苹果果形性状遗传分析与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果果形与果实大小是苹果外观品质的重要指标之一,本试验以红玉×金冠杂交F1为试材,连续调查2008年和2009年果实纵径、横径和单果重的表型数据,对F1代果实纵径、横径进行遗传分析,并和单果重,果形指数进行相关性分析,随后用SSR和SNP图谱对果实纵径,横径,单果重,果形指数做了QTL分析,对遗传效应大的QTL区段预测了可能的候选基因。
     果实单果重、果实横径、果实纵径在2008年和2009年两年表型数据的次数分布图均呈单峰的正态分布,表明这三个性状是微效多基因控制的数量性状。
     果实纵径在2008年和2009年的广义遗传力分别为:91.1%和81.9%,果实横径在2008年和2009年的广义遗传力分别为93.2%和85.3%,说明2009年比2008年的环境效应大。
     将2008年和2009年共有的单株的果形和单果重数据做相关相分析,两年结果都表明,果实纵径和果实横径正相关(r>0.75);果形指数与果实横径负相关(r-0.19;r=-0.17),与果实纵径正相关(r=0.48;r=0.42),且相关系数的绝对值纵径要比横径大,说明果形指数主要由果实纵径决定;果实大小与果实横径(r=0.87;r=0.89)、纵径均呈显著正相关(r=0.76;r=0.78),果实横径与果实大小的相关系数要比纵径与果实大小的相关系数大,表明果实大小主要取决于果实横径;果实大小与果形指数不相关(r=-0.033;r=-0.084)。
     分别用SSR(242个SSR标记)图谱和SNP(3476个SNP标记)图谱对2008年和2009年两年连续数据QTL分析,采用区间作图,SSR图谱在全基因组阈值LOD≥2.8下,果实大小、果实纵径、果实横径、果形指数共检测到19个QTLs,在SNP图谱全基因组阈值LOD≥3.5下,检测到16个QTLs。在单条染色体阈值条件下,SSR图谱中果实大小与果实纵径连锁的QTL有4个,与果实横径连锁的QTL有6个;果形指数与果实纵径连锁的QTL有2个,与果实横径连锁的QTL有1个。在全基因组阈值条件下SNP标记图谱中果实大小与横径重合QTL有1个;果形指数与果实纵径重合的QTL有1个;果实大小与果形指数不存在相关的QTLs。
     果实大小与果形指数不存在相关性,同时QTL也没有检测到二者重合或连锁的QTL,说明果实大小与果形指数属于不同的遗传基因控制。
     对遗传效应较大的QTLs(LOD>3.50)进行基因预测,最终得到与果实横径和单果重相关的基因3个,位于LG3上;果实纵径基因2个,位于LG7上;果形指数基因14个,位于LG11上。
Fruit size and shape are important external quality traits in commercial crops, in this study, The progeny of cross between the apple cultivars 'Jonathan' and 'Golden Delicious' were used to analyse the inheritance of fruit length and diameter, correlation of fruit size, shape, length and diameter in two successive years.. We also dected the QTLs for fuit size, length, diameter, shape index by a SSR and SNP linkage maps, then the candidate genes predicted according to the QTL interval.
     Fruit size, length, diameter are followed a normal distribution in2008and2009, indicated they are controlled by polygenes without major gene segregation.
     The broad-sense heritability of fruit length and diameter were estimated as91%and93%, respectively in2008; and as82%and85%in2009. These values indicated that fruit length and diameter were easily affected by environmental in2009.
     Fruit length and diameter were significantly correlated in both2008and2009(r>0.75). FSI was positively correlated with fruit length (r=0.48; r=0.42), and negatively correlated with fruit diameter (r=-0.19; r=-0.17). The absolute values of correlation coefficients between FSI and fruit length were larger than those between FSI and fruit diameter, suggesting that length was a more pronounced trait than diameter. Both length (r=0.76; r=0.78) and diameter (r=0.87; r=0.89) were positively correlated with fruit size, though the correlation was stronger for diameter, indicating that fruit size (weight) was more a function of diameter than of length. No significant correlation was detected between FSI and fruit size (r=-0.033; r=-0.084).
