Issatchenkia terricola XJ-2乙醛脱氢酶的纯化和性质及其基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
醛脱氢酶超家族(Aldehyde Dehydrogenase superfamily, E.C.1.2.1.x)是一类重要的氧化还原酶类,广泛存在于动物、植物和微生物中。醛脱氢酶(ALDH)具有相似的一级结构,依赖NAD(P)+为辅酶将脂肪族和/或芳香族的醛类氧化成相应的酸类,从而调整生物体中醛类的浓度水平。根据国际癌症研究机构(IARC)和大量的实验证据表明,乙醛具有诱变作用和致癌性,其致诱变浓度为40-1000μmol/L。由于醛脱氢酶超家族中的乙醛脱氢酶能有效降解乙醛,有必要对乙醛脱氢酶进行深入研究,以减轻或消除乙醛的危害。本论文主要对高活性的乙醛脱氢酶产生酵母的筛选、乙醛脱氢酶的分离纯化和性质,以及乙醛脱氢酶基因的克隆和异源高效表达进行了研究,旨在为从蛋白和分子水平研究乙醛脱氢酶的结构和催化机理等提供理论依据,并为乙醛脱氢酶的生产和应用奠定基础。主要研究结果分述如下:
     1.从新疆马奶葡萄中筛选了高产乙醛脱氢酶的酵母菌株并对其进行了鉴定。
     采用黄豆芽培养基初筛、摇瓶复筛的筛选策略,从南京果园土壤和新疆马奶葡萄中分离筛选到三株具有乙醛脱氢酶活性的酵母菌株,其中筛自马奶葡萄的酵母菌株XJ-2酶活最高,达6.28U/mL,比活力为2.28U/mg。建立顶空气相色谱法检测菌株XJ-2粗酶液反应体系中的乙醛和乙酸,直接证明了该粗酶液中具有能够将乙醛氧化成乙酸的乙醛脱氢酶。采用酵母26S rDNA D1/D2区域序列的通用引物对菌株XJ-2进行PCR扩增,获得554bp的片段。将该PCR产物在GenBank数据库中BLAST软件进行同源搜索比对,利用Clustal X1.83和MEGA4.0软件进行多重比较后绘制系统发育树,结果表明:酵母菌株XJ-2的26S rDNA D1/D2区域序列与陆生伊萨酵母(Issatchenkia terricola) MH509的26S rDNA D1/D2区域序列同源性达100%;在系统发育树中,菌株XJ-2与I. terricola在同一分支,亲缘关系最近。结合常规形态特征、生理生化特征,鉴定该菌株为陆生伊萨酵母(I. terricola)。
     2.对I. terricola XJ-2所产的乙醛脱氢酶进行了分离纯化并研究了其酶学性质。
     经硫酸铵分级沉淀、DEAE-sephacel阴离子交换层析和Bio-Gel HTP羟基磷灰石吸附层析,从菌株XJ-2的粗酶液中获得了电泳纯的乙醛脱氢酶,比活力达到了31.2U/mg,较粗酶液纯化了14.3倍,酶活回收率为14.7%。
     对乙醛脱氢酶纯酶进行SDS-PAGE和非变性PAGE电泳以及HPLC分析,结果表明该酶为同源四聚体结构。乙醛脱氢酶的最适反应温度和pH分别为50℃和9.0,在温度和pH分别为20-40℃和6.0-9.0的范围内稳定。乙醛脱氢酶有着较广的底物作用范围,偏好作用于短链脂肪族醛类,特别是丁醛和乙醛;能以NAD+和NADP+为辅酶,NAD+最佳。对乙醛的Km、Vmax、kcat和kcat/Km分别为0.73mmol/L、35.71U/mg、32.73/s和45.14×103/(mol·s);对NAD+的Km和Vmax分别为0.24mmol/L和42.19U/mg。K+和NH4+是乙醛脱氢酶的激活剂,金属离子Mg2+、Ca2+、Ba2+、Co2+、Ni2+、Mn2+和化学试剂PMSF在1mmol/L和5mmol/L的浓度下对乙醛脱氢酶酶活具有一定程度的抑制作用,并随着浓度的增加而增强;Ag+、Cu2+、Zn2+、Hg2+则完全抑制了酶活性。还原剂2-ME和DTT对酶活有很强的促进作用。
     4.克隆了I. terricola XJ-2乙醛脱氢酶基因并进行序列分析。
     设计CODEHOP简并引物进行PCR扩增获得了乙醛脱氢酶基因的保守区序列,利用SiteFinding-PCR和Self-formed adaptor PCR染色体步移技术扩增了保守区的旁邻序列。经序列分析和拼接获得了I. terricola XJ-2乙醛脱氢酶基因(ist-ALD)的开放阅读框,长度为1578bp。对该基因编码的蛋白(ist-ALDH)进行生物信息学分析可知,ist-ALDH由525个氨基酸组成,预测分子量为57.2kDa;与Pichia angusta的ALDH(AAA83769)氨基酸序列的相似性达到73%,亲缘关系最近;含有16个在ALDH超家族中高度保守的氨基酸残基和10个保守性较高的氨基酸基元序列;预测Glu293和Cys327是其的催化活性位点以及第三和第四基元序列之间的氨基酸序列(GFGKTIG)是辅酶NAD(P)+的特异性结合位点。将ist-ALDH的氨基酸序列提交至http://swissmodel.expasy.org蛋白质在线分析服务器,预测其亚基的三级结构模型。该模型含有三个ALDH亚基的特征结构域:催化结构域、辅酶结合结构域和寡聚化结构域。通过一系列氨基酸序列分析证明了ist-ALD基因编码的蛋白是ALDH超家族的新成员。
     4.实现了I. terricola XJ-2的乙醛脱氢酶基因在大肠杆菌中的异源表达并研究了重组酶的性质。
     构建了非融合表达载体pET-23a-ist-ALD)和融合表达载体pET-32a-ist-ALD,将其分别转化到E. coli BL21(DE3)中均获得了活性表达,其中E. coli BL21/pET-32a-ist-ALD表达的重组乙醛脱氢酶活力最高,达到44.23U/mL,比活力为10.95U/mmg,是天然酶比活力的4.8倍。
     重组酶ist-ALDH经凝血酶酶切和Ni-NTA一步分离纯化,达到了电泳纯,纯化倍数为8.99倍,回收率为18.06%。通过SDS-PAGE和非变性PAGE电泳测定重组酶的分子量分别为57kDa和232kDa,表明该酶是同源四聚体。ist-ALDH的最适反应温度和pH分别为40℃和9.0,在温度和pH分别为20-37℃和7.0-9.0的范围内稳定。与天然酶的酶学性质比较可知,重组酶ist-ALDH的最适反应温度较天然酶低10℃,热稳定性稍差,但其它酶学性质则与天然酶的基本一致。
     5.对重组大肠杆菌高效表达乙醛脱氢酶的条件进行了优化并对重组大肠杆菌细胞转化清除乙醛的进行了研究。
     通过单因素试验选择TB5培养基作为重组菌E. coliBL21(DE3)pET32a-ist-ALD的表达培养基,并确定了诱导剂乳糖的诱导时机为OD600=3.0-3.2、添加量为140μg/mL。通过Plackett-Burman试验和中心组合设计试验快速筛选出了影响重组大肠杆菌表达乙醛脱氢酶的关键因子并对其实现了条件优化:当诱导时间、装液量和接种量分别为20.68h、126.75mL和3%时,获得重组乙醛脱氢酶的酶活为496.65U/mL,较未优化前的44.23U/mL提高了12.5倍。
     以最佳表达条件下培养的重组大肠杆菌为催化剂,通过对反应pH、反应温度、表面活性剂、底物浓度和NAD+浓度等因素对重组菌细胞转化清除乙醛的影响进行考察和分析,获得了细胞反应体系的最佳组成为:0.1mol/LGlycine-NaOH缓冲体系(pH9.5)、1mmol/L乙醛、2mmol/L NAD+、10mmol/L2-巯基乙醇,0.1mol/L KCl以及经0.075%(v/v)Triton X-100处理的湿菌体(1mg/mL)。当该体系于40℃反应15min,乙醛转化率为98%,细胞平均转化力为3.92mmol/g cells/h。
Aldehyde Dehydrogenase superfamily (E.C.1.2.1.x) comprises a group of very important oxidoreductases, widely distributing in animals, plants and microorganisms. ALDHs have the similar primary structure and can catalyze the NAD(P)+-dependent oxidation of aliphatic and/or aromatic aldehydes to their corresponding acids for the adjustment of the concentration of aldehydes in organisms. Acetaldehyde is a known mutagen and carcinogen according to the International Agency for Research on Cancer (IARC) and numerous experimental evidences, the mutagenic concentration of which is40-1000μmol/L. One of the most effective way for acetaldehyde elimination is its oxidation to acetate by acetaldehyde dehydrogenase, a member of ALDH superfamily. Thus, it is of interest to study the acetaldehyde dehydrogenase that has potential as an enzymatic product for detoxification of exogenous and endogenous acetaldehyde. The thesis presents the investigations on the screening of a high-activity acetaldehyde dehydrogenase producing yeast strain, purification and characterization of the enzyme, cloning and high-yield heterologous expression of the acetaldehyde dehydrogenase gene. The aim of the study is providing a theoretical support on the research of acetaldehyde dehydrogenase structure and catalysis mechanism. Furthermore, it lays a foundation for production and application of the enzyme in the future. The main results of this study are as follows:
     1. A yeast strain was isolated from grapes which could produce high-activity acetaldehyde dehydrogenase and identified.
