长期不同施肥对土壤酸化作用的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酸化是土壤质量退化的重要形式。土壤酸化本是一个自然过程,其速度非常缓慢,但近几十年来,由于工业飞速发展导致酸沉降的增加,人为活动如施肥及耕作作用大大加速土壤酸化进程。目前土壤酸化发生机制、时空演变规律及其恢复重建等已成为土壤退化研究的重要组成部分,成为21世纪国际土壤学、农学及环境科学界共同关注的热点问题。
     本文利用江苏地区典型水稻土和潮土长期定位试验,研究了长期不同施肥对酸碱缓冲容量及土壤酸化速率的影响,并结合土壤添加秸秆、猪粪等培养试验、施氮及模拟酸沉降试验,对土壤酸化的关键影响因素、不同致酸因子的贡献进行了较系统的研究。主要结果如下:
     1)与第二次土壤普查结果相比,太湖地区6类水稻土pH和CEC显著下降,降幅分别为1.1个单位和8.3cmol(+)·kg-1,土壤pH的内梅罗指数分别由1982年的2.69~2.91(平均2.82)下降为2004年的1.73~2.41(平均2.05),成为土壤肥力单因子质量指数最低指标;江苏淮北潮土的土壤肥力限制因素也从有效养分低演变为土壤pH的降低,表明土壤酸化已成为影响江苏典型土壤肥力质量的主要限制因子。
     2)太湖地区黄泥土长期定位试验采用裂区设计,主处理为施用有机肥与不施有机肥处理,副处理分别为不施肥、施氮肥、施氮磷肥、施氮钾肥、施氮肥+水稻秸秆、施磷钾肥、施氮磷钾肥,共14个处理。26年长期不同施肥后,不同处理pH降低了0.38~1.39,土壤酸化速率为0.50-1.74kmol H+hm-2a-1,酸化修复所需CaCO3用量为24.7-87.1kg-hm-2·a-1。各处理土壤pH以施磷钾肥处理(CPK)为最高(pH6.42),纯空白对照(CO)次之(pH6.38),施氮肥结合有机肥及秸秆处理(MRN)最低(5.41);各处理土壤酸化速率以施磷钾肥(CPK)处理最低,施氮肥结合有机肥及秸秆(MRN)处理最高,施用氮肥基础上增施有机肥促进土壤酸化,其酸化速率大于单施化肥处理。增施有机肥及秸秆处理土壤缓冲容量保持稳中有升,这主要与土壤有机质的提升有关;而pH的下降则与盐基离子含量的下降有关。
     3)淮北地区黄潮土长期定位试验共设9个处理,采用裂区设计,主处理1:不施有机肥;副处理:①空白对照(CK,不施肥)、②施氮肥(N)、③施氮磷肥(NP)、④施氮钾肥(NK)、⑤施氮磷钾肥(NPK)。主处理2:施有机肥;副处理:①不施化肥(M)、②施氮肥(NM)、③施氮磷肥(NPM)、④施氮磷钾肥(NPKM).30年连续不同施肥后,徐州石灰性潮土土壤pH降低0.41~0.70;不同施肥处理耕层土壤酸碱缓冲容量为15.82-21.96cmol-kg-1,施用化肥促进土壤酸化加速,单施氮肥酸化程度最高,而化肥配施有机肥处理则缓解土壤酸化加速。长期不同施肥下石灰性潮土仍处于碳酸钙缓冲体系,该体系下,有机质对石灰性潮土土壤酸碱缓冲体系影响较弱。长期不同施肥显著改变0-40cm层土壤的碳酸钙和活性碳酸钙含量,且活性碳酸钙含量在剖面中的分异变化比碳酸钙大,其含量与土壤酸碱缓冲容量达到极显著正相关关系,表明长期施肥管理下,土壤活性碳酸钙更能敏感反应土壤基本理化性状的变化。
     4)3年田间小区试验研究了等氮量下不同鸡粪和尿素配比对水稻生长和土壤酸化的影响,鸡粪和尿素配比处理获得较高产量,50%鸡粪处理产量最高。各施肥处理土壤酸碱缓冲容量为2.07-2.36cmol-kg-1,随鸡粪施用比例上升而上升,各处理土壤酸碱缓冲容量与土壤有机质含量、CEC变化趋势一致,其相关系数分别达到极显著、显著相关,显示等氮量下,提高鸡粪施用比例导致土壤盐基离子的累积和有机质的提升是导致土壤酸碱缓冲容量增加的主要原因。
     5)室内添加不同氮含量及用量水稻秸秆培养试验表明,各处理土壤0-40cm层pH降幅为0.01-0.99,总致酸量为56.77-136.18mmol,对相同氮含量秸秆,致酸量随秸秆用量增加而增加,但相同用量下氮含量不同的秸秆间差异较小,增加外源氮量,总致酸量随施氮量增加而上升;各处理致酸因素中,HC03-致酸量占总量的比例为82.01%-92.97%、氮淋溶致酸量占总酸量的比例为6.92-13.04%,淋溶致酸随秸秆用量和施氮量的提高而上升,但低氮秸秆和高氮秸秆间HC03-致酸量相差较小,但氮淋溶致酸量差异较大;有机阴离子循环的致酸比例为0.11-9.98%,其趋势同氮淋溶相一致;而外源H+所占比例较弱,仅为0.001-0.005%。
     6)室内添加不同量猪粪培养试验结果表明,猪粪添加量小于40mg-kg-1时,土壤盐基离子Ca2+、Mg2+、K+、Na+的净淋失量随猪粪添加量增加而上升。试验土壤的酸碱缓冲容量、有机质含量均随猪粪施用量上升呈上升趋势,添加猪粪后,有机质在试验土壤的酸碱缓冲体系中占有主导作用。
     7)室内比较了3个pH梯度降雨和3水平施氮量对水耕铁渗人为土土壤酸化的影响。不同pH降雨及施氮处理土壤的酸度累积量为4.73-15.57mmol H+每柱,以pH6.5降雨不施氮处理、pH2.5添加高氮量(N2)处理酸化速率为最低和最高,相同pH降雨下,致酸量随施氮量增加而上升;不施氮处理土壤酸度累积随降雨pH降低而增加,但中施氮量(150mg-kg-1±)和高施氮量(300mg-kg-1±)下,pH4.5处理土壤酸度累积量则小于pH6.5处理;不同降雨及施氮处理N03-淋溶致酸量为4.32~12.88mmol每柱,NH4+淋溶消耗H+量为0.01-0.29mmol每柱;正常酸沉降(pH6.5)下,中施氮量和高施氮量处理致酸量都大于各梯度pH降雨的致酸量。以上结果表明,单施氮处理的致酸量大于单纯的酸沉降处理,而无论是降雨还是施氮,N03-淋溶在加速土壤酸化进程中占主导作用。
     总之,对于江苏省太湖地区的黄泥土,土壤酸碱缓冲体系处于硅酸盐和盐基离子缓冲体系,该体系下其酸碱缓冲容量的变化受有机质的影响较大,而硝态氮的淋溶和盐基离子的淋失及移出在加速土壤酸化进程中可能占主导作用;江苏淮北潮土则处于碳酸钙缓冲体系,在施用化肥的基础上增施有机肥有减缓土壤酸化的趋势;和模拟不同pH降雨相比,施氮的致酸强度大于降雨,且N03-的淋溶为致酸量的关键因素。黄泥土酸化的加速可以通过增施石灰、合理的养分管理及轮作方式来缓解或控制。
Soil acidification is a naturally occurring phenomenon and is usually caused by long-term addition of protons to the upper layers of soil and subsequent leaching of exchangeable bases. In recent decades, due to the rapid development of chemical and petroleum industries and frequent agricultural practices including fertilization and crop rotation, soil acidification became more accelerated, which is one of the important soil degradation. In this paper, incubation experiments as well as long-term field experiments in typical paddy soil and alluvial soil in Jiangsu Province were carried out to study acid deposition and nitrogen application on soil acidification rates, the key factors of soil acidification, the characteristics of various factors and their contributions to soil acidification.
     Analysis on the198soil samples among6categories of paddy soil in Tai Lake region in2004, showed that the organic matter content, total N, available P and K concentration were significantly improved while pH and CEC were reduced by1.1unit and8.3cmol·kg-1, respectively, compared to the results obtained from the Second National Soil Survey. The pH index of fertility, decreased from2.69-2.91in1982to1.73-2.41in2004, becoming the lowest single soil fertility index. Soil limiting factor of low contents of available nutrients in the Second National Soil Survey is now replaced by those of shallow cultivated horizon, increased soil density and reduced soil pH in North Huai in Jiangsu Province.