     By the SSR linkage map19QTLs for fruit size, shape, length, and diameter were identified at the whole-genome level based on a LOD threshold≥2.80in both sampling years and16QTLs detected by SNPs linkage maps at the LOD≥3.50.In SSRs linkage map,4QTLs and6QTLs for fruit size were overlapped or closely associated with QTLs for fruit length and diameter, respectively,2QTLs and1QTL for fruit shape index were linked the QTLs for fruit size and diameter. Meanwhile, by SNPs linkage map, there are1QTL for fruit size coincided with the QTL for fruit diameter and1QTL for fruit shape index tightly linked the QTL for fruit length.
     No significant correlation was detected between FSI and fruit size and none of the QTLs for fruit size mapped to the same region as QTLs for fruit shape, implying that fruit size and shape are under independent genetic control.
     We predicted the interval genes for QTLs which dectected at the LOD≥3.50by the SNPs linkage map and3candidate genes (located on LG3) for fruit diameter and size,2genes (located on LG7) for fruit length, and14genes (on LG11) for fruit shape index obtained which may be controlled the trait.
引文
白牡丹.苹果柱型性状形成的分子机制探讨:[硕士学位论文].青岛:青岛农业大学,2013
    陈照峰,王国新.苹果主要经济性状遗传动态的研究.河南农业大学学报,1997,31(3):238-243
    盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科技出版社,2003,96-260
    何晓薇,王彩虹,田义轲,等.苹果果皮颜色形状的SSR标记.果树学报,2009,26(3):379-381
    李宝江,丁玉英.苹果糖酸遗传和选择研究.遗传学报,21(2):147-154
    李慧峰,李林光,张琮,等.苹果果实生长发育数学模型研究.江西农业学报.2008,20(4):40-42
    李丽,张艳茹,常立民.多效唑对国光苹果生长和结果的影响.河北果树,1991,1:26-29
    李林光,王宏伟,李慧峰,等.皇家嘎啦苹果与藤牧一号杂交后代果实性状遗传研究.落叶果树,2009(1):4-6
    李鹏丽,申凤莲,毛永民,等.果树性状遗传规律研究进展.河北农业大学学报,2003,26(增刊):53-56
    鲁玉妙,范崇辉,高华,等.粉红女士苹果果实主要形态与理化指标变化的研究.西北农业学报,2008,17(5):233-236
    刘凤之,孙希生,王伟东,等.我国苹果出口问题及主要对策.中国果树,2002,1:48-50
    刘树兵,贾继增.高等植物的遗传作图.山东农业大学学报:自然科学版,1999,30(1):73-78
    满书铎,从佩华,牛健哲,等.苹果品种间杂交矮化遗传的倾向.辽宁农业科学,1991,5:11-16
    聂继云.苹果的营养与功能.保鲜与加工,2013,13(6):56-59
    阮成江,何祯祥,钦佩,等.我国农作物QTL定位研究的现状和进展.植物学通报,2003,20(1):10-22
    田义轲,王彩虹,张继澍,等.一个与苹果柱型基因Co连锁的RAPD标记.西北植物学报,2003,23(12):2176-2179
    王彩虹,王倩,戴洪义,等.苹果柱型基因Co的一个AFLP标记的SCAR转换.园艺学报,2002,29(2):100-104
    王金政,薛晓敏,路超.我国苹果生产现状与发展对策.山东农业科学,2010,6:117-119
    王雷存,樊红科,高华,等.苹果酸度基因(Ma)SSR标记及遗传分析.园艺学报,2012,39(10):1885-1892
    姚玉新,翟衡,赵玲玲,等.苹果果实酸/低酸性状的SSR分析.园艺学报,2006,33(2):244-248
    夏春森,沈孟平,陈加美,等.PP333用于富士苹果最优施用方法的研究.果树科学,1998,1:11-12
    薛桂新,吴秀玉,王颖,等.赤霉素和多效唑对苹果梨果实纵横径的影响.延边大学农学学报,1999,21(2):95-97
    朱元娣,李光晨,李春雨,等.苹果柱型基因的ISSR分子标记研究[J].园艺学报,2003,30(5):505-510
    张新忠.正态检验法在果树遗传学研究中应用的可行性.落叶果树,1994,26(1):1-5
    赵静,田义轲,王彩虹,等.与苹果果皮红色性状相关的RAPD分子标记的筛选.果树学报, 2006,23(2):165-168
    朱军.运用混合线性模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
    Amano Y, Tsubouchi H. Shinohara H, et al. Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proceedings of the National Academy of Sciences, 2007,104:18333-18338
    Antanaviciute L, Fernandez-Fernandez F, Jansen J, et al. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array, BMC Genomics,2012,13:203
    Benaouf G, Parisi L. Genetics of host-pathogen relationships between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology,2000,90:236-242
    Brown AG. The inheritance of shape, size and season of ripening in progenies of the cultivated apple. Euphytica,1960,9:327-337
    Brown AG, Harvey DM. The nature and inheritance of sweetness and acidity in the cultivated apple. Euphytica,1971,20:68-80
    Calenge F, Faure A. Goerre M, et al. Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology,2004,94:370-379
    Calenge F, Drouet D, Denance C, et al. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theoretical and Applied Genetics,2005,111:128-135
    Celton J-M, Tustin DS, Chagne D, et al. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetics and Genomes,2009,5:93-107
    Chagne D, Gasic K, Crowhurst RN, et al. Development of a set of SNP markers present in expressed genes of the apple. Genomics,2008,92:353-358
    Cheng FS, Weeden NF, Brown SK. Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theoretical and Applied Genetics,1996,93:222-227.