     Soil and Manai grapes samples were collected from an orchard in Nanjing, Jiangsu province and Xinjiang province, respectively. Three yeast strains showing acetaldehyde dehydrogenase activity were isolated through prescreening of being cultivated in the soybean sprout media and then enzyme detection of being fermented in the malt media. The strain XJ-2collected from Manai grapes was selected for its ability to produce the highest activity of6.28U/mL, with the specific activity of2.28U/mg. The enzyme activity was validated by oxidizing acetaldehyde to acetate with NAD+as coenzyme based on the headspace gas chromatography analysis. The26S rDNA D1/D2gene sequence of the yeast strain XJ-2was amplified by PCR, and a554-bp sequence was obtained. A homology search was performed on Genbank database, and a neighbor-joining phylogenetic tree was constructed using a ClustalX1.83program and a MEGA4program. The results indicated that the26S rDNA D1/D2gene sequence of strain XJ-2revealed the highest homology (100%) with that of Issatchenkia terricola MH509. In the phylogenetic tree, strain XJ-2and/terricola were in the same branch showing the closest kinship. In addition to the morphological, physiological, and biochemical characteristics of strain XJ-2, the isolate was identified as I. terricola.
     2. The acetaldehyde dehydrogenase was purified from I. terricola strain XJ-2and its characterization was studied.
     Acetaldehyde dehydrogenase was purified to electrophoretically homogeneity by combination of purification steps including ultrasonic cell disruption, ammonium sulfate fraction precipitation, DEAE-sephacel ion-exchange chromatography and Bio-Gel HTP hydroxyapatite adsorption chromatography. The specific activity of31.2U/mg of the purified protein was14.3-fold from the enzymatic extracts with a yield of14.7%.
     By analysis of the molecular weight of acetaldehyde dehydrogenase through SDS-PAGE, native PAGE and HPLC, the enzyme existed as a homotetramer. The optimum temperature and pH of acetaldehyde dehydrogenase was50℃and9.0, respectively. The enzyme appeared to be stable in the range of20-40℃and pH6.0-9.0, respectively. It exhibited a broad substrate specificity for various aliphatic and aromatic aldehydes and preferred the former ones, especially butylaldehyde and acetaldehyde. Comparing with NADP+, NAD+was the preferred coenzyme. Kinetic study indicated that the acetaldehyde dehydrogenase had a Km value of0.73mmol/L, a Vmax value of35.71U/mg, a kcat value of32.73/s and a kcat/Km value of45.14×103/(mol·s) on acetaldehyde, respectively, while a Km value of0.24mmol/L and a Vmax value of42.19U/mg on NAD+, respectively. The enzyme activity was enhanced in the presence of K+, NHH+4,2-mercaptoethanol or DTT, while partially inhibited by several metal ions and chemicals at concentration of1mmol/L and5mmol/L, such as Mg2+, Ca2+, Ba2+, Co2+, Ni2+, Mn2+and PMSF. The higher concentration of the metal ions or chemicals was, the stronger inhibition showed. The activity was absolutely inhibited by Ag+, Cu2+,Zn2+and Hg2+.
     3. The acetaldehyde dehydrogenase gene of I. terricola strain XJ-2was cloned and the sequence analysis was performed.
     The conserved gene fragment was amplified by PCR using the CODEHOP primers. The flanking regions of the conserved gene fragment were amplified by SiteFinding-PCR and Self-formed adaptor PCR. By sequence analysis and assembling, the ORF of acetaldehyde dehydrogenase gene of I. terricola strain XJ-2(ist-ALD) was obtained with1578bp in length. The bioinformatics analysis of the predicted protein of ist-ALD revealed that the protein contained525amino acids with a predicted molecular weight of57.2kDa. Ist-ALDH showed the highest identity (73%) to ALDH from Pichia angusta. Sixteen amino acid residues that are found in more than95%of ALDH proteins were all critically conserved in the predicted protein, while ten most conserved motifs in ALDHs were also existed. Two presumed active-site residues, GIU293and CyS327, known to be catalytically essential amino acids and a glycine motif involved in NAD(P)+binding (GFGKITG) were identified in the protein. The amino acid sequence of ist-ALDH was submitted to http://swissmodel.expasy.org to predict the structure of one subunit. The characteristic domains of the subunit of ALDH, which are the catalysis domain, cofactor-binding domain and the oligomerization domain, respectively, were found in the tertiary structure model. A series of amino acid analysis demonstrated that ist-ALDH was a new member of ALDH superfamily.
     4. The acetaldehyde dehydrogenase gene of I. terricola strain XJ-2was heterologous expressed in E. coli and the characterization of the recombinant enzyme was studied.
     Two recombinant expression vectors, pET-23a-ist-ALD and pET-32a-ist-ALD were constructed, and transformed to E. coli BL21(DE3), respectively. The two recombinants were able to express acetaldehyde dehydrogenase. The recombinant E. coli harboring pET-32a-ist-ALD yield a higher activity of44.23U/mL, the specific activity of which reached10.95U/mg,4.8-fold than that of native enzyme.
