黄柏剥皮再生机理及其影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物的“再生”现象和机制是发育生物学的研究热点。再生在动物领域已经有了突破性进展,可望在不远的将来对于人类的某些疾病实现“人造器官”的移植,实现保障人类健康、延续人类生命的目的。植物领域以细胞的全能性理论和组织培养技术顺利克隆出以几何级数增加的植物种类和数量。广义的剥皮再生包括果树的环剥(0.3~0.5cm)和皮用类林木主干大面积剥皮(>50cm),狭义指后者。有关剥皮再生的理论基础研究缺乏,实践应用难度很大,已有报道的树种有杜仲、关黄柏(P.amurense)、厚朴、肉桂等,再生机理的研究主要集中在解剖学方面,探索了新皮的起源,却未能揭示树干大面积剥皮后不死这一核心问题。因而,研究剥皮再生的机理,对于完善发育生物学中植物再生的相关理论、揭示林木剥皮再生的生命过程具有重要的理论意义。由于皮用类经济林木生长期长(10~15a),资源利用速度远远大于生长速度,剥皮再生技术对于提高皮类林木的生产力,实现资源的可持续利用,稳定退耕还林成果具有重要的现实意义。
     黄柏(Phellodendron chinense. Schneid.)是中国传统的皮用类中药材和提取小檗碱的主要原料,四川的道地药材和乡土树种,已经有2000多年的药用历史,也是传统的出口商品。黄柏皮为临床常用的清热燥湿的中药,用途广泛,市场需求量大,可制成多种中成药,化妆品、生物农药等,对人民的生活健康具有重要价值。黄柏也被认为是难以剥皮再生的树种,从2002年至2006年,在四川省黄柏栽培现状调查以及实施规范化种植研究的基础上,针对剥皮再生的理论问题和现实问题,设立四川的荥经、雅安、洪雅、沐川、大邑5县(市)为研究区,以发育生物学为理论指导,黄柏(P. chinense)为供试材料,采用定位观察法、光镜和电镜技术、~(14)C同位素示踪技术、现代光合测定技术、叶绿素荧光动力学技术,HPLC法研究了黄柏剥皮后新皮的形态发生和组织发生过程;剥皮对同化物在树冠的分配以及在新生韧皮部的运输;剥皮对光合特性和叶绿素荧光的影响,剥皮对生长和性能的影响,以及影响黄柏剥皮再生的因素,旨在完善植物再生理论,揭示林木剥皮再生机理,构建剥皮再生技术体系并应用于生产。主要研究结果如下。
     1、黄柏剥皮再生的形态学和组织发生学
     (1)黄柏剥皮后包裹透明聚乙烯膜,其外观形态经历如下变化过程:刚剥皮的木质部呈黄白色,光滑而湿润,3~4d表面产生乳白色的愈伤组织,7d左右,愈伤组织逐渐变为浅绿色,并逐渐扩展。30d表面形成浅褐色膜状栓质层,其下为绿色组织;60~120d,栓质层逐渐增厚,表面粗糙,凹凸不平,形成褐色保护层,其下为绿色活组织。第2a褐色栓皮增厚,呈块状脱落。第3a再生皮的颜色、裂纹和厚度和原树皮相似,其分界处不明显。因此,黄柏剥皮后在包裹的条件下可再生新皮,再生皮的外观形态和原皮相似。
     (2)黄柏幼茎和原皮的解剖学特点。幼茎绿色,近圆形,初生结构由表皮、基本组织和维管束三部分构成,其中表皮无表皮毛和气孔,皮层中有分泌囊(精油腔)和成团的石细胞分布,皮层薄壁细胞中含有叶绿体,维管束为典型的外韧维管束,初生韧皮部中有纤维带和成团的石细胞,木质部有木射线,茎中部为髓;8年生树皮由周皮、挤缩的皮层、失去功能的韧皮部和有功能的韧皮部组成,周皮有7~8层,韧皮部也有7~8条与树木年龄相对应带状纤维束,呈年轮状,在无功能的韧皮部和皮层内有成团的石细胞分布。
     (3)黄柏再生皮的组织发生学。黄柏树皮剥离时大部分形成层细胞随树皮剥离。木质部外缘为未完全发育成熟的木质部薄壁细胞、导管、管胞及木射线,以及残存的形成层细胞。3~7d木射线细胞和木射线之间的未成熟木质部细胞开始分裂形成愈伤组织;15~20d,表层下2~3层细胞转化为木栓形成层细胞;30~60d,在木质部与愈伤组织的结合部位形成具有4~6层细胞的维管形成层区。新生韧皮部中出现散生的石细胞团和韧皮纤维。
     表层下的愈伤组织形成木栓形成层;未成熟木质部细胞恢复分裂能力形成维管形成层;木栓形成层的发生早于维管形成层;3a再生皮和原皮的解剖结构基本相似。
     (4)在浅绿色愈伤组织的细胞内有大量叶绿体,叶绿体发育分为三个时期:初期、中期和晚期。初期叶绿体多集中在细胞质膜处,看不到基粒和片层;中期出现淀粉粒,并开始增大,可见基粒和片层;后期,淀粉粒迅速增大并撑破叶绿体,叶绿体裂解。
     黄柏剥皮后在一定条件下可再生新皮。其新皮的再生经历了新细胞的形成,分生组织的重新建构,由新的木栓形成层和维管形成层分裂形成周皮、次生木质部和次生韧皮部,最后形成新树皮的过程。其再生不是简单的依靠存留组织的重新分配和构建的“变形再生”,而是在高级层次上的结构和组织重新发育的“新建再生”。研究结果充实了植物的再生理论;从解剖学角度揭示了剥皮再生的机理。
     2、剥皮对黄柏光合特性和~(14)C同化物运输和分配的影响
     (1)黄柏剥皮后光合速率(P_n)显著下降,第15d达到最低水平,蒸腾速率(Tr)在剥后1d迅速下降至最低水平,在第20d都基本恢复至正常水平;叶绿素荧光在暗适应条件下,最大量子效率Φ_(PO)实际量子效率Φ_(P~-)和光化学猝灭系数qP。均在剥后15d达到最低水平,在20d恢复或接近正常水平。表明剥皮显著降低光合作用和蒸腾作用,但未对光系统Ⅱ造成明显的结构和功能性破坏;剥皮后光合作用在一定时间内下降,其原因是由于剥皮阻断叶片光合产物向下运输,在叶片上积累产生的对光合过程的反馈抑制,一旦光合碳同化物向下运输的功能恢复,反馈抑制随即解除,光合、蒸腾作用迅速恢复到正常水平。