    Collard B, Jahufer M, Brouwer JB, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:the basic concepts. Euphytica,2005, 142:169-196.
    Cong B, Tanksley SD. FW2.2 and cell cycle control in developing tomato fruit:a possible example of gene co-option in the evolution of a novel organ. Plant Molecular Biology,2006,62:867-880
    Conner PJ, Brown SK, Weeden NF. Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. Journal of the American Society for Horticultural Science,1997,122:350-359
    Curry EA, Williams MW. Promalin or GA3 increase pedicel and fruit length and leaf size of delicious apples treated with Paclobutrazol. HortScience,1983,18:214-215
    Erdin N, Tartarini S, Broggini GA, et al. Mapping of the apple scab-resistance gene Vb. Genome,2006, 49:1238-1245
    Desgagne-Penix I, Sponsel VM. Expression of gibberellin 20-oxidasel (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. Journal of Experimental Botany, 2008,59:2057-2070
    Devoghalaere F, Doucen T, Guitton B, et al. A genomics approach to understanding the role of auxin in apple (Malus x domestica) fruit size control. BMC Plant Biology,2012,12:7
    Dunemann F, Peil A, Urbanietz A, et al. Mapping of the apple powdery mildew resistance gene Pll and its genetic association with an NBS-LRR candidate resistance gene. Plant Breeding,2007,126: 476-481
    Durel CE, Van De Weg E, Venisse JS, et al. Localisation of a major gene for apple scab resistance on the European genetic map of the Prima x Fiesta cross. International Organisation for Biological Control Wprs Bulletin,2000,23:245-248
    Durel, CE, Laurens F, Fouillet A, et al. Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theoretical and Applied Genetics,1998,96: 1077-1085
    Durel CE, Parisi L, Laurens F, et al. Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome,2003,46:224-234
    Eccher T, Boffelli G Effects of dose and time of application of GA4+7 on russeting, fruit set and shape of 'Golden Delicious' apples. Scientia Horticulturae,1981,14:307-314
    Errabolu R, Sanders MA, Salisbury JL. Cloning of a cDNA encoding human centrin, an EF-hand protein of centrosomes and mitotic spindle poles. Journal of Cell Science,1994,107:9-16
    Fernandez-Fernandez F, Evans KM, Clarke JB, et al. Development of an STS map of an interspecific progeny of Malus.Tree Genetics and Genomes,2008,4:469-479
    Frary A, Nesbitt TC, Frary A, et al. fw2.2:A Quantitative Trait Locus Key to the Evolution of Tomato Fruit Size. Science,2000,289:85-88
    Gardiner S, Murdoch J, Meech S, et al. Candidate resistance genes from an EST database prove a rich source of markers for major genes conferring resistance to important apple pests and diseases. Acta Horticulturae,2003,622:141-151
    Grandillo S, Ku H, Tanksley SD. Characterization offs8.1, a major QTL influencing fruit shape in tomato. Molecular Breeding,1996,2:251-260
    Greene DW. Effect of paclobutrazol and analogs on growth, yield, fruit quality, and storage potential of Delicious' apples. Journal of the American Society for Horticultural Science (USA),1986,111, 328-332
    Grimmer MK, Trybush S, Hanley S, et al. An anchored linkage map for sugar beet based on AFLP, SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theoretical and Applied Genetics,2007,114:1151-1160
    Guo H, Li L, Ye H, et al. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences,2009,106:7648-7653