     Over26years of different fertilization, the acidification rate of the paddy soil in Tai Lake region was0.50-1.74kmol H+hm-2a-1, and lowest and highest soil acidification rates appeared in the control treatment (no fertilizer) and the treatment of urea plus pig manure and rice straw application, respectively. The required amounts of CaCO3were24.7-87.1kg-hm-2·a-1among all treatments. The pH of major plot of chemical fertilizer (6.10) was0.33higher than the main plot of organic fertilizer addition. Na+, K+, Ca2+and Mg2+concentrations in chemical fertilizer plots were5.24,2.05,39.87and9.04mmol·kg-1, which were2.7%,54.1%,3.1%and13.4%higher than the corresponding organic fertilizer addition plots, irrespectively. Significant differences were found in K+and Ca2+concentration between the two major plots. The soil pH was highest in P and K fertilizer application treatment (pH6.42), followed by the control treatment (pH6.38), the treatment of N plus organic fertilizer and rice straw addition was the lowest (pH5.41), and the main plot with pig manure additional got a low concentration of cation, indicating that the lower pH in the major plot of organic fertilizer amendment might be due to transfer of base cations from soil to plant. The exhaustion of base cations occurred when the yield increased. The buffer capacity of soil amended by organic fertilizers (2.18cmol kg-1) was slightly higher than the chemical fertilzer treatment (2.14cmol-kg-1). Soil buffer capacity was positively correlated to soil organic matter content, and soil pH value decline was due to the cation depeletion.
     Soil pH, CaCO3and active CaCO3contents, soil buffer capacity significantly changed over continuous30-year fertilization on Alluvial soil in Xuzhou City. The topsoil pH was decreased by0.41-0.70. The soil buffer capacity, ranging from15.82to21.96cmol·kg-1, was lowest in sole N treatment and highest in the treatment of manure plus NPK. The soil buffer capacity of chemical fertilizer treatments (except NP) was lower than the control, while the manure treatments had higher soil buffer capacity than the control. The soil buffer capacities of the treatments of MN, MNP and MNPK were3.23,1.56and4.33cmol·kg-1higher than those of N, NP and NPK, irrespectively. The soil buffer capacity was significantly positively correlated to soil CaCO3content, but had no significant correlation with organic matter content and CEC, indicating that Alluvial soil was still in the CaCO3mediated buffer system, in which organic matter had a small role over long term fertilization. Different long term fertilizations altered CaCO3and active CaCO3contents notably in the0-40cm soil layer, and the contents of active CaCO3which was very significantly positively correlated to soil buffer capacity, showed a greater variation along soil profile than that of CaCO3, suggesting that soil active CaCO3could more sensitively reflect variation of soil physical and chemical properties than CaCO3, and the CaCO3mediated buffer system could be subdivided into the active CaCO3mediated buffer system.
     A3-year field experiment was carried out to study the effects of different ratios of chicken manure to urea under the same N input on rice grow and soil acidification. The mean rice yields of the treatments of chicken manure/urea ratio of75%,50%and25%were increased by4%than the chemical fertilizer treatment and0.4%-45.3%higher than that of the control. Chicken manure/urea ratio of50%(7978.5kg-hm"2) had the highest rice yield, followed by the ratio of25%(929.0kg·hm-2). No significant difference in rice yields was found between the chicken manure/urea ratios of75%,50%and25%. Soil CEC increased with the increasing of the proportion of chicken manure, the ratios of75%and100%had significantly higher CEC than other treatments, while only urea treated soil had the lowest CEC. With the increasing of chemical fertilizer, soil pH showed a significant declining tendency. The decline of soil pH was significantly and linearly related to increasing of the proportion of urea (R2=0.998**). Soil buffer capacity ranged from2.07-2.36cmol-kg"1and was increased with the increasing of the proportion of chicken manure. Soil buffer capacity showed a similar trends to soil organic matter contents and CEC, with the correlation co-efficiency of0.903**and0.859*. The above results indicated that under the same N input, soil base cation accumulation and improved organic matter contents caused by the elevated proportion of chicken manure should be an important reason for enhancing soil buffer capacity.