     The His6-tagged ist-ALDH in the cell-free extract was purified by Ni-NTA agarose column and appeared one band on a SDS-PAGE gel and a native PAGE gel with a calculated molecular weight of57kDa and232kDa, respectively, indicating that the purified ist-ALDH presented as a homotetramer. Ist-ALDH exhibited the optimal activity at40℃and pH9.0, respectively. The recombinant enzyme was stable in the range of20-37℃and pH7.0-9.0, respectively. By comparing with the native acetaldehyde dehydrogenase, the optimal temperature of the recombinant enzyme was10℃less than that of native one. Moreover, the thermal stability of ist-ALDH was worse than that of the native enzyme, while other characterics of the two enzymes were comparable.
     5. Culture conditions of the recombinant E. coli for high-yield acetaldehyde dehydrogenase expression were optimized and the clearance of acetaldehyde transformed by the recombinant E. coli was studied.
     Based on the results of single factor experiments, TB5medium was selected as the expression medium of recombinant E. coli BL21(DE3)/pET32a-wist-ALD. The recombinant ist-ALDH was induced to express when OD600reached3.0-3.2with140μg/mL of lactose added. The key factors affecting the expression of recombinant ist-ALDH were screened by the Plackett-Burman experiments and optimized using the central composite design experiments. The predicted optimum culture conditions for maximum expression of recombinant ist-ALDH were found to be comprised of20.68h post-induction,126.75mL medium volume, and3%(v/v) inoculum content with an experimental acetaldehyde dehydrogenase activity of496.65U/mL, resulting in12.5-fold increment after optimization.
     The recombinant E. coli was prepared under the optimized condition, and served as a catalyst for the clearance of acetaldehyde. By studying the effect of reaction pH, temperature, surfactants, concentration of acetaldehyde and NAD+on the whole cell biotransformation, the optimum reaction system was as follows:0.1mol/L Glycine-NaOH buffer (pH9.5),1mmol/L acetaldehyde,2mmol/L NAD+,10mmol/L2-ME,0.1mol/L KC1, and1mg/mL wet cells that were treated by0.075%(v/v) Triton X-100. When the reaction was performed at40℃for15min,98%of acetaldehyde could be removed with a total cell average transformation of3.92mmol/g cells/h.
引文
Achterholt S, Priefert H, Steinbuchel A. Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene [J]. Journal of Bacteriology,1998,180(17):4387
    Ahn J W, Kim Y G, Kim K J. Crystal structure of non-redox regulated SSADH from Escherichia coli [J]. Biochemical and Biophysical Research Communications,2010,392(1):106-111
    Ahvazi B, Coulombe R, Delarge M, et al. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi:structural implications for cofactor specificity and affinity [J]. Biochemical Journal,2000,349(Pt 3):853-861
    Jaureguibeitia A, Saa L, Llama M J, et al. Purification, characterization and cloning of aldehyde dehydrogenase from Rhodococcus erythropolis UPV-1 [J]. Applied Microbiology and Biotechnology,2007, (73):1073-1086
    Baldoma L, Aguilar J. Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12 [J]. Journal of Biological Chemistry,1987,262(29):13991
    Barthel T, Jonas R, Sahm H. NADP+-dependent acetaldehyde dehydrogenase from Zymomonas mobilis [J]. Archives of Microbiology,1989,153(1):95-100
    Bellamacina C. The nicotinamide dinucleotide binding motif:a comparison of nucleotide binding proteins [J]. The FASEB Journal,1996,10(11):1257
    Black S. Yeast aldehyde dehydrogenase [J]. Archives of Biochemistry and Biophysics,1951,34(1):86-97
    Bognar A L, Meighen E. An induced aliphatic aldehyde dehydrogenase from the bioluminescent bacterium, Beneckea harveyi. Purification and properties [J]. Journal of Biological Chemistry,1978, 253(2):446
    Bostian K A, Betts G F. Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Biochemical Journal,1978,173(3):773-786
    Boubekeur S, Camougrand N, Bunoust O, et al. Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae [J]. European Journal of Biochemistry,2001,268(19):5057-5065
    Chen C H, Sun L, Mochly-Rosen D. Mitochondrial aldehyde dehydrogenase and cardiac diseases [J]. Cardiovascular research,2010,88(1):51
    Cobessi D, Tete-Favier F, Marchal S, et al. Apo and holo crystal structures of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans [J]. Journal of Molecular Biology,1999, 290(1):161-173
    Creaser E H, Porter R L, Pateman J A. Purification and properties of aldehyde dehydrogenase from Aspergillus nidulans [J]. International Journal of Biochemistry,1987,19(10):1009-1012
    Deitrich R A, Petersen D, Vasiliou V. Removal of acetaldehyde from the body. Acetaldehyde-related pathology:bridging the trans-disciplinary divide:novartis foundation symposium 285 [M]. Chichester, UK:John Wiley & Sons, Ltd,2007:23-51.
    Di Costanzo L, Gomez G A, Christianson D W. Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity [J]. Journal of Molecular Biology,2007,366(2):481-493
    Dickinson F M. The purification and some properties of the Mg2+-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae [J]. Biochemical Journal,1996,315 (Pt 2):393-399
    Eglinton J M, Heinrich A J, Pollnitz A P, et al. Decreasing acetic acid accumulation by a glycerol over producing strain of Saccharomyces cerevisiae by deleting the ALD6 aldehyde dehydrogenase gene [J]. Yeast,2002,19:195-301
    Farres J, Wang T T Y, Cunningham S J, et al. Investigation of the active site cysteine residue of rat liver mitochondrial aldehyde dehydrogenase by site-directed mutagenesis [J]. Biochemistry,1995,34(8): 2592-2598
    Gessei T, Sato H, Kazawa E, et al. Bio-sniffers for ethanol and acetaldehyde using carbon and Ag/AgCl coated electrodes [J]. MicrochimicaActa,2009,165(1):179-186
    Gonzalez-Segura L, Rudino-Pinera E, Munoz-Clares R A, et al. The Crystal Structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+and a novel cation binding site [J]. Journal of Molecular Biology,2009,385(2):542-557
    Gruez A, Roig-Zamboni V, Grisel S, et al. Crystal structure and kinetics identify Escherichia coli YdcW gene product as a medium-chain aldehyde dehydrogenase [J]. Journal of Molecular Biology,2004, 343(1):29-41
    Guerrillot L, Vandecasteele J-P. Purification and characterization of two aldehyde dehydrogenases from Pseudomonas aeruginosa [J]. European Journal of Biochemistry,1977,81(1):185-192
    Habenicht A, Hellman U, Cerff R. Non-phosphorylating GAPDH of higher plants is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH [J]. Journal of Molecular Biology,1994,237(1):165-171
    Hayashi K, Morooka N, Yamamoto Y, et al. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110 [J]. Molecular systems biology,2006, doi:10.1038/msb4100049
    Hempel J, Nicholas H, Lindahl R. Aldehyde dehydrogenases:widespread structural and functional diversity within a shared framework [J]. Protein Science,1993,2(11):1890-1900