     (2)黄柏~(14)C同化物的平均运输速率为50.2 cm/h。剥皮显著增加了光合同化物在树冠上的积累。未剥皮黄柏树冠不同部位的功能叶~(14)C同化物分配为:中部功能叶>上部功能叶>下部功能叶;剥皮后,同化物分配规律发生改变:上部功能叶>中部功能叶>下部功能叶。剥皮后15d,~(14)C同化物经剥皮部位的新生组织向下运输到根系。
     研究结果揭示了“树不怕剥皮”的实质,即剥皮虽然暂时降低了黄柏的光合作用,阻断了同化物的下行,改变其在树冠上的分配,但是当剥面长出新组织时,同化物经新生的韧皮部输送到根系,黄柏的光合功能和同化物分配恢复到剥前状态,树体的生命活动自然能够正常进行。
     3、剥皮对黄柏生长和性能的影响
     (1)黄柏2a和3a再生皮与原皮的盐酸小檗碱含量与原皮差异不显著,分别为61.3784mg·g~(-1),62.6545mg·g~(-1)和61.8816 mg·g~(-1)。盐酸药根碱含量分别为0.4815 mg·g~(-1)、0.4600 mg·g~(-1)和0.2231 mg·g~(-1),再生皮含量极显著大于原皮;盐酸巴马汀含量分别为0.1004 mg·g~(-1)、0.0904 mg·g~(-1)和0.1621 mg·g~(-1),三者差异不显著。因此,再生皮可作为提取小檗碱的原料和药材。
     (2)黄柏剥皮后导致叶片不同程度黄化,落叶提前1个月左右;次年春季萌芽延迟10d左右,仍能正常开花结实;第3a生长即恢复正常。剥皮后第3a,树皮的厚度依次为3a再生皮>原皮>2a再生皮>1a再生皮。3a后再生皮厚度极显著大于原皮。
     (3)在刚剥皮至愈伤组织阶段,任何微小触碰都将造成剥面组织坏死或真菌感染,这两种情况是导致解膜后愈合率下降的主要原因。
     4、影响黄柏剥皮再生的因素
     影响因素有包扎、剥皮方式、剥皮时间、包膜时间、剥皮强度、剥皮操作、剥皮天气、树龄、树体状况和生长调节剂共10项。经统计分析检验,包扎、操作、树干状况、剥皮和包膜时间共5项因素对再生有显著或极显著的影响,据此建立多元线形模型。至于树龄、剥皮强度和剁皮天气对再生的影响则不显著。
     影响剥皮再生的10项因子,根据其重要程度划分为关键因素、重要因素和次要因素。
     (1)剥皮再生的关键因素包括包扎、操作、树干状况,其重要性依次为:包扎>操作>树干状况:薄膜包裹是黄柏剥皮再生的前提;粗放操作是剥皮再生失败的主要因子,也是导致愈合率下降的关键原因;由于树干不平滑使薄膜和树干间有缝隙,造成雨水渗入,节疤处不能形成愈伤组织等等而间接影响剥面的愈合。
     (2)重要因素有剥皮和包膜时间,剥皮过早或过迟,包膜时间太短或太长均不利于伤口愈合。包膜天数和剥皮后的颜色与积温关系密切,气温越高,所需包膜时间越短,反之亦然。结合季节、物侯和生长发育等多因素,剥皮时间以5月下旬~7月上旬为宜。若5月下旬~6月上旬剥皮,包膜10~15d,而6月下旬~7月上旬剥皮,则需5~10d。剥面的浅绿色是解膜的关键形态指标,还应结合该指标确定适宜的包膜时间。
     (3)剥皮强度、剥皮天气树龄因素为次要因素,可根据药材规格以及操作便利确定剥皮长度;晴天、阴天和微雨天均可剥皮;黄柏从2年生到12年生均可剥皮。
     (4)在包膜的条件下,全剥和纵向留树皮两种方式均能获得好的愈合率,但它们的剥面愈合情况完全不同。全剥在短时间内愈伤组织覆盖剥面90%以上,以后逐渐下降,树干保持顺直,新皮形态与原皮相似,但受操作和树干状况影响较大。纵向留树皮剥皮在短时间内愈伤组织覆盖剥面不到50%,以后新皮面积逐渐增加。由于留树皮保留了运输通道,故剥面愈合受人工操作和树干状况的影响较小,但此法导致树干和新皮发育畸形。
     5、黄柏剥皮再生技术体系
     剥皮再生技术体系主要包括多点试验和剥皮再生经营措施。
     (1)多点试验。荥经、雅安、洪雅、沐川、大邑5个黄柏主产区的剥皮成活率均在80%以上。沐川的成活率最高,达88.7%,雅安最低,仅50.0%,造成雅安和沐川黄柏成活率差异的主要原因是管理水平。雅安黄柏栽植后未进行修枝、施肥等管理,导致树干不直,节疤多,枝下高较低,包膜不易严密,造成渗水感染,节疤处难以形成愈伤组织或戳破薄膜等。沐川黄柏属于农户自有,长于农户附近,树下多种植农作物,以耕代抚,管理较好,树体健壮端直。
     (2)剥皮再生经营措施包括环境、立地条件、管理、剥皮时间、剥皮方式、解膜时间六个方面。其要点:剥皮的黄柏应满足无公害产地环境条件,按规范化种植技术规程(SOP)种植;树干应通直健壮、枝下高3m左右,无病虫害;采用“三刀法”,刀具和手勿触碰剥面,切口深度刚及木质部,透明聚乙烯膜包裹并扎紧,适宜时间(5~7月)剥皮,根据剥皮季节和温度确定解膜时间(5~15d);剥皮前一周按每株施入尿素50g+过磷酸钙250g或复合肥50~100g(氮:磷:钾=15:15:15),剥后一个月检查愈合率,低于60%,采用留桩20cm砍伐,保留一枝新梢更新,病害感染用小刀刮除病斑,喷70%甲基硫菌灵800倍液或80%多菌灵800倍液。