     Application of rice straw with different N concentrations led to a0.01-0.99reduction in pH of0-40cm soil layer. The total amounts of induced acid ranged from56.77to136.18mmol, which was increased with the increasing of rice straw input under the same N contents. However, little difference existed between treatments of the same rice straw amounts under different N contents. The total amounts of induced acid were increased with the increasing of exogenous N input. The proportion of HCO3induced acid amount accounted for82.01%-92.97%, and N leaching took up6.92-13.04%. The amount of acid induced by N leaching increased with the increasing of straw and N input. Little difference was found in HCO3induced acid amount, while there was great difference in N leaching induced acid between treatments. The proportion of organic anion cycling induced acid took up0.11-9.98%, and showed a similar trend to N leaching. The proportion of exogenous H+induced acid was little, only0.001-0.005%.
     Results from the indoor experiment on different application rates of pig manure showed that soil organic matter content was significantly correlated to soil buffer capacity and pH, with the correlation co-efficiencies of0.6726and0.5363, respectively. Increased application of pig manure caused increased leaching of Ca2+and Mg2+.
     Indoor simulation experiment was carried out to compare the effects of3pH values and3nitrogen application rates on soil acidification. Soil acidification accumulation varied from4.73to15.57mmol H+/column, among which the highest and lowest soil acidification accumulation occurred on the treatments of pH6.5depositions without N and pH2.5 depositions with high N input, respectively. Soil acidification accumulation was elevated with the increase of N input under the same pH deposition. Soil acidification accumulation increased with the decrease of pH in zero N application treatment, when the same amounts of N were provided. However, within medium (150mg·kg-1soil) and high (300mg·kg-1soil) N input, soil acidification accumulation was lower in pH4.5deposition than pH6.5deposition. Nitrate-induced soil acidification accumulation was4.32-12.88mmol per column, and ammonia leaching consumed H+by0.01-0.29mmol per column. In case of normal deposition (pH6.5), soil acidification accumulation was greater than other pH deposition treatments under medium and high N inputs. The above results indicated that soil acidification accumulation induced by N input was greater than acid deposition. Nitrate leaching played a leading role in the acceleration of soil acidification.
     In conclusion, Hapli-Stagnic Anthrosols was silicate and cations buffering system, soil acidification induced either by matter single application of chemical fertilizer, or of chemical fertizer, or by combined appliacation of chemical fertilizer and organic fertilizer, or by mixed application of organic fertilizer, rice straw and chemical fertilizer, was influenced by soil buffering capacity which in turn was affected by soil organic matter content; Accumulation or depletion of base cations was a major factor to the in-consistent acidification trend between different fertilization treatments. The content of calcium carbonate was a key factor affected pHBC for the sandy loam calcareous fluvor-aquic soil, and the active calcium carbonate more sensitively response to different fertilizer treatments, calcium carbonate buffering system can be further broken down into the soil active calcium carbonate buffering system. Compared to different pH rainfall, nitrogen application contributed more to soil acidification and nitrate was the key acidity inducing factor. Rice straw addition induced acidification in neutral soils was mainly affected by bicarbonate ion caused by soil respiration and nitrogen leaching, and bicarbonate ion induced acidity amount was the major factor.
引文
[1]Adams F. Some effects of lime, nitrogen and soluble and insoluble phosphate on the yield and mineral composition of established grassland [J]. Journal of Agriculture Science,1984,102: 219-226
    [2]Aitken R L, Moody P W. The effect of valence and ionic strength on the measurement of pH buffer capacity [J]. Australian Journal of Soil Research,1994,32(5):975-984
    [3]Avnimelech Y and Haher M. Ammonia volatilization from soils:Equilibrium considerations [J]. Soil Science Society of America Journal,1977,10,80-84
    [4]Babaokaza. Acidification in nitrogen saturated forest catchment [J]. Soil Science and Plant Nutrition,1998,44(4):513-525
    [5]Barak P, Jobe B O, Krueger A R, et al. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin [J]. Plant and Soil,1997,197:61-69
    [6]Bernd M, Andrew D N. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials [J]. Soil Biology & Biochemistry,2000,32:805±813
    [7]Berndtsson R, Bahri A, Jinno K. Spatial dependence of geochemical elements in a semiarid agricultural field II.Geostatistical properties [J]. Soil Science Society of America Journal,1993, 57
    [8]Berner R A. Weathering, plants and the long-term carbon cycle [J]. Geochim. Cosmochim. Acta,1992,56:3225-3231
    [9]Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agriculture,1995,46,1459-1466
    [10]Bolan N S, Hedley M J, White R E. Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures [J]. Plant and Soil,1991134:53-63
    [11]Bolan N S, Scotter D R, Syers J K and Tillman R W 1986 The effect of adsorption on sulphate leaching [J]. Soil Sci.Soc. Am. J.50,1419-1424
    [12]Bolan N S, White R E and Hedley M J. A review of the use of phosphate rock as fertilizers for direct application in Australia and New Zealand. Aust. J. Exp. Agric.1990,30,297-313