    Hempel J, Perozich J, Chapman T, et al. Aldehyde dehydrogenase catalytic mechanism. A proposal [J]. Advances in Experimental Medicine and Biology,1999,463:53
    Hidalgo E, Chen Y, Lin E, et al. Molecular cloning and DNA sequencing of the Escherichia coli K-12 aid gene encoding aldehyde dehydrogenase [J]. Journal of Bacteriology,1991,173(19):6118
    Ho K K, Weiner H.Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli [J]. Journal of Bacteriology,2005,187(3):1067-1073
    Homann N, Jousimies-Somer H, Jokelainen K, et al. High acetaldehyde levels in saliva after ethanol consumption:methodological aspects and pathogenetic implications [J]. Carcinogenesis,1997, 18(9):1739-1743
    Homann N, Tillonen J, Meurman J H, et al. Increased salivary acetaldehyde levels in heavy drinkers and smokers:a microbiological approach to oral cavity cancer [J]. Carcinogenesis,2000,21(4): 663-668
    IARC. Acetaldehyde, in IARC monographs on the evaluation of carcinogenic risks to humans [M]. Lypn, France:International Agency for Research on Cancer,1999,71:319-335
    Ishige T, Tani A, Sakai Y, et al. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1 [J]. Applied and Environmental Microbiology,2000,66(8):3481-3486
    Jendrossek D, Steinbuchel A, Schlegel H G. Three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity from Alcaligenes eutrophus [J]. European Journal of Biochemistry,1987,167(3):541-548
    Jo J E, Mohan Raj S, Rathnasingh C, et al. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate [J]. Applied Microbiology and Biotechnology,2008,81(1):51-60
    Johansson K, Ramaswamy S, Eklund H, et al. Structure of betaine aldehyde dehydrogenase at 2.1 resolution [J]. Protein Science,1998,7(10):2106-2117
    Jung J H, Lee S B. Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase:a new class of NADP+-specific aldehyde dehydrogenase [J]. Biochemical Journal, 2006,397(Pt1):131-138
    Kato T, Miyanaga A, Kanaya S, et al. Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillvs thermoleovorans B23 [J]. Extremophiles,2010, 14(1):33-39
    Kurita O, Nishida Y. Involvement of mitochondrial aldehyde dehydrogenase ALD5 in maintenance of the mitochondrial electron transport chain in Saccharomyces cerevisiae [J]. FEMS Microbiology Letters,1999,181(2):281-287
    Kurkivuori J, Salaspuro V, Kaihovaara P, et al. Acetaldehyde production from ethanol by oral streptococci [J]. Oral Oncol,2007,43(2):181-186
    Lachenmeier D W, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages:risk assessment outside ethanol metabolism [J]. Addiction,2009,104(4):533-550
    Lachenmeier D W, Sohnius E M. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages:Evidence from a large chemical survey [J]. Food Chemistry and Toxicology,2008,46(8):2903-2911
    Lamb A L, Newcomer M E. The structure of retinal dehydrogenase type II at 2.7 resolution:Implications for retinal specificity [J]. Biochemistry,1999,38(19):6003-6011
    Li X, Li Y, Wei D, et al. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2 [J]. Microbiological Research,2010, 165(8):706-712
    Lieber C S. Microsomal Ethanol-Oxidizing System (MEOS):The first 30 years (1968-1998)-A review [J]. Alcoholism:Clinical and Experimental Research,1999,23(6):991-1007
    Limon A, Hidalgo E, Aguilar J. The aldA gene of Escherichia coli is under the control of at least three transcriptional regulators [J]. Microbiology,1997,143(6):2085
    Lindahl R. Aldehyde dehydrogenases and their role in carcinogenesis [J]. Critical Reviews in Biochemistry and Molecular Biology,1992,27(4-5):283-335
    Linderborg K, Salaspuro M, Vakevainen S. A single sip of a strong alcoholic beverage causes exposure to carcinogenic concentrations of acetaldehyde in the oral cavity [J]. Food and Chemical Toxicology, 2011,49(9):2103-2106
    Liu Y G, Whittier R F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking [J]. Genomics,1995,25(3): 674-681
    Liu Z, Sun Y, Rose J, et al. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold [J]. Nature,1997,4(4):317-326
    Lizano C, Perez M T, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation:In vivo survival rate in circulation, organ distribution and ethanol degradation [J]. Life sciences,2001,68(17):2001-2016
    Lo H F, Chen Y J. Gene cloning and biochemical characterization of a NAD(P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis [J]. Molecular biotechnology,2010,46(2):157-167
    Lorentzen E, Hensel R, Knura T, et al. Structural basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase from Thermoproteus tenax [J]. Journal of Molecular Biology,2004,341(3):815-828
    Lu J, Wei D, Wang Y, et al. High-level expression and single-step purification of recombinant Bacillus anthracis protective antigen from Escherichia coli [J]. Biotechnolog and Applied Biochemistry, 2009,52(2):107-112
    MacGibbon A, Buckley P D, Blackwell L F. Evidence for two-step binding of reduced nicotinamide-adenine dinucleotide to aldehyde dehydrogenase [J]. Biochemical Journal,1977, 165(3):455
    Mann C J, Weiner H. Differences in the roles of conserved glutamic acid residues in the active site of human class 3 and class 2 aldehyde dehydrogenases [J]. Protein Science,1999,8(10):1922-1929
    Meaden P G, Dickinson F M, Mifsud A, et al. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase [J]. Yeast,1997,13(14):1319-1327
    Mierendorf R, Yeager K, Novy R. The pET system:your choice for expression [J]. Innovations,1994, 1(1):1-3
    Miralles V J, Serrano R. A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress [J]. Molecular microbiology,1995,17(4):653-662
    Moore S A, Baker H M, Blythe T J, et al. Sheep liver cytosolic aldehyde dehydrogenase:the structure reveals the basis for the retinal specificity of class 1 aldehyde dehydrogenases [J]. Structure,1998, 6(12):1541-1551
    Mori N, Fuchigami S, Kitamoto Y. Purification and properties of betaine aldehyde dehydrogenase with high affinity for NADP from Arthrobacter globiformis [J]. Journal of Bioscience and Bioengineering,2002,93(2):130-135
    Navarro-Avino J P, Prasad R, Miralles V J, et al. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes [J]. Yeast,1999,15(10A):829-842
    Ni L, Zhou J, Weiner H, et al. Human liver mitochondrial aldehyde dehydrogenase:Three-dimensional structure and the restoration of solubility and activity of chimeric forms [J]. Protein Science,1999, 8(12):2784-2790
    Nieder M, Sunarko B, Meyer O. Degradation of vinyl acetate by soil, sewage, sludge, and the newly isolated aerobic bacterium V2 [J]. Applied and Environmental Microbiology,1990,56(10):3023
    Norbeck J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl [J]. Journal of Biological Chemistry,1997,272(9):5544
    Ohta T, Tani A, Kimbara K, et al. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation [J]. Applied Microbiology and Biotechnology,2005,68(5): 639-646