     研究表明,黄柏属于剥皮再生较困难的树种,但在良好的管理和操作下可再生新皮,当年末成活率可达80%以上;农民科技意识的提高和剥皮再生操作技术规程(SOP)的制定将推动该技术在黄柏产区推广,促进皮类林木资源的可持续发展。
The phenomenon and mechanism of regeneration has been the focus of the DevelopmentBiology. Scientists have made a breakthrough in the research of animal regeneration and, it ispromising to achieve the transplantation of artificial organ in the near future so as to heal certaindiseases, maintain human health and prolong the life. Based on the theory of totipotency of plantcell and the method of tissue cultivation, species and amounts of plants have been cloned successfullyand that could increase in geometric progressions. In broad sense, the bark regeneration is constitutedof fruit tree girdling (the length of barking ranges from 0.3cm to 0.5cm)together with large-scale trunkbarking of the bark-utilization kind of economical woods(the length can be extended to more than50cm), however, the latter can be attributed to narrow barking. Large proportion of barking onEucormrnia ulrnoides Oily., Phellodendron amurense, Magnolia officinalis Rehd. et Wils. Subsp,Cinnamomum cassia, has already been reported. In fact, these studies of the mechanism inregeneration concentrated on the genesis of secondary bark and its anatomical characteristics,nevertheless the reason of survival for the plant under the condition of large-scale barking on the trunkstill remains to be revealed. Therefore, on the one hand, the study on the mechanism of barkregeneration could have a theoretic significance both in supplementing the correlative theory ofDevelopment Biology and in showing the life process of bark regeneration in trees. On the other hand,because the growth period of the bark-utilization kind of economical woods lasts long (varies from 10years to 15 years) and besides, the growth velocity of Phellodendron chinense has been outpacedby the depleting velocity of itself, consequently, the measure of bark regeneration could also have apractical significance in achieving sustainable resource employment of bark-utilization of economicalwoods as well as in boosting productivity of P. chinense and maintaining the fruits of the project ofCropland Conversion to Forest(CCF).