    [13]Breeuwsma A, De V W. The relative importance of natural production of H in soil acidification [J].Netherland Journal of Agricultural Science,1984,32:161-163
    [14]Bui EN, Loeppert RH, Wilding LP. Carbonate phases in calcareous soils of the western United States [J]. Soil Science Society of American Journal,1990,54:39-45
    [15]Burgess T. M., Webster R. Optimal interpolation and isarithmic mapping of soil properties I. The semi-variogram and punctual Kriging [J]. Journal of Soil Science,1980,31:315-341
    [16]Carter M R. Association of total CaCO3 and active CaCO3 with growth of five tree species on chemozemic soils [J]. Canadian Journal of Soil Science,1981,61:173-175
    [17]Chen Qian, Zucong Cai. Leaching of nitrogen from subtropical soils as affected by nitrification potential and base cations [J]. Plant Soil,2007,300:197-205
    [18]Curtin D, Campbell C.A, Jalil A. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biology & Biochemistry,1998:30,57-64
    [19]David M B, Vance G F. Generation of soil solution acid-neutralizing capacity by addition of dissolved inorganic carbon. Environ Sci.Technol,1989,23:1021-1024
    [20]De Vries W and Breeuwsma A. The relation between soil acidification and element cycling. Water Air Soil Pollut.1987,35,293-310
    [21]Dinkelaker B, REmheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.) [J]. Plant Cell Environmental,1989,3(12):285-292
    [22]Donald C M and Williams C H. Fertility and Productivity of a podzolic soil as influenced by subterranean clover(Trifolium subterraneum L.) and superphosphate [J]. Aust. J. Agric. Res.1954, 5,664
    [23]Donald G. M, Randal J. S, Robert J. Z. Mineralogical comparison of agriculturally acidified and naturally acidic soils [J]. Geoderma.2003,114:355-368
    [24]Duan L, Huang Y M, Hao J M,et al. Vegetation uptake of nitrogen and base cations in China and its role in soil acidification [J]. Science of the Total Environment,2004,330:187-198
    [25]Edmeades D C. The long term effects of manures and fertilizers on soil productivity and quality:A review[J]. Nutrient Cycling in Agroecosystems,2003,66:165-180
    [26]Erikssion E. Modeling acidification effects on coniferous forest soils [J]. Water, Air and Soil pollutant,1998.104:353-388
    [27]Federer C A, Hoenbeck J W. The buffer capacity of forest soils in New England [J].Water air and soil pollution.1985,26:163-173
    [28]Foy C D, Chaney R L,White W W. The physiology of metal toxicity in plants [J]. Ann. Rev. Plant Physiol.,1978,29:511-526
    [29]Franzen D W., Hofman V L., Halvorson A D., et al. Sampling for site-specific farming:Topogrghy and nutrient considerations [J]. Better Crops,1996,80(3):14-18
    [30]Franzluebbers A J., Hons F M. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no-tillage [J]. Soil & Tillage Research.1996,39:229-239
    [31]Furrer G, Sollins P, Westall J C. The study of soil chemistry through quasi-steady state models: Acidity of soil solution [J]. Geochimi et Cosmochim Acta,1990,54:2363-2374
    [32]Gregory Lesturgez, Roland Poss, Andrew Noble et al., Soil acidification without pH drop under intensive cropping systems in Northeast Thailand Agriculture [J]. Ecosystems and Environment, 2006,2-4(114):239-248
    [33]Guillaume Limousin, Daniel Tessier. Effects of no-tillage on chemical gradients and topsoil acidification[J]. Soil & Tillage Research,2007,1-2 (92):167-174
    [34]Guillermo A. D, Hernan R. Sainz R, et al., Long term nitrogen fertilization:Soil property changes in an Argentinean Pampas soil under no tillage [J]. Soil & Tillage Research 2011,2 (114):117-126
    [35]Guo H J, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010,11:1-4
    [36]Hartikainen H. Soil response to acid percolation. Journal of Environmental Quality [J]. 1996,25(4):638-645
    [37]Hedlund A, Witter E and Bui X A. Assessment of N,P and K management by nutrient balances and flows on pre-urban farms in southern Vietnam [J]. Europ J Agronomy,2003,20(1):71-87
    [38]Helyar K R and Porter W M. Soil acidification, its measurement and the process involved. In Soil Acidity and Plant Growth. Ed. A D Robson. pp.1989,61-102
    [39]Helyar K R, Cregan P D and Godyn D L. Soil acidity in New South Wales-current pH values and estimates of acidification rates [J]. Aust. J. Soil Res.,1990,28,532-537
    [40]Helyar K R. Nitrogen cycling and soil acidification [J]. J. Aust. Inst. Agric. Sci.1976,42,217-221
    [41]Hutchings N J, Sommer S G, Andersen J M, et al. A detailed ammonia emission inventory for Denmark [J]. Atmospheric Environment,2001,35(12):1959-1968
    [42]James B R, Riha S J. Forest soil organic horizon acidification:Effects of temperature time and solution/soil ratio [J]. Soil Sci. Soc. Am J,1987,51:458-462
    [43]James C O, Victoria J F, Olivier A, et al., Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature,2005,437,681
    [44]Jin H Y, Ren-K X, Qian W et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars [J]. Journal of Soils Sediments DOI 10.1007/s11368-011-0
    [45]Johnson D W, Kelly J M, Swank W T, Cole D W, Van Miegrot H, Hornbeck J W, Pierce R S, van Lear D. The effects of leaching and whole-tree harvesting on cation budgets of several forests [J], 1988,17(3):418-424
    [46]Johnson D W, Todd D E. Nutrient cycling in forests of Walker Branch Water-shed:roles of uptake and leaching in causing soil change. J Environ Qual.,1990,19:97-104
    [47]Ju X T, Kou C L. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environment pollution,2007.2(145):497-506
    [48]Krug E C, Frink C R. Acid rain on soils:a new perspective [J].Science,1983,221:520-525