    Okibe N, Amada K, Hirano S, et al. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1 [J]. Journal of Bioscience and Bioengineering,1999, 88(1):7-11
    Park S-E, Koo H M, Park Y K, et al. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae [J]. Bioresource Technology,2011,102(10):6033-6038
    Perez-Miller S J, Hurley T D. Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase [J]. Biochemistry,2003,42(23):7100-7109
    Perozich J, Kuo I, Lindahl R, et al. Coenzyme specificity in aldehyde dehydrogenase [J]. Chemico-Biological Interactions,2001,130:115-124
    Perozich J, Nicholas H, Lindahl R, et al. The big book of aldehyde dehydrogenase sequences:An overiew of the extended family [J]. Advances in Experimental Medicine and Biology,1999a,463:1-7
    Perozich J, Nicholas H, Wang B C, et al. Relationships within the aldehyde dehydrogenase extended family [J]. Protein Science,1999b,8(1):137-146
    Pietruszko R, Kikonyogo A, Chern M K, et al. Human aldehyde dehydrogenase E3:Further characterization [J]. Advances in Experimental Medicine and Biology,1997,414:243-252
    Priefert H, Kruger N, Jendrossek D, et al. Identification and molecular characterization of the gene coding for acetaldehyde dehydrogenase Ⅱ (acoD) of Alcaligenes eutrophus [J]. Journal of Bacteriology, 1992,174(3):899-907
    Priefert H, Rabenhorst J, Steinbiichel A. Biotechnological production of vanillin [J]. Applied Microbiology and Biotechnology,2001,56(3):296-314
    Racker E. Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme [J]. Journal of Biological Chemistry,1949,177(2):883
    Raj S M, Rathnasingh C, Jo J E, et al. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain [J]. Process Biochemistry,2008,43(12):1440-1446
    Raj S M, Rathnasingh C, Jung W C, et al. A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pnewnoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate [J]. Biotechnology and Bioprocess Engineering,2010,15(1):131-138
    Rodriguez-Zavala J S, Allali-Hassani A, Weiner H. Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases [J]. Protein Science,2006,15(6):1387-1396
    Rodriguez-Zavala J, Weiner H. Role of the C-terminal tail on the quaternary structure of aldehyde dehydrogenases [J]. Chemico-Biological Interactions,2001,130-132(1-3):151-160
    Rossmann M G, Moras D, Olsen K W. Chemical and biological evolution of a nucleotide-binding protein [J]. Nature,1974,250:194-199
    Prieto M B, Hidalgo A, Rodriguez-Fernandez C, et al. Biodegradation of phenol in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1 immobilized in an air-stirred reactor with clarifier [J]. Applied Microbiology and Biotechnology,2002a,58:853-859
    Prieto M B, Hidalgo A, Serra J L, et al. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite(?) in a packed-bed reactor [J]. Journal of Biotechnology,2002b,97:1-11
    Saint-Prix F, Bonquist L, Dequin S. Functional analysis of the ALD gene family of Saccharomyces cerevisiae during anaerobic growth on glucose:the NADP+-dependent Ald6p and Ald5p isoforms play a major role in acetate formation [J]. Microbiology,2004,150(Pt 7):2209-2220
    Salaspuro M P. Alcohol consumption and cancer of the gastrointestinal tract [J]. Best Practice & Research Clinical Gastroenterology,2003,17(4):679-694
    Salaspuro V, Hietala J, Kaihovaara P, et al. Removal of acetaldehyde from saliva by a slow-release buccal tablet of L-cysteine [J]. Interenational Journal of Cancer,2002,97(3):361-364
    Salaspuro V J, Hietala J M, Marvola M L, et al. Eliminating carcinogenic acetaldehyde by cysteine from saliva during smoking [J]. Cancer Epidemiology Biomarkers and Prevention,2006,15(1):146-149
    Schrader T, Zarnt G, Andreesen J R. NAD(P)-dependent aldehyde dehydrogenases induced during growth of Ralstonia eutropha strain Bo on tetrahydrofurfuryl alcohol [J]. Journal of Bacteriology,2001, 183(24):7408
    Seitz H K, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development:Role of genetics in ethanol metabolism [J]. Genes and Nutrition,2010,5:121-128
    Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids [J]. Metabolic Engineering, 2007,9(2):160-168
    Sophos N A, Vasiliou V. Aldehyde dehydrogenase gene superfamily:The 2002 update [J]. Chem ico-Biological Interactions,2003,143-144:5-22
    Sripo T, Phongdara A, Wanapu C, et al. Screening and characterization of aldehyde dehydrogenase gene from Halomonas salina strain AS11 [J]. Journal of Biotechnology,2002,95(2):171-179
    Steinmetz C G, Xie P, Weiner H, et al. Structure of mitochondrial aldehyde dehydrogenase:The genetic component of ethanol aversion [J]. Structure,1997,5(5):701-711
    Straub P F, Reynolds P, Althomsons S, et al. Isolation, DNA sequence analysis, and mutagenesis of a proline dehydrogenase gene (putA) from Bradyrhizobium japonician [J]. Applied and Environmental Microbiology,1996,62(1):221
    Tamaki N, Nakamura M, Kimura K, et al. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Journal of Biochemistry,1977,82(1):73-79
    Tan G, Gao Y, Shi M, et al. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking [J]. Nucleic Acids Research,2005,33(13):el22
    Tessier W D, Meaden P G, Dickinson F M, et al. Identification and disruption of the gene encoding the K+-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters,1998,164(1):29-34
    Van Beilen J, Wubbolts M, Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans [J]. Biodegradation,1994,5(3-4):161
    Vasiliou V, Bairoch A, Tipton K F, et al. Eukaryotic aldehyde dehydrogenase (ALDH) genes:human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping [J]. Pharmacogenetics and Genomics,1999,9(4):421
    Vasiliou V, Nebert D W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family [J]. Human Genomics,2005,2(2):138-143
    Vasiliou V, Pappa A. Polymorphisms of human aldehyde dehydrogenases. Consequences for drug metabolism and disease [J]. Pharmacology,2000,61(3):192-198
    Vasiliou. V, Pappa. A, Petersen. D R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism [J]. Chemico-Biological Interactions,2000, (129):1-19
    Velasco-Garcia R, Mujica-Jimenez C, Mendoza-Hernandez G, et al. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa [J]. Journal of Bacteriology,1999, 181(4):1292
    Wang S, He J, Cui Z, et al. Self-formed adaptor PCR:a simple and efficient method for chromosome walking [J]. Applied and Environmental Microbiology,2007,73(15):5048-5051
    Wang X, Mann C J, Bai Y, et al. Molecular cloning, characterization, and potential roles of cytosolic and mitdchondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1998,180(4):822-830
    Wang X, Weiner H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis [J]. Biochemistry,1995,34(1): 237-243