     Phellodendron chinense var. glabriusculum Schneid. belongs to the Family ofRutaceae. and falls into the Genus of Phellodendron which is a deciduous arbor and, as utilizing thebark of itself, it has become the main medicinal material for extracting the berberine. Since it is theoriginal medicinal material and indigenous wood in Sichuan, therefore, it is called Chuanhuangbo.(Sichuan P. chinense)
     Aiming at solving both the theoretic and practical problems, systematic study on the barkregeneration of P. chinense which was based on the Development Biology has been carried. Mystudy method were: 1) The method of localized observation using light and electron microscopeswas applied to the study that revealed the morphological and histogenetic development process of theP. chinense under the pressure of barking. 2) ~(14)C-isotopes Tracing Technology was applied to thestudy that showed the effect of barking on the distribution of assimilates in crown and thetransportation of assimilates in renewed phloem. 3) The method of modern photosynthesis measurmentwas applied to the study that revealed the effect of barking on the photosynthetic traits, i. e.photosynthetic rate and transpiration rate. 4) The Chlorophyll Fluorescence Dynamic Technology wasapplied to the study that revealed the effect of barking on Maximum Quantum Efficiency ofchlorophyll fluorescence, Actual Quantum Efficiency, Photochemical Quenching Coefficient.Furthermore, the factors that influence bark reconstitution was systematic studied. The main results ofthe research are as follows:
     1. Morphologic and histogenetic study on bark regeneration of P. chinense
     (1) The barked plants of P. chinenses were wrapped by the transparent polyethylene film. Under the circumstance of high moisture, ivory-white callus appeared on the yellow-white surface of xylem.Gradually, the callus turned into light green and expanded. Light-brown and membranaceous subrinlayer with green tissues beneath had formed since unwrapped the film and then, the subrin layerthickened gradually. Until the end of the first year, it had shaped into protective layer. In the secondyear, the brown cork thickened and fell off in pieces. In the third year, the color and crack as well asthickness of the recovered bark were similar to that of primary bark. Moreover, edges of the girdle couldbe seen indistinctively.