    [49]Lefroy R D B, Blair G, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance [J]. Plant and Soil,1993,155-156
    [50]Lei Duan, Yongmei Huang, Jiming Hao et al., Vegetation uptake of nitrogen and base cations in China and its role in soil acidification[J]. Science of the Total Environment,2004,1-3 (330) 187-198
    [51]Lindsay W L. Chemical Equilibria in Soils. John Wiley and Sons, New York,1971:221-321
    [52]Logan, T J, Lal R, Dick W A. Tillage systems and soil properties in North America [J]. Soil Till. Res.1991,20,241-270
    [53]Logninow W, Wisniewski W, Strong W M, et al Fractionation of organic carbon based on susceptibility to oxidation [J]. Polish Journal of Soil Science,1987,20:47-52
    [54]Lubos B, Lenka M, Ondrej D. Factors controlling spatial distribution of soil acidification and Al forms in forest soils [J]. Journal of Inorganic Biochemistry,2005,99:1796-1806
    [55]Ludwig B, Khanna P K. Anurugsa B et al., Assessment of cation and anion exchange and pH buffering in an Amazonian Ultisol [J]. Geoderma,2001,102,27-40
    [56]Magdoff F R, Bartlett R J. Soil pH buffering revisited [J]. Soil Sci. Soc. Am J,1985,49:145-148
    [57]Malhi S J, Nyborg M, Harap iak J T. Effects of long-term N fertilizer-induced acidification and liming on micronutrients in soil and in bromegrass hay [J]. Journal of Plant Nutrition,2000,7(23):903-912
    [58]Mao X Z, Xin J, Guo L J. Experimental investigation on aluminum release from haplicacrisols in southeastern China [J]. Applied Geochemistry,2004,(19):981-990
    [59]Matowo P R, Pierzynski G M, Whitney D et al., Soil chemical properties as influenced by tillage and nitrogen source, placement, and rates after 10 years of continuous sorghum [J]. Soil Till. Res.1999,1(50):11-19
    [60]Matson P A, Mcdowell W H, Townsend A R, et al., The globalization of N deposition:Ecosystem consequences in tropical environments [J]. Biogeochemistry,1999,46:67-83
    [61]Matsuyama N, Saigusa M, Sakaiya E, et al. Acidification and soil productivity of allophonic Andosols affected by heavy application of fertilizers [J]. Soil Science and Plant Nutrition,2005, 51(1):117-123
    [62]Meng L, Ding W X, Cai Z C. Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil [J], Soil Biology & Biochemistry,2005,37:2037-2042
    [63]Mokolobate M S & Haynes R J. Comparative liming effect of four organic residues applied to an acid soil[J]. Biol. Fertil. Soils,2002,35,79-85
    [64]Moral R, Perez Murcia M D, Perez Espinosa A, et al. Salinity, organic content, micronutrients and heavy metals in pig slurries from Southeastern Spain [J]. Waste Management 2008,2(27):367-371
    [65]Nicholson F A, Chambers B J, William J R, et al. Heavy metal contents of livestock feeds and animal manures in England and Wales [J]. Bioresource Technology,1999,70 (1):23-31
    [66]Noble A D, Zenneck Ⅰ, Randall P J. Litter ash alkalinity and neutralization of soil acidity[J]. Plant and Soil,1996,179:293-302
    [67]Nyatsanga T and Pierre W H. Effect of nitrogen fixation by legumes on soil acidity. Agron. J. 1973,65,936-940
    [68]Omeira N, Barbour E K, Nehme P A, et al., Microbiological and chemical properties of litter from different chicken types and product ion systems [J]. Science of the Total Environment,2006, 1(367):156-162
    [69]Pierre W H and Banwart W L. Excess-base and excess base/nitrogen ratios of various crop species and plant parts [J]. Agronomy Journal,1973,65(1):91-96
    [70]Pocknee, S., Sumner, M.E.,1997. Cation and nitrogen contents of organic matter determine its soil liming potential [J]. Soil Science Society of America Journal,1997,61,86-92
    [71]Porebska G and Mulders J. Effect of long term nitrogen fertilization on soil Al chemistry. J. Ecol. Chem.,1994,3:269-280
    [72]Poss R, Smith C J, Hui F X. Rate of soil acidification under wheat in a semi-arid environment [J]. Plant Soil,1995,177:85-100
    [73]R. K. Xu&D. R. Coventry. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil [J]. Plant and Soil,2003,250:113-119
    [74]Raven J A and Smith F A. Nitrogen assimilation and transport in vascular land plants in relation to intercellular pH regulation [J].New. Phytol.1976,76:415-431
    [75]Ren K X, An Zh Zh, Qing M L et al., Acidity regime of the red soils in a subtropical region of southern China under field conditions [J]. Geoderma,2003,115:75-84
    [76]Reuss J O, Cosby B J, Wright R F. Chemical processes governing soil and water acidification. Nature,1987,329:27-32
    [77]Reuss J O, Walthall P M. Soil reaction and acidic deposition[M] Norton S A, Lindberg S E, Page A L. eds. Acidic precipitation. Berlin:Spinger-Verlag,1989:1-33
    [78]Reuss J O. Chemical processes governing soil and water acidification [J]. Nature,1987,329(3):27
    [79]Reynolds B, Lowea J A H, Smith R I. Acid deposition in Wales:the results of the 1995 Welsh Acid Waters Survey Environmental Pollution,1999, (105) 251±266
    [80]Ridley A M, White R E, Helyar K R, et al., Nitrate leaching loss under annual and perennial pastures with and without lime on a duplex (texture contrast) soil in humid south-eastern Australia. European journal of Soil Science,2001,2(52):237-252
    [81]Ritchie G S P, Dolling P J.The role of organic matter in soil acidification. Australian Journal of Soil Research 1985,23:569-576
    [82]Rollwagen B A, Zasosski R J. Nitrogen source effects on rhizosphere pH and nutrient accumulation by Pacific Northwest conifers [J]. Plant Soil,1988,105:792-861
    [83]Russell AE, Laird DA, Mallarino AP. Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols [J]. Soil Science Society of America Journal,2006,70(1):249-25
