发育与产量的分析[J].作物学报, 2006, 32(7): 1090~1093.
    [146] Li, F M., Guo, A H, Wei, H. Effects of clear plastic film mulch on yield of spring wheat [J]. Field Crops Research, 1999, 63, 79~86.
    [147] Quezada M, Maria R, Munguia L, et al. Plastic mulching and availability of soil nutrients in cucumber crop [J]. TERRA (Mexico), 1995,13: 136~147
    [148] Mohapatra B K, Lenka D, Naik D. Effects of plastic mulching on yield and water use efficiency in maize [J]. Annals of Agricultural Research, 1998, 19:210~211
    [149]赵聚宝,梅旭荣,薛军红.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学, 1996, 29 (2): 59~66.
    [150]谷杰,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报, 1998, 14(2): 160~164.
    [151]曹国番.半干旱冷凉区微型种植方法、覆盖材料和补灌时期研究[J].干旱地区农业研究, 1998, 16 (2): 13~18.
    [152]马忠明,徐生明.甘肃河西绿洲灌区玉米秸秆覆盖效应的研究[J].甘肃农业科技, 1998, (3): 14~16.
    [153]卜玉山,苗果园,邵海林,等.对地膜和秸秆覆盖玉米生长发育与产量的分析[J].作物学报, 2006, 32(7): 1090~1093.
    [154] Li, F M., Guo, A H, Wei, H. Effects of clear plastic film mulch on yield of spring wheat [J]. Field Crops Research, 1999, 63, 79~86.
    [155] Quezada M, Maria R, Munguia L, et al. Plastic mulching and availability of soil nutrients in cucumber crop [J]. TERRA (Mexico), 1995,13: 136~147
    [156] Mohapatra B K, Lenka D, Naik D. Effects of plastic mulching on yield and water use efficiency in maize [J]. Annals of Agricultural Research, 1998, 19:210~211
    [157]赵聚宝,梅旭荣,薛军红.秸秆覆盖对旱地作物水分利用效率的影响[J].中国农业科学, 1996, 29 (2): 59~66.
    [158]谷杰,高华,方日尧.施肥和秸秆覆盖对旱地作物水分利用效率的影响[J].农业工程学报, 1998, 14(2): 160~164.
    [159]曹国番.半干旱冷凉区微型种植方法、覆盖材料和补灌时期研究[J].干旱地区农业研究, 1998, 16 (2): 13~18.
    [160]马忠明,徐生明.甘肃河西绿洲灌区玉米秸秆覆盖效应的研究[J].甘肃农业科技, 1998, (3): 14~16.
    [161]朱兆良.关于土壤氮素研究中的几个问题.土壤学进展, 1989, 2: 1~ 9.
    [162]周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究I.冬小麦.生态学报, 2001, 21 (11) : 1782~1789.
    [163]鲁如坤等著.土壤-植物营养学原理和施肥[M].化学工业出版社出版, 1998: 359-366.
    [164]高亚军,李生秀.旱地秸秆覆盖条件下作物减产的原因及作用机制分析[J].生态学杂志,2000,19(3):20-23
    [165] Sayre H V. M ineral accumulation in corn [J]. Plant Physiol,1948,23(3):267-281.
    [166]高亚军,周建斌,翟军海等.补充灌溉、氮素营养和揭盖覆盖对冬小麦生长及产量的影响研究[J].中国生态农业学报,2004,12(1):130-132.
    [167]张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008, 45(5):915-924.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700