     (2) The anatomic characteristics of juvenile stem and virginal bark. The color of juvenile stem of P.chinenses is green and close to circular shape. Primary structure of the young stem is constructed ofthe epidermis and indispensable tissues together with vascular bundles, whereas the epigenous hairsand stomas of the epidermis could not be discovered. However, the secretory cavity(cavity of essentialoil) as well as the sclereid in group-shape could be found in cortex, additionally, the chloroplast lies inthe parenchyma cell of the cortex. Virtually, the vascular bundles of the juvenile stem is the typicalcollateral vascular bundle and, the fibrous strips and group-shape sclereid could be found in theprimary phloem. Xylem rays exits and pith locates in the middle of the stem.
     (3) The bark of eight-year old plant is integrated by periderm, pressed and shrinked cortex,non-functional and functional phloem. Both the number of fibrous bands(in shape of annual ring) andthe number of layers within the periderm are correspondence with the age of the tree. In particular, thesclereid in group-shape could be found both in cortex and phloem. Histogenetic study on barkregeneration of P. chinense. The position of peeling off the bark was on the boundary between thesecondary phloem and the second xylem, i. e. the zone of vascular cambium. Majority of the cambialcells along with the bark were removed. Immature parenchyma cells, vessels, tracheids and xylem raysof the xylem were on the periphery of the secondary xylem. The wound of the girdled was wrapped bythe transparent polyethylene film. 3~7 days after packing, the immature cells of xylem between thecells of xylem ray and xylem ray began to split into callus; 15~20 days after packing, the cell of 2nd~3rd layers beneath the surface layer transformed into the cork cambium. 30~60 days after wrapping, thezone of vascular cambium with cells of 4th~6th layers formed within the combinative position of thexylem and the callus. Scattered sclereids in group-shape as well as ibriform fibres emerged in thesecondary phloem.
     The callus beneath the surface layer developed into cork cambium and immature cells within thexylem resplitted into vascular cambium, however, the emergence of the cork cambium was earlier thanthat of vascular cambium. Actually, the anatomical structure of the renewed bark in three-year old wassimilar to that of the primary bark..
     (4) Mass chloroplasts could be found in the light green callus and the growth stages could be dividedinto three phases, i. e. prophase and metaphase as well as anaphase. In the prophase, most of thechloroplasts aggregated in the cytoplasm and the cell membrane, whereas the grana and the lamellacould be discovered. In the metaphase, the starch grain presented itself and began to expand. The garanaas well as lamella could be saw. In the anaphase, the starch grain swiftly enlarged and the chloroplastswere broke down.
     The bark regeneration underwent 3 stages: 1) the formation of the renewed cells; 2) cork cambiumas well as vascular cambium splitted into periderm, secondary xylem and secondary phloem. 3)ultimately, recovered bark came to being. Based on the theory of Development Biology, the barkregeneration itself is "epimorphosis" rather than "morphallaxis". For the former, it signifies theredevelopment of the structure and tissue in advanced level. For the latter, however, it means low-level redistribution and reconstitution which depends on the tissues left.
     2. The effect of barking on the photosynthetic traits and transportation anddistribution of ~(14)C-assimilates
     (1) The mean carrying velocity of ~(14)C-assimilates was 50.2cm/h that was measured by ~(14)C-isotopesTracing Method. The distribution for ~(14)C-assimilates of the crown leaves was revealed: for thenon-girdled, the middle leaves of the crown was highest, bottom lowest and for the girdled, thedistribution altered, i. e. the top became highest while the bottom remained to be unchanged.Furthermore, the survival reason under the circumstance of large-scale barking on trunk was discovered,i. e. 15 days after barking, the renewed tissues possessed the capability of carrying the photosyntheticassimilates downwards.