    [84]Russell J S. Soil fertility changes in the long-term experimental plots at Kybybofite, South Australia.1. Changes in pH, total nitrogen, organic carbon, and bulk density. Aust. J. Agric. Res.1960,11,902-921
    [85]Sarah J K, David W, Keith W T et al.. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil biology & Biochemistry,2005,5:1-14
    [86]Silber A, Ganmore N R, Ben J J. Effects of nutrient addition on growth and rhizosphere pH of Leucadendron Safari-Sunset [J]. Plant Soil,1998,199:205-211
    [87]Sposite G. The environmental chemistry of Aluminum. Michigan:Lewis Publishers,1996
    [88]Stamatiadisa S, Wernerb M, Buchanan M. Field assessment of soil quality as affected by compost and fertilizer application in a broccoli field (San Benito County, California) [J]. Applied Soil
    [89]Steele K W, Judd M J and Shannon P W. Leaching of nitrate and other nutrients from a grazed pasture[J]. N.Z.J. Agric. Res.1984,27,5-11
    [90]Summner M E. Acidification. In:Lal R, Blum W H,Valentine C, Stewart B A(eds). Methods for assessment of soil degradation. Advances in Soil Science. Boca Roton,New York:CRC Press. 1998,213-235
    [91]Tabatabai M A. Effect of acid rain on soils[J]. CRC Critical Reviews in Environmental Control. 1986,15(1):65-110
    [92]Tang C, Yu Q. Chemical composition of legume residues and initial soil pH determine pH change of a soil after incorporation of the residues [J]. Plant and Soil,1999,215:29-38
    [93]Tang, C., Sparling, GP., McLay, C.D.A., Raphael, C., Effect of short-term legume residue decomposition on soil acidity[J]. Australian Journal of Soil Research,1999,37,561-573
    [94]Tarkalson D D, Payero J O, Hergert G W et al., Acidification of soil in a dry land winter wheat-sorghum/corn-follow rotation in the semiard U.S. Great plants[J]. Plant and Soil, 2006(283):367-379
    [95]Tang C, Yu Q. Chemical composition of legume residues and initial soil pH determine pH change of a soil after incorporation of the residues[J]. Plant and Soil,1999,215,29-38
    [96]Tian G, Kang B T and Brussaard L. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions-decomposition and nutrient release[J]. Soil Biology and Biochemistry,1992,10(22):1051-1060
    [97]Ulrich B. Effects of accumulation air pollutants in forest ecosystem. Dordrecht:Reided Publishing. Company,1983:331-342
    [98]Unger P W. Organic matter, nutrient, and pH distribution in no and conventional-tillage semiarid soils [J]. Agron. J.1991,83,186-189
    [99]Van Beemen N. Acidic deposition and internal proton in acidification of soils and water [J]. Nature,1984,367:599
    [100]Van Beusichem M L. Nutrient absorption by pea plants during dinitrogen fixation.1. Comparison with nitrate nutrition [J]. Neth. J. Agric. Sci.1981,29,259-272
    [101]Van Breemen N, Mulder J, Driscoll C T. Acidification and alkalinization of soils [J]. Plant and Soil,1984,75:283-308
    [102]Van Breemen. Acidic deposition and internal proton in acidification of soils and water [J]. Nature, 1984,367:599.
    [103]Wang Hui, Xu R K, Wang N, LI H Xi. Soil acidification of alfisols as influenced by tea cultivation in eastern China[J], Pedosphere 2010,20(6):799-806,
    [104]Weaver A R, Kissel D E, Chen F, West L T, Adkins W, Richman D, Luvall J C. Mapping soil pH buffering capacity of selected fields in the coastal plain [J]. Soil Science Society of America Joum
    [105]Welch S A, Ullman W J. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate [J].Geochim. Cosmochim. Acta,1996,60:2939-2948
    [106]Wesselink L G, Van Breemen N., Mulder J., et al. A simple model of soil organic matter complexation to predict the solubility of aluminum in acid forest soils[J]. Eur. J Soil Sci.,1996, 47,373-384
    [107]Whitbread A M, Lefroy R D B, Blair G J. A survey of the impact of cropping on soil physical and chemical properties in north-western New South Wales [J]. Australian J. of Soil Res.,1998, 4(36):669-681
    [108]Williams C H. Soil acidification under clover. Aust. J. Exp. Agric [J]. Anim. Husb.1980,20, 561-567
    [109]Wit H A, Kotowski M, & Mulder J. Modeling aluminum and organic matter solubility in the forest floor using WHAM[J]. Soil Sci. Soc. Am. J,1999,63,1141-1148
    [110]Wong M T F, Nortcliff S & Swift R S. Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farm yard manure and peat applied to tropical soils[J]. Commun. Soil Sci. Plant Anal.,1998,29,2927-2937
    [111]Wong M T F & Swif R S T. Role of organic matter in alleviating soil acidity. In:Zdenko Rengel et al. Handbook of Soil Acidity. Marcel Dekker:New York,2003,337-358
    [112]Yan F, Schubert S & Mengel K. Soil pH increase due to biological decarboxylation of organic anions[J]. Soil Biol. Biochem.,1996,28,617-624
    [113]Tabatabai M A. Effect of acid rain on soils[J]. CRC Critical Reviews in Environmental Control. 1986,15(l):65-110
    [114]Tang C, Yu Q. Chemical composition of legume residues and initial soil pH determine pH change of a soil after incorporation of the residues[J]. Plant and Soil,1999,215,29-38
    [115]Xu J M, Tang C, Chen Z L. The role of plant residues in pH change of acid soils differing in initial pH [J]. Soil Biology & Biochemistry,2006,38:709-719
    [116]Xu R K, Coventry D R, Farhoodi A, et al. Soil acidification as influenced by crop rotations, stubble management, and application of nitrogenous fertilizer, Tarlee, South Australia [J], Australian Journal of Soil Research,2003,40(3) 483-496
    [117]Xu R K, Zhao A Z, Li Q M et al. Acidity regime of the red soils in a subtropical region of southern China under field conditions [J]. Geoderma,2003,115:75-84.