    Hagen G, Guilfoyle T. Auxin-responsive gene expression:genes, promoters and regulatory factors. Plant Molecular Biology,2002,49:373-385
    Han Y, Chagne D, Gasic K, et al. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics,2009,93:282-288
    Hemmat M, Weedon NF, Manganaris AG, et al. Molecular marker linkage map for apple. Journal of Heredity,1994,85:4-11
    Hemmat M, Weeden NF, Conner PJ, et al. A DNA marker for columnar growth habit in apple contains a simple sequence repeat. Journal of the American Society Horticultural Science,1997,122:347-349
    Hou B, Lim E, Higgins GS. et al. N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. Journal of Biological Chemistry,2004,279:47822-47832
    James CM, Evans KM. Identification of molecular markers linked to the mildew resistance genes P1-d and Pl-w in apple. Acta Horticulturae,2003,663:123-127
    James CM, Clarke JB, Evans KM. Identification of molecular markers linked to the mildew resistance gene Pl-d in apple. Theoretical and Applied Genetics,2004,110:175-181
    Janssen BJ, Thodey K, Schaffer RJ, et al. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biology,2008,8:16
    Kang B, Busse JS, Bednarek SY. Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. The Plant Cell Online,2003,15:899-913
    Kenis K, Keulemans J. Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Molecular Breeding,2005,15:205-219
    Kenis K, Keulemans J, Davey MW. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics and Genomes,2008,4:647-661
    Khan MA, Duffy B, Gessler C. QTL mapping of fire blight resistance in apple. Molecular Breeding, 2006,17:299-306
    King GJ, Maliepaard C, Lynn JR., et al. Quantitative genetic analysis and comparison of physical and sensory descriptors relating to fruit flesh firmness in apple(Malus pumila Mill.). Theoretical and Applied Genetics,2000,100:1074-1084
    Krysan PJ, Jester PJ, Gottwald JR, et al. An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. The Plant Cell Online,2002,14: 1109-1120
    Ku H, Doganlar S, Chen K, et al. The genetic basis of pear-shaped tomato fruit. Theoretical and Applied Genetics,1999,99:844-850.
    Ku H, Grandillo S, Tanksley SD. fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theoretical and Applied Genetics,2000,101:873-878
    Lander ES, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    Lapins KO. Spur-type growth habit in 60 apple progenies. Journal of the American Society for Horticultural Science 1974,99:568-572
    Lapins KO. Inheritance of compact growth type in apple. Journal of the American Society for Horticultural Science,1976,101:133-135
    Lermontova I, Fuchs J, Schubert I. The Arabidopsis checkpoint protein Bub3.1 is essential for gametophyte development. Frontiers in Bioscience,2008,13:5202-5211
    Li, J, Yang H, Peer WA, et al. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science,2005,310:121-125
    Liebhard R, Kellerhals M, Pfammatter W, et al. Mapping quantitative physiological traits in apple (Malm × domestica Borkh.). Plant Molecular Biology,2003,52:511-526
    Liu B H. Statistical genomics:linkage, mapping, and QTL analysis, CRC Press, Boca Raton, FA.1997
    Liu J, Van Eck J, Cong B, et al. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proceedings of the National Academy of Sciences,2002,99:13302-13306.