     (2) Under the pressure of bark removing, the Photosynthetic Rate (P_n), Transpiration Rate(T_r),Maximum Quantum Efficiency of chlorophyll fluorescenee(Φ_(PO)), Actual Quantum Efficieney(Φ_(P),),Photochemical Quenching Coeffieient(q_p) were determined by the Li-6400 Photosynthesis MeasuringSystem and the result suggested that the effect of both the photosynthesis and transpiration could besignificantly reduced, however, evident damages of structure and function within the PSⅡdid not occur.The reason for decline in photosynthetic effect in a certain period probably lay in that the channels forcarrying photosynthetic products of the leaves downwards was obstructed and moreover, thephotosynthetic process was affected by the feedback restraints which occurred on the leaves inaccumulative way. The feedback constraints released as soon as the function of carrying the~(14)C-assimilates downwards recovered, subsequently, photosynthesis and transpiration restored to normallevel.
     3. The effect of barking on the growth and contents of effective drug composition of P.chinense.
     (1) The content of berberine hydroehloride, paimatine hydrochloride, jatrorrhizine hydrochloride inrenewed bark of two-year and three-year old as well as these in primary bark were measured by themethod of High Performance Liquid Chromatography(HPLC).
     For the content of berberine hydroehloride, the values were 61.3784mg.g~(-1), 62.6545mg.g~(-1), 61.8816mg.g~(-1) respectively, of which suggested the difference in content between the renewed bark and virginalbark was not significant. For the content of jatrorrhizine hydrochloride, the values were 0.4815mg.g~(-1), 0.4600 mg.g~(-1), 0.2231 mg.g~(-1) respectively, of which revealed the content of the recovered barkwas much more significant than that in the primary bark.. For the content of palmatine hydrochloride,the values were 0.1004 mg.g~(-1), 0.0904 mg.g~(-1), 0.1621 mg.g~(-1) respectively, of which indicated thedifference in content was not significant. Therefore, the second-birth bark could be utilized as themedicinal material to extract the berberine.
     (2) Three years after barking, the thickness of the bark was ranked as the following: secondary bark ofthree-year old>primary bark>secondary bark of two-year old>secondary bark of one-year old. Inparticular, the thickness of secondary bark (3.98mm)of three-year old was much more significant thanthat(3.01 mm) of the primary bark.
     Bark removing resulted in different degrees of etiolation within leaves, furthermore, the time ofdefoliation was advanced by about one month and, the burgeoning time in the next spring waspostponed by seven to nine days, however, the process of efflorescence and the burliness remained to bein running order. In the third year, the growth of the barked had recovered to normal state.
     The bark regeneration underwent 3 phases sequentially as following: 1) unwrapped the film and theformation of the callus 2) the suberization on surface layer. 3) the development of renewed periderm and phloem. During the first stage, putrescence and fungal infection would be caused by any touch. Duringthe first and second stage, the depanperateion or infection may be apt to occur on the of periphery of therenewed tissues. Actually, the main cause of the decline in healing rate is fungal infection.
     4. The factors which influence the bark regeneration of of P. chinense
     (1)The bark regeneration could be influenced by ten factors of which were wrapping, way of barking,time of barking, time of packing, intensity of barking, the method of barking, the operation of barking,weather condition, the state of the trunk, growth regulator. The result suggested that the regenerationcould be affected significantly by five factors of the referred above, i. e. wrapping, operation, thecondition of the trunk, the time of barking, the time of packing. Furthermore, based on the five factorsin differed extent towards the importance of the regeneration, the five factors could be divided into keyfactor, important factor, sub-important factor by the method of Path Analysis. Wrapping and operationtogether with the condition of trunk were the key factors which acted as the determinative effect in thebark regeneration. The importance of the three in key factors was ranked as following: wrapping>operation>trunk condition, i. e. wrapping with film was the precondition of the bark regeneration;extensive operation was the main factor which caused the bark regeneration into failure and also it wasthe key reason which brought on the reduction in concrescent rate; trunk state did indirect influence onthe regeneration, i. e. the rainwater filtered into the gap between the film and the trunk that was led bythe roughness of the latter, hence the rainwater, consequently, callus on the knurr had notformed. Therefore, the trunk condition had indirectly impact on the recovery of the barking surface.