    Wymore T, David W, Deerfield I, et al. Mechanistic implications of the cysteine-nicotinamide adduct in aldehyde dehydrogenase based on quantum mechanical/molecular mechanical simulations [J]. Biochemistry,2007,46(33):9495-9506
    Yamanaka Y, Kazuoka T, Yoshida M, et al. Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp. KUC-1:Enzymological characteristics and functional properties [J]. Biochemical and Biophysical Research Communications,2002,298(5):632-637
    Yamauchi M, Maezawa Y, Mizuhara Y, et al. Polymorphisms in alcohol metabolizing enzyme genes and alcoholic cirrhosis in Japanese patients:A multivariate analysis [J]. Hepatology,1995,22(4): 1136-1142
    Yokoyama A, Omori T, Yokoyama T. Alcohol and aldehyde dehydrogenase polymorphisms and a new strategy for prevention and screening for cancer in the upper aerodigestive tract in east Asians [J]. The Keio Journal of Medicine,2010,59(4):115-130
    方家龙,刘玉瑛.乙醛及其毒性[J].国外医学:卫生学分册,1996,23(2):101-105
    刘春香.基于随机引物的PCR-Walking技术[J].安徽农业科学,2010,38(6):2833-2835
    刘博,苏乔,汤敏谦,等.应用于染色体步移的PCR扩增技术的研究进展[J].遗传,2006,28(5):587-595
    张小霞,严卫星,徐海滨.外源蛋白质表达系统类型的研究进展[J].国外医学::卫生学分册,2004,31(4):203-208
    罗怀容,张亚平.乙醛脱氧酶2(ALDH2)基因研究进展及其与饮酒行为的关系[J].遗传,2004,26(2):263-266
    邓春梅,葛玉强,刘丽,等.外源基因表达系统的研究进展[J].现代生物医学进展,2010,10(19):3744-3746
    陆健.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005
    Bostian K A, Betts G F. Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Biochemical Journal,1978,173(3):773-786
    Boubekeur S, Camougrand N, Bunoust O, et al. Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae [J]. European J ournal of Biochemistry,2001,268(19):5057-5065
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analatical Biochemistry,1976,72:248-254
    Dickinson F M. The purification and some properties of the Mg2+-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae [J]. Biochemical Journal,1996,315 (Pt2):393-399
    Gonzalez-Pombo P, Farina L, Carrau F, et al. A novel extracellular β-glucosidase from Issatchenkia terricola:Isolation, immobilization and application for aroma enhancement of white Muscat wine [J]. Process Biochemistry,2011,46:385-389
    Guerrillot L, Vandecasteele J-P. Purification and characterization of two aldehyde dehydrogenases from Pseudomonas aeruginosa [J]. European Journal of Biochemistry,1977,81(1):185-192
    Ho K K, Weiner H. Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli [J]. Journal of Bacteriology,2005,187(3):1067-1073
    Homann N, Tillonen J, Meurman J H, et al. Increased salivary acetaldehyde levels in heavy drinkers and smokers:a microbiological approach to oral cavity cancer [J]. Carcinogenesis,2000,21(4): 663-668
    IARC. Acetaldehyde, in IARC monographs on the evaluation of carcinogenic risks to humans [M]. Lyon, France:International Agency for Research on Cancer,1999,71:319-335
    Jendrossek D, Steinblichel A, Schlegel H G Three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity from Alcaligenes eutrophus [J]. European Journal of Biochemistry,1987,167(3):541-548
    Kurkivuori J, Salaspuro V, Kaihovaara P, et al.Acetaldehyde production from ethanol by oral streptococci [J]. Oral Oncol,2007,43(2):181-186
    Kurtzman C, Robnett C. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in 5'end of the large-subunit (26S) ribosomal DNA gene [J]. Journal of Clinical Microbiology,1997, (35):1216-1223
    Kurtzman CP, Fell J W. The yeasts:A taxonomic study [M]. The 4th edition. Amsterdam:Elsevier,1998: 225-226
    Kurtzman C P, Robnett C J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences [J]. Antonie Van Leeuwenhoek,1998,73(4): 331-371
    Lachenmeier D W, Kanteres F, Rehm J. Carcinogenicity of acetaldehyde in alcoholic beverages:risk assessment outside ethanol metabolism [J]. Addiction,2009,104(4):533-550
    Lachenmeier D W, Sohnius E M. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages:evidence from a large chemical survey[J]. Food and Chemical Toxicology,2008,46(8):2903-2911
    Meaden P G, Dickinson F M, Mifsud A, et al. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+-activated acetaldehyde dehydrogenase [J]. Yeast,1997,13(14):1319-1327
    Naruya S. The neighbor-joining method:A new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution,1987,4(4):406-425
    Navarro-Avino J P, Prasad R, Miralles V J, et al. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes [J]. Yeast,1999,15(10A):829-842
    Ocon E, Gutierrez A, Garijo P, et al. Quantitative and qualitative analysis of non-Saccharomyces yeasts in spontaneous alcoholic fermentations [J]. European Food Research and Technology,2010,230(6): 885-891
    Ohta T, Tani A, Kimbara K, et al. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation [J]. Applied Microbiology and Biotechnology,2005,68(5): 639-646
    Perozich J, Nicholas H, Wang B C, et al. Relationships within the aldehyde dehydrogenase extended family [J]. Protein Science,1999,8(1):137-146
    Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae:role of the cytosolic Mg2+and mitochondrial K+acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation [J]. Applied and Environmental Microbiology,2000,66(8):3151-3159
    Salaspuro V, Hietala J, Kaihovaara P, et al. Removal of acetaldehyde from saliva by a slow-release buccal tablet of L-cysteine [J]. International Journal of Cancer,2002,97(3):361-364
    Salaspuro V J, Hietala J M, Marvola M L, et al. Eliminating carcinogenic acetaldehyde by cysteine from saliva during smoking [J]. Cancer Epidemiology Biomarkers and Prevention,2006,15(1):146-149
    Sophos N A, Vasiliou V. Aldehyde dehydrogenase gene superfamily:The 2002 update [J]. Chemico-Biological Interactions,2003,143-144:5-22
    Tamaki N, Nakamura M, Kimura K, et al. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Journal of Biochemistry,1977,82(1):73-79
    Tessier W D, Meaden P G, Dickinson F M, et al. Identification and disruption of the gene encoding the Reactivated acetaldehyde dehydrogenase of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters,1998,164(1):29-34
    Vasiliou V, Pappa A. Polymorphisms of human aldehyde dehydrogenases. Consequences for drug metabolism and disease [J]. Pharmacology,2000,61(3):192-198
    Wang X, Mann C J, Bai Y, et al. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1998,180(4):822-830
    文连奎,王立芳,王贵珍.陆生伊萨酵母降解L-苹果酸和柠檬酸的研究[J].食品科学,2011,32(7):220-223
    白逢彦,贾建华.假丝酵母属疑难菌株大亚基rDNAD1/D2区域序列分析及其分类学意义[J].菌物系统,2002,21(1):27-32
    惠丰立,冯金荣,杨柯金,等.产几丁质酶酵母菌的筛选与鉴定[J].东北林业大学学报,2007,35(8):66-67
    萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].第三版.黄培堂等译.北京:科学出版社,2002
    杨翠竹,李艳,阮南,等.酵母细胞破壁技术研究与应用进展[J].食品科技,2006,31(7):138-142
    Ahvazi B, Coulombe R, Delarge M, et al. Crystal structure of the NADP+-dependent aldehyde dehydrogenase from Vibrio harveyi:structural implications for cofactor specificity and affinity [J]. Biochemical Journal,2000,349(Pt 3):853
    Ameryama M, Osada K, Shinagawa E, et al. Purification and characterization of aldehyde dehydrogenase of acetobacter aceti [J]. Agricultural and Biological Chemistry,1981,45(8):1889-1890