    Maliepaard C, Alston FH, Van Arkel G, et al. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theoretical and Applied Genetics,1998,97:60-73
    Matsubayashi Y, Sakagami Y. Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences, 1996,93:7623-7627
    Mizutani K, Suetsugu S, Takenawa T. FBP11 regulates nuclear localization of N-WASP and inhibits N-WASP-dependent microspike formation. Biochemical and Biophysical Research Communications, 2004,313:468-474
    Mok DW, Mok MC. Cytokinin metabolism and action. Annual Review of Plant Biology,2001,52:89-118
    Montagnoli A, Bosotti R, Villa F, et al. Drfl, a novel regulatory subunit for human Cdc7 kinase. The EMBO Journal,2002,21:3171-3181
    Nesbitt TC, Tanksley SD, fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiology,2001,127:575-583
    Nybom T. On the inheritance of acidity in cultivated apples. Heriditas,1959,45-332-350
    Okushima Y, Fukaki H, Onoda M, et al. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell Online,2007,19:118-130
    Okushima Y, Overvoorde PJ, Arima K, et al. Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana:unique and overlapping functions of ARF7 and ARF19. The Plant Cell Online,2005,17:444-463
    Paterson AH, Damon S, Hewitt JD, et al. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 1991,127:181-197
    Perin C, Hagen L, Giovinazzo N, et al. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Molecular Genetics and Genomics,2002,266:933-941
    Prelich G, Tan C, Kostura M, et al. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-δ auxiliary protein. Nature,1987,326:517-520
    Rieu I, Ruiz Rivero O, Fernandez Garcia N, et al. The gibberellin biosynthetic genes AtGA20oxl and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. The Plant Journal,2008.53:488-504
    Ruvinsky I, Sharon N, Lerer T, et al. Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes and Development,2005,19:2199-2211
    Saha P, Chen J, Thome KC, et al. Human CDC6/Cdc18 associates with Orcl and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Molecular and Cellular Biology 1998,18:2758-2767
    Shaw JK. A study of variation in apples. Massachusetts Agricultural Experiment Station.1914,149,21-36
    Silfverberg-Dilworth E, Matasci CL,. Van de Weg WE, et al. Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genetics and Genomes,2006.2:202-224
    Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics, 1976,47:35-39
    Soriano JM, Joshi SG, Van Kaauwen M, et al. Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genetics and Genomes,2009,5:475-482
    Stankiewicz-Kosyl M, Pitera E, Gawronski SW. Mapping QTL involved in powdery mildew resistance of the apple clone U 211. Plant Breeding,2005,124:63-66.
    Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA):a key factor in DNA replication and cell cycle regulation. Annals of Botany,2011,107:1127-1140
    Sun HH, Zhao YB, Li CM, et al. Identification of markers linked to major gene loci involved in determination of fruit shape index of apples (Malus domestica). Euphytica 2012,185:185-193
    Tanksley SD. Mapping polygenes. Annual Review of Genetics,1993,27:205-233
    Tartarini S, Gennari F, Pratesi D, et al. Characterisation and genetic mapping of a major scab resistance gene from the old Italian apple cultivar'Durello di Forll'. Acta Horticulturae,2004,663:129-133
    Theologis A, Ecker JR, Palm CJ, et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature,2000,408:816-820
    Thoday JM. Location of polygenes. Nature,1961,191:368-370
    To JP, Haberer G, Ferreira FJ, et al. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell Online,2004,16:658-671
    Tromp J. Fruit shape in apple under various controlled environment conditions. Scientia Horticulturae, 1990,43:109-11
    Van der Knaap E, Tanksley SD. Identification and characterization of a novel locus controlling early fruit development in tomato. Theoretical and Applied Genetics,2001,103:353-358
    Van der Knaap E, Sanyal A, Jackson SA, et al. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics,2004,168:2127-2140
    Van der Knaap E, Lippman ZB. Tanksley SD. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics,2002,104:241-247
    Velasco R, Zharkikh A, Affourtit J. The genome of the domesticated apple(Malus×domestica Borkh.). Nature Genetics,2010,42:833-841
    Weeden NF, Hemmatt M, Lawson DM, et al. Development and application of molecular marker linkage maps in woody fruit crops. Euphytica,1994,77:71-75
    Williams J, Phillips AL, Gaskin P, et al. Function and substrate specificity of the gibberellin 3beta-hydroxylase encoded by the Arabidopsis GA4 gene. Plant Physiology,1998,117:559-563
    Zeng Z. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468
    Zhang Q, Ma B, Li H, et al, Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics,2012.13:537
    Zhang, RP, Wu, J, Li XG, et al.. An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in Pear (Pyrus L.). Plant Molecular Biology Reporter,2013,31,678-687
    Zhang Y, Schwarz S, Saedler H, et al. SPL8, a local regulator in a subset of gibberellins-mediated developmental processes in Arabidopsis. Plant Molecular Biology,2007,63:429-439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700