     (2) Both the barking time and the wrapping time were the important factors, i. e, the healing processdisbenefit from barking too late or too early as well as too long or too short time in wrapping. The daysin wrapping together with the color post-removing had close correlation with the AccumulationTemperature. Besides, higher the temperature, shorter, time required for the wrapping. Contrarily, lowerthe temperature, longer time in need for the packing. Based on the formula of y=0.0495x-1.4328,the time of unwrapping could be predicted by Accumulation Temperature. However, in terms of thesefactors such as season, Phenology, growth etc., the time within the last ten days in May to first ten daysin July may probably be the appropriate occasion for barking. While barking within the last ten days inMay to the first ten days in June, the time required for wrapping is ten to fifteen days; While barkingwithin the last ten days in June to the first ten days in July, five to ten days is in demand for wrapping.In deed, light green color of the barking surface has acted as the key morphological index to determinethe implementation of unwrapping. Therefore, fitting time for unwrapping is jointly determined by theindex of days in wrapping and the index of morphology.
     (3) Sub-important factors which are length of removing, weather condition, tree age have lesssignificant impact upon the bark regeneration. Actually, the length for barking not only depends on thespecification of the medicinal material which is required by the market, but also the convenience of theoperation.
     (4) The results also suggests that barking can be operated under these weather conditions, i. e. sunny,cloudy, slightly rainy. Besides, the bark regeneration of P. chinense has not been influenced by the ageof itself, i. e. the manipulation of barking can be carried out on these plants aged two to twelve. Underthe condition of wrapping, the healing rate could be achieved by the two ways of barking, i. e. overallbarking, bark left in lengthways. However, concrescent conditions of barking surface differedcompletely. For full barking, above 90% of the barking surface was covered by the callus in shortterm(5 to 15 days); moreover, the trunk remained in straight as well as the morphology of the renewedbark was similar to that of the primary; however, in this way, the healing condition was mainly influenced by the operation and the trunk state. For the way of bark left in lengthways, less than 50%of the wounded surface was took up by the callus in short period, nevertheless the secondary barkexpanded gradually; in this way, without removing the channels, hence the recovery of the barkingsurface was slightly affected by the operation and the stem condition; however, the method wouldresulted in the abnormality of the trunk and xylem together with the secondary bark.
     In addition, the bark regeneration was probably affected by the plant growth regulator to a certaindegree, however, this must be tested further.
     5. The technological system of bark regeneration of P. chinense.
     (1) Multi-spot and multi-year experiments of barking in the main producing regions of Sichuan(Yingjing, Yaan, Hongya, Muchuan, Dayi) had been carried out and the results suggested that thesurvival rates in the 4 counties(Yingjing, Hongya, Muchuan, Dayi) could reach above 80%. Of thereferred 5 regions in Sichuan, the highest survival rate, i. e. 88.7% could be obtained in Muchuan,however, the rate in Yaan was ranked as the lowest, i. e. 50.0%. The main cause to the sharp distinctionof the survival rates between Yaan and Muchuan were the evident differences in the management. InYaan, the scarcity of pruning and fertilization during cultivation led to frank trunk with more knurrs.Less tightly in wrapping as well as the film in tearing or even high infectious rate were induced by thelow height under the branch, consequently, it was difficult for the formation of the callus within theknurrs. However, in Muchuan, the plants of the P. chinense are owned by the farmers and are adjacentto the houses of themselves, therefore, the trees are supervised well. In comparison with those in Yaan,the arbors are kept straight and strong. Besides, the conditions of light and soil as well as nutrients arewell maintained, furthermore crops under the woods are cultivated.