    [118]Ye X M, Hao J M, Duan L,et al. Acidification sensitivity and critical loads of acid deposition for surface waters in China [J]. The Science of the Total Environment,2002,289:189-203
    [119]Yeboah E, Ofori P, Quansah G. W. Improving soil productivity through biochar amendments to soils African Journal of Environmental Science and Technology Vol.3 (2), pp.034-041, February, 2009
    [120]Yu Z, Duan L, Guo J X et al., Soil Acidification in China:Is Controlling SO2 Emissions Enough [J]. Environmental Science & Technology,2009,43(21):8020-8026
    [121]Yuan J H, Xu R K, Qian W. et al., The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol [J]. Soil Use and Management,2011,27(1):110-115
    [122]Zbigniew Dzwonko, Stefan Gawronski. Effect of litter removal on species richness and acidification of a mixed oak-pine woodland [J]. Biological Conservation 2002,3(106) 389-398
    [123]艾绍英,孙自航,姚建武,等.氮肥种类及用量对赤红壤pH和可溶性盐的影响[J].生态环境 2008,17(4):1614-1618
    [124]宾克利.酸性沉降与森林土壤-美国东南部的沉降环境及研究实例[M].北京:科学出版社,1993
    [125]蔡泽江.长期施肥下红壤酸化特征及影响因素[D].北京:中国农科院,2010
    [126]曹国良,安心琴,周春红等.中国区域反应性气体排放源清单[J].中国环境科学2010,30(7):900-906
    [127]陈翠玲,蒋爱凤,任秀娟,等.潮土区不同质地类型土壤对酸缓冲性能的研究[J].河南农业科学,2005,64-66
    [128]陈怀满.环境土壤学[M].北京:科学出版社.2005,pp 370-380
    [129]陈静.大气酸沉降及其环境效应的研究进展[J].首都师范大学学报,1999,20(1):79-84
    [130]陈建国,张杨珠,曾希柏,等.长期定位施肥对湖南水稻土有效态微量养分的影响.湖南农业大学学报,2008,34(5):591-595
    [131]陈利秋.世界环境科技发展与实力分析[M]·北京:中国环境科学出版社,1998
    [132]成杰民,胡光鲁,潘根兴.用酸碱滴定曲线拟合参数表征土壤对酸缓冲能力的新方法[J].农业环境科学学报,2004,23(3):569-573
    [133]成杰民,潘根兴,郑金伟.太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探[J].农业环境保护,2001,20(3):141-144
    [134]高弼模,于书房,高贤彪,等.山东省大棚土壤养份调查[A].见:李晓林,张福锁,米国华主编.平衡施肥与可持续优质蔬菜生产[M].北京:中国农业大学出版社,2000,48-51
    [135]韩国钢.中国2020年环境保护战略目标与预测[M].北京:中国环境科学出版社,1993
    [136]黄平,张佳宝,朱安宁,等.黄淮海平原典型潮土的酸碱缓冲性能,中国农业科学,2009,42(7):2392-2396
    [137]江苏省土种志[M],1996
    [138]江泽普,韦广泼,蒙炎成,等.广西红壤果园土壤酸化与调控研究[J].西南农业学报,2003,16(4):90-94
    [139]姜军,徐仁扣,赵安珍.用酸碱滴定法测定酸性红壤的pH缓冲容量[J].土壤通报,2006,37(6):1247-1248
    [140]蒋仁成,厉志华,李德民.有机肥和无机肥在提高黄潮上肥力中的作用研究[J],1990,27(2):179-185
    [141]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000(1):11-17
    [142]栾书荣,汪晓丽,洪岚,等.土壤中掺入不同植物材料对其pH的影响[J].扬州大学学报,2005,26(3),62-65.
    [143]李金惠,汤鸿霄.酸化模型在国内的发展与应用进展[J].环境科学进展,1999,7(2):1-6
    [144]李恋卿,潘根兴,龚伟群,等.太湖地区几种水稻土的有机碳储存及其分布特性[J].科技通报2000,16(6):421-426
    [145]李文华,杨修.环境与发展[M].北京:科学技术文献出版社,1984.80-83
    [146]李学垣.土壤化学[M].北京:高等教育出版社174-178
    [147]廖柏寒,戴昭华.土壤对酸沉降的缓冲能力与土壤矿物的风化特征[J].环境科学学报,1991,11(4):425-431
    [148]凌智永,李志忠,王少朴,等.伊犁可克达拉剖面有机碳、碳酸钙分布特征及其环境意义.干旱区资源与环境,2010,24(2):195-199
    [149]刘付程,史学正,于东升.近20年来太湖流域典型地区土壤酸度的时空变异特征[J].长江流域资源与环境,2004,15(6):740-744.
    [150]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999
    [151]吕焕哲,王凯荣,谢小立.施用水稻秸秆对酸性红壤铝形态的动态影响[J],水土保持学报2006,20(4):110-112
    [152]栾书荣,汪晓丽,洪岚.土壤中掺入不同植物材料对其pH的影响[J].扬州大学学报(农业与生命科学版),2005,26(3):62-65
    [153]孟磊,丁维新,蔡祖聪.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展, 2005,20(6):687-692
    [154]牛文静,李恋卿,潘根兴.等.太湖地区水稻土不同粒级团聚体中酶活性对长期施肥的响应.应用生态学报.2009,20(9):2181-2186
    [155]南方红壤退化机制与防治措施研究专题组‘中国红壤退化机制与防治[M]北京:中国农业出版社,1999,12,84-85
    [156]倪进治,徐建民,谢正苗,等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报,2001,7(4):374-378
    [157]宁安荣,张洪生,张跃民,等.酸沉降对蔬菜吸收养分的影响[J].农业环境科学学报,2003,22(6):651-655.
    [158]潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响[J].生态学报,2004,26(11):3704-3710
    [159]潘根兴.西德对土壤酸化问题的研究进展[J].土壤学进展,1991,13(3):32-36
    [160]钱琛,蔡祖聪.硝化作用驱动下红壤渗漏液的酸化[J],土壤学报,2010,47(1)77-83.
    [161]秦明周,赵杰.城乡结合部土壤质量变化特点与可持续性利用对策[J].地理学报,2000,55(5):545-553.