    Aranda A, del Olmo M. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway [J]. Yeast,2003,20(8):747-759
    Barthel T, Jonas R, Sahm H. NADP+-dependent acetaldehyde dehydrogenase from Zymomonas mobilis [J]. Archives of Microbiology,1989,153(1):95-100
    Bostian K A, Berts G F. Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Biochemical Journal,1978,173(3):773-786
    Davis B J. DISC Electrophoresis-II method and application to human serum proteins [J]. Annals of the New York Academy of Sciences,1964,121(2):404-427
    Dickinson F M. The purification and some properties of the Mg2+-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae [J]. Biochemical Journal,1996,315 (Pt 2):393-399
    Guerrillot L, Vandecasteele J-P. Purification and characterization of two aldehyde Dehydrogenases from Pseudomonas aeruginosa [J]. European Journal of Biochemistry,1977,81(1):185-192
    Heinstra P W, Geer B W, Seykens D, et al. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae [J]. Biochemical Journal,1989,259(3):791-797
    Ho K K, Weiner H. Isolation and characterization of an aldehyde dehydrogenase encoded by the aldB gene of Escherichia coli [J]. Journal of Bacteriology,2005,187(3):1067-1073
    Hsu L C, Chang W C, Shibuya A, et al. Human stomach aldehyde dehydrogenase cDNA and genomic cloning, primary structure, and expression in Escherichia coli [J]. Journal of Biological Chemistry, 1992,267(5):3030
    Ishige T, Tani A, Sakai Y, et al. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1 [J]. Applied and Environmental Microbiology,2000,66(8):3481
    Jacobson M K, Bernofsky C. Mitochondrial acetaldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Biochimica et Biophysica Acta (BBA)-Enzymology,1974,350(2):277-291
    Jendrossek D, Steinbuchel A, Schlegel H G. Three different proteins exhibiting NAD-dependent acetaldehyde dehydrogenase activity from Alcaligenes eutrophus [J]. European Journal of Biochemistry,1987,167(3):541-548
    Jo J E, Mohan Raj S, Rathnasingh C, et al. Cloning, expression, and characterization of an aldehyde dehydrogenase from Escherichia coli K-12 that utilizes 3-hydroxypropionaldehyde as a substrate [J]. Applied Microbiology and Biotechnology,2008,81(1):51-60
    Jones D E, Brennan M D, Hempel J, et al. Cloning and complete nucleotide sequence of a full-length cDNA encoding a catalytically functional tumor-associated aldehyde dehydrogenase [J]. Proceedings of the National Academy of Sciences,1988,85(6):1782
    Kato T, Miyanaga A, Kanaya S, et al. Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23 [J]. Extremophiles,2010, 14(1):33-39
    Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature,1970,227(5259):680-685
    Li X, Li Y, Wei D, et al. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2 [J]. Microbiological Research,2010, 165(8):706-712
    Lindahl R. Aldehyde dehydrogenases and their role in carcinogenesis [J]. Critical Reviews in Biochemistry and Molecular Biology,1992,27(4-5):283-335
    Lo H F, Chen Y J. Gene cloning and biochemical characterization of a NAD (P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis [J]. Molecular biotechnology,2010,46(2):157-167
    Ohta T, Tani A, Kimbara K, et al. A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation [J]. Applied Microbiology and Biotechnology,2005,68(5): 639-646
    Okibe N, Amada K, Hirano S, et al. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1 [J]. Journal of Bioscience and Bioengineering,1999, 88(1):7-11
    Park S-E, Koo H M, Park Y K, et al. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae [J]. Bioresource Technology,2011,102(10):6033-6038
    Perozich J, Kuo I, Lindahl R, et al. Coenzyme specificity in aldehyde dehydrogenase [J]. Chemico-Biological Interactions,2001,130:115-124
    Raj S M, Rathnasingh C, Jung W C, et al. A novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pneumoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate [J]. Biotechnology and Bioprocess Engineering,2010,15(1):131-138
    Rodriguez-Zavala J, Weiner H. Role of the C-terminal tail on the quaternary structure of aldehyde dehydrogenases [J]. Chemico-Biological Interactions,2001,130-132(1-3):151-160
    Schrader T, Zarnt G, Andreesen J R. NAD(P)-dependent aldehyde dehydrogenases induced during growth of Ralstonia eutropha strain Bo on tetrahydrofurfuryl alcohol [J]. Journal of Bacteriology,2001, 183(24):7408
    Tamaki N, Nakamura M, Kimura K, et al. Purification and properties of aldehyde dehydrogenase from Saccharomyces cerevisiae [J]. Journal Biochemistry,1977,82(1):73-79
    Tessier W D, Meaden P G, Dickinson F M, et al. Identification and disruption of the gene encoding the K+-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters,1998,164(1):29-34
    Velasco-Garcia R, Mujica-Jimenez C, Mendoza-Hernandez G, et al. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa [J]. Journal of Bacteriology,1999, 181(4):1292
    Wang M F, Han C L, Yin S J. Substrate specificity of human and yeast aldehyde dehydrogenases [J]. Chemico-Biological Interactions,2009,178(1-3):36-39
    Wang X, Mann C J, Bai Y, et al. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1998,180(4):822-830
    Yamanaka Y, Kazuoka T, Yoshida M, et al. Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp. KUC-1:Enzymological characteristics and functional properties [J]. Biochemical and Biophysical Research Communications,2002,298(5):632-637
    Abriola D P, MAcKERELL Jr A D, Pietruszko R. Correlation of loss of activity of human aldehyde dehydrogenase with reaction of bromoacetophenone with glutamic acid-268 and cysteine-302 residues. Partial-sites reactivity of aldehyde dehydrogenase [J]. Biochemical Journal,1990,266(1): 179-181
    Boubekeur S, Camougrand N, Bunoust O, et al. Participation of acetaldehyde dehydrogenases in ethanol and pyruvate metabolism of the yeast Saccharomyces cerevisiae [J]. European Journal of Biochemistry,2001,268(19):5057-5065
    Hammen P K, Waltner M, Hahnemann B, et al. The role of positive charges and structural segments in the presequence of rat liver aldehyde dehydrogenase in import into mitochondria [J]. Journal of Biological Chemistry,1996,271(35):21041-21048
    Jeng J, Weiner H. Purification and characterization of catalytically active precursor of rat liver mitochondrial aldehyde dehydrogenase expressed in Escherichia coli [J]. Archives of Biochemistry and Biophysics,1991,289(1):214-222
    Li X, Li Y, Wei D, et al. Characterization of a broad-range aldehyde dehydrogenase involved in alkane degradation in Geobacillus thermodenitrificans NG80-2 [J]. Microbiological Research,2010, 165(8):706-712
    Lo H F, Chen Y J. Gene cloning and biochemical characterization of a NAD(P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis [J]. Molecular biotechnology,2010,46(2):157-167