     (2) The chief running measures of bark regeneration are consisted of non-contaminated environment,site conditions, management, time of barking, way of barking, time of unwrapping. These are outlinesof above: 1) The environment should be non-contaminated 2) the way of cultivation should accord tothe Standard Operating Procedure(SOP) 3)The decorticated should be straight and strong as well as befree of diseases and insects .4)Use the "three-time cutting" and, the depth of cutting should be exactlyget to the surface of xylem and, lancet as well as hand should not touch the barking surface. 5)Removethe bark in appropriate time(between May and July), wrap the cutting position with polyethylene filmtightly, determine the time for unwrapping according to the current temperature and the season, in whichthe barking was done. 6)One week before barking, carbamide weighs 50g and SSP weighs 250g orcompound fertilizer(N:P:K=15:15:15) should be fertilized on each plant. The concrescence rate shouldbe checked one month after barking. If it is low than 60%, cut the baked plant but leave the stake inlength of 20cm. and also leave a new-birth branch. If it is infected by diseases, the speckle of diseaseshould be removed by lancet and spray the 800 times liquid of 70% thiophanate-methyl as well as 800times liquid of 80% Carbendazim on the infected.
     The research suggests it is comparatively difficult for the P. chinense, to achive barkregeneration, however, with good management and right operation, the survival rate in the end of thatyear could reach above 80%. The improvement of farmer's scientific consciousness and the enactmentof SOP regulations can help to the popularize this technic in yielding region of P. chinense, so as toachieve sustainable resource employment in bark-utilization species of trees.
引文
艾希珍,王秀峰,郭延奎,等.弱光亚适温和低温对黄瓜气孔特性及叶绿体超微结构的影[J].中国农业科学,2006,39(10):2063~2068
    奥.西费利[意],郝水,张传善,付萍,等编著.叶绿体分子遗传学[M].湖南:湖南科学技术出版社,1987,19~20
    曹仪植.拟南芥[M].北京:科学出版社,2003,69
    陈俊伟,倪竹如,刘智宏,等.利用~(14)C示踪法研究杉木光合产物分配和杉木根系分泌物[J].核农学报,1994,8(3):167~171
    陈锦永,方金豹,顾红,等.环剥和GA处理对红地球葡萄果实性状的影响.果树学报,2005,22(6):610~614
    陈贻竹,李晓萍,夏雨,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79~86
    陈祖培,朱树秀,谢建菲,等.矮化李树果实膨胀期~(14)C-光合产物的运转和分配[J].核农学报,1988,9(4):164~165
    程洪.环剥和赤霉素处理暗柳橙的花芽分化与核酸、蛋白质及碳水化合物含量的影响[J].南昌水专学报,1995,14(1):11~17
    程林梅,曹秋芬,高洪文,等.菊苣再生体系建立及转AFL2基因的研究.草地学报,2004,13(2):199~203
    崔克明,罗立新.杜仲形成层的活动式样[J].西北林学院学报,1996,11(2):1~9
    崔克明,汪向彬,段俊华.构树剥皮再生中内源IAA的变化及其组织定位[J].北京大学学报(自然科学版),2000,36(7):495~501
    崔克明.杜仲剥皮再生的原理和技术[J].中国中药杂志,1993,18(4):248~249
    崔克明,李正理.杜仲剥皮再生对生长的影响[J].植物学报,2000,42(11):1115~1121
    崔克明,李正理.适于形成层活动的不脱蜡苏木精—番红染色法[J].西北植物学报,1997,17(3):264~268
    崔克明,王雅清.木质部细胞分化和脱分化的机理.西北植物学报.2000,20(6):907~917
    崔晓阳,宋金凤,张艳华.不同土壤水势条件下水曲柳幼苗的光合作用特征[J].植物生态学报,2004,28(6):794~802
    代向阳,徐程扬,马履一.氮磷配比对水曲柳光合作用的影响[J].山东林业科技,2006,2:1~6
    丁丽惠,顾海清,王品水,等.厚朴剥皮再生试验初报[J].林业科技通讯,1991,8:26~28
    董彩篦,田纪春,赵世杰.不同形态氮素对高蛋白小麦幼苗叶绿素荧光特性的影响[J].西北植物学报,2002,22(20):229~234
    董娟娥,赵德义,张康健,等.杜仲原生皮与再生皮次生代谢物含量分析[J].中草药,2004,35(2):199~201
    窦炳升,