    [162]戎秋涛杨春茂徐文彬.土壤酸化研究进展.1996,11(4):396-401
    [163]瑞典农业部环境委员会,姜邦晔,邱永祥,胡镇欧等译.环境酸化的现状与展望.北京:科学出版社,1983.139-142,165-176
    [164]瑞典农业部环境委员会·环境酸化的现状与展望[M],北京:科学出版社,1993
    [165]沈宏,曹志洪.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报,2000,37(2):166-173
    [166]宋歌,孙波,教剑英.测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报,2007,44(2):288-293
    [167]苏成国,尹斌,朱兆良等.农田氮素的气态损失与大气氮湿沉降及其环境效应[J].土壤,2005,37(2):113-120
    [168]孙本华,胡正义,吕家珑,等.模拟氮沉降对红壤阳离子淋溶的影响研究[J].水土保持学报,2007,27(1):18-21.
    [169]孙本华,胡正义,吕家珑,等.大气氮沉降对阔叶林红壤淋溶水化学模拟研究[J].生态学报,2006,26(6):1872-1881
    [170]孙本华,胡正义,吕家珑,等.模拟氮沉降对红壤阳离子淋溶的影响研究[J].水土保持学报,2007,27(1):18-21
    [171]孙瑞娟,王德建,林静慧.太湖流域土壤肥力演变及原因分析[J].土壤,2004.38(1):106-109
    [172]汤大钢,王玮,庞燕波,等.氮氧化物在闽南地区酸雨中的贡献[J]·环境科学研究,1996,9(5):38-40
    [173]陶福禄,冯宗炜.中国南方生态系统的酸沉降临界负荷[J].中国环境科学,1999,19(1):14-17
    [174]涂常青,温欣荣.双波长分光光度法测定土壤硝态氮[J].土壤肥料,2006(1),50-52
    [175]吴甫成,彭世良,王晓燕,等.酸沉降影响下近20年来衡山土壤酸化研究[J].土壤学报,2005,42(2),219-224
    [176]汪炳良.南方大棚蔬菜生产技术大全[M]北京:中国农业出版社,1999,64-66
    [177]汪吉东,高秀美,陈丹艳,等.不同pH降雨淋溶对原状水稻土土壤酸化的影响[J].水土保持学报,2009,23(4):118-122
    [178]汪雅各,盛沛麟,袁大伟.模拟酸雨对土壤金属离子的淋溶和植物有效性影响[J].环境科学,1988,9(2):22-26
    [179]王代长.酸化土壤表面离子的反应动力学[M].河南郑州,黄河水利出版社
    [180]王代长,蒋新,卞永荣,等.酸沉降下加速土壤酸化的影响因素[J].土壤与环境,2002,11(2):152-157
    [181]王辉,董元华,张绪美,等.集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J].2008,29(1):183-188
    [182]王兴祥,李清曼,曹慧,等.关于植物对红壤的酸化作用及其致酸机理[J].土壤通报, 2004,35(1):73-77
    [183]谢绍东,郝吉明,周中平.柳州地区各种红壤土种的酸沉降临界负荷研究[J]环境科学学报,1999,19(6):657-661
    [184]徐茂,王绪奎,蒋建兴,等.江苏省苏南地区耕地利用变化特征及其对策[J].土壤,2006,38(6):825-829
    [185]徐明岗,于荣,孙小凤.长期施肥对我国典型土壤活性有机质及碳库管理指数的影响[J].植物营养与肥料学报,2006,12(4):459-465
    [186]徐明岗.中国土壤肥力演变[M].中国农业科技出版,2006,171-189
    [187]徐琪.论水稻土肥力进化与土壤质量[J].长江流域资源与环境,2001,10(1):323-328
    [188]徐仁扣,Coventry D R.某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(5):385-388
    [189]徐仁扣,季国亮.预测土壤和地表水酸化趋势的MAGIC模型[J].土壤学进展,1994,16(5):36-39
    [190]许中坚,张华,史红文.模拟酸雨对红壤稀土元素释放的影响研究[J].水土保持学报,2007,3(4):12-15
    [191]许中坚,刘广深,俞佳栋.氮循环的人为干扰与土壤酸化[J],地质地球化学2002,30(2)74-77
    [192]杨黎芳,李贵桐,赵小蓉,等.栗钙土不同土地利用方式下有机碳和无机碳剖面分布特征[J].生态环境2007,16(1):158-162
    [193]姚丽贤,李国良,何兆桓,等.连续施用鸡粪与鸽粪土壤次生盐渍化风险研究[J].中国生态农业学报,2007,15(5):67-72
    [194]于天仁,陈志诚主.土壤发生中的化学过程[M].北京:科学出版社,1990.101-102
    [195]于天仁.水稻土的物理化学[M].北京:科学出版社,1983
    [196]余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究[J].土壤学报,2006,43(6):571-576
    [197]曾清如,周细红,廖柏寒,等.低分子量有机酸对茶园土壤中A1、F、P、Cu、Zn、Fe、Mn的活化效应[J].茶叶科学,2001,21(1):48-52
    [198]曾希柏.红壤酸化及其防治.土壤通报,2000,31(3):111-113
    [199]张福锁.环境胁迫与植物根际营养[M],北京:中国农业出版社,1997
    [200]张付申.不同施肥处对土和黄绵土有机质氧化稳定性的影响[J].河南农业大学学报,1996,30(1):80-84
    [201]张金涛,卢昌艾,王金洲.潮土区农田土壤肥力的变化趋势[J].中国土壤与肥料,2010(5):6-10
    [202]张林波,曹洪法,沈英娃,等.苏、浙、皖、闽、湘、鄂、赣7省酸沉降对农业危害-农业损失估算[J].中国环境科学,1997,17(6):489-491
    [203]张永春,汪吉东,沈明星,等.长期不同施肥对太湖地区典型土壤酸化的影响[J].土壤学报,2010,47(3):465-472
    [204]张永春,汪吉东,俞美香,等.南京地区典型农业试验基地土壤肥力、环境质量调查与评价[J],江苏农业学报,2007,23(6):573-578
    [205]朱林,张春兰,沈其荣,等.稻草等有机物料腐解过程中酚酸类化合物的动态变化[J].土壤学报,2001,38(4):471-475
    [206]邹长明,高菊生,王伯仁.长期施用含氯和含硫肥料对土壤性质的影响[J].南京农业大学学报,2004,27(1):117-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700