    Novy R, Berg J, Yaeger K, et al. pET TRX fusion system for increased solubility of proteins expressed in E. coli [J]. Novagen product information,2004
    Okibe N, Amada K, Hirano S, et al. Gene cloning and characterization of aldehyde dehydrogenase from a petroleum-degrading bacterium, strain HD-1 [J]. Journal of Bioscience and Bioengineering,1999, 88(1):7-11
    Perozich J, Nicholas H, Wang B C, et al. Relationships within the aldehyde dehydrogenase extended family [J]. Protein Science,1999,8(1):137-146
    Raj S M, Rathnasingh C, Jung W C, et al. A Novel NAD+-dependent aldehyde dehydrogenase encoded by the puuC gene of Klebsiella pnewnoniae DSM 2026 that utilizes 3-hydroxypropionaldehyde as a substrate [J]. Biotechnology and Bioprocess Engineering,2010,15(1):131-138
    Rodriguez-Zavala J, Weiner H. Role of the C-terminal tail on the quaternary structure of aldehyde dehydrogenases [J]. Chemico-Biological Interactions,2001,130-132(1-3):151-160
    Rose T M, Henikoff J G, Henikoff S. CODEHOP (Consensus-degenerate hybrid oligonucleotide primer) PCR primer design [J]. Nucleic Acids Research,2003,31(13):3763-3766
    Steinmetz C G, Xie P, Weiner H, et al. Structure of mitochondrial aldehyde dehydrogenase:The genetic component of ethanol aversion [J]. Structure,1997,5(5):701-711
    Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,2007,24(8):1596-1599
    Tan G, Gao Y, Shi M, et al. SiteFinding-PCR:a simple and efficient PCR method for chromosome walking [J]. Nucleic Acids Research,2005,33(13):e122
    Tessier W D, Meaden P G, Dickinson F M, et al. Identification and disruption of the gene encoding the K+-activated acetaldehyde dehydrogenase of Saccharomyces cerevisiae [J]. FEMS Microbiology Letters,1998,164(1):29-34
    Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL-X windows interface:Flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research,1997, 25(24):4876-4882
    Wang S, He J, Cui Z, et al. Self-formed adaptor PCR:a simple and efficient method for chromosome walking [J]. Applied and Environmental Microbiology,2007,73(15):5048-5051
    Wang X, Mann C J, Bai Y, et al. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae [J]. Journal of Bacteriology,1998,180(4):822-830
    Yamanaka Y, Kazuoka T, Yoshida M, et al. Thermostable aldehyde dehydrogenase from psychrophile, Cytophaga sp. KUC-1:Enzymological characteristics and functional properties [J]. Biochemical and Biophysical Research Communications,2002,298(5):632-637
    萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].第三版.黄培堂等译.北京:科学出版社,2002
    Baneyx F. Recombinant protein expression in Escherichia coli [J]. Current Opinion in Biotechnology, 1999,10(5):411-421
    Bas D, Boyaci I H. Modeling and optimization Ⅰ:Usability of response surface methodology [J]. Journal of Food Engineering,2007,78(3):836-845
    Chen R R. Permeability issues in whole-cell bioprocesses and cellular membrane engineering [J]. Applied Microbiology and Biotechnology,2007,74(4):730-738
    Donovan R S, Robinson C, Glick B. Review:Optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter [J]. Journal of Industrial Microbiology and Biotechnology,1996,16(3):145-154
    Gombert A, Kilikian B. Recombinant gene expression in Escherichia coli cultivation using lactose as inducer [J]. Journal of Biotechnology,1998,60(1-2):47-54
    Ishige T, Honda K, Shimizu S. Whole organism biocatalysis [J]. Current opinion in chemical biology, 2005,9(2):174-180
    Kotik M, Kocanova M, Maresovd H, et al. High-level expression of a fungal pyranose oxidase in high cell-density fed-batch cultivations of Escherichia coli using lactose as inducer [J]. Protein Expression and Purification,2004,36(1):61-69
    Lo P K, Hassan O, Ahmad A, et al. Excretory over-expression of Bacillus sp. Gl cyclodextrin glucanotransferase (CGTase) in Escherichia coli:Optimization of the cultivation conditions by response surface methodology [J]. Enzyme and Microbial Technology,2007,40(5):1256-1263
    Maldonado L M T P, Hernandez V E B, Rivero E M, et al. Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology:The case of human interferon beta [J].Biomolecular Engineering,2007,24(2):217-222
    Martinez A, Knappskog P M, Olafsdottir S, et al. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme [J]. Biochemical Journal,1995, 306(Pt 2):589
    Murthy M, Swaminathan T, Rakshit S, et al. Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology [J]. Bioprocess and Biosystems Engineering,2000, 22(1):35-39
    Neubauer P, Hofinann K, Hoist O, et al. Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer [J]. Applied Microbiology and Biotechnology,1992,36(6):739-744
    Pan H, Xie Z, Bao W, et al. Optimization of culture conditions to enhance cis-epoxysuccinate hydrolase production in Escherichia coli by response surface methodology [J]. Biochemical Engineering Journal,2008,42(2):133-138
    Plackett R L, Burman J P. The design of optimum multifactorial experiments [J]. Biometrika,1946,33(4): 305-325
    Ramchuran S O, Holst O, Karlsson E N. Effect of postinduction nutrient feed composition and use of lactose as inducer during production of thermostable xylanase in Escherichia coli glucose-limited fed-batch cultivations [J]. Journal of bioscience and bioengineering,2005,99(5):477-484
    Schein C H. Production of soluble recombinant proteins in bacteria [J]. Nature Biotechnology,1989, 7(11):1141-1149
    Studier F W, Moffatt B A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes [J]. Journal of Molecular Biology,1986,189(1):113-130
    Sunitha K, Kim Y-O, Lee J-K, et al. Statistical optimization of seed and induction conditions to enhance phytase production by recombinant Escherichia coli [J]. Biochemical Engineering Journal,2000, 5(1):51-56
    Villaverde A, Mar C M. Protein aggregation in recombinant bacteria:biological role of inclusion bodies [J]. Biotechnology letters,2003,25(17):1385-1395
    Wang D, Li Q, Mao Y, et al. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli [J]. Applied Microbiology and Biotechnology,2010,86(6):2025-2035
    Weng Y P, Hsu F C, Yang W S, et al. Optimization of the overexpression of glutamate mutase S component under the control of T7 system by using lactose and IPTG as the inducers [J]. Enzyme and Microbial Technology,2006,38(3-4):465-469
    Xiao Z, Lv C, Gao C, et al. A novel whole-cell biocatalyst with NAD+regeneration for production of chiral chemicals [J]. PLOS ONE,2010,5(1):e8860
    王丹,毛雨,马兰,等.乳糖诱导丙酮酸羧化酶基因在大肠杆菌中的表达及对丁二酸产量的影响[J].生物工程学报,2009,(9):1338-1344
    曾浩,邹全明.重组大肠埃希菌发酵工艺的影响因素及策略[J].中国微生态学杂志,2003,15(1):57-59
    熊宗贵.生物技术制药[M].北京:高等教育出版社.1999
    吴一凡,张双全.乳糖诱导pET载体表达重组蛋白的研究[J].南京师大学报:自然科学版,2002,25(1):89-93
    张毅,屈贤铭.乳糖作为诱导剂对重组目的蛋白表达的影响[J].生物工程学报,2000,16(4):464-468
    罗红霞,林少华,任发政,等.重组大肠杆菌BL21 (DE3)/rbLF-N高密度培养条件优化[J].中国乳品工业,2007,35(1):10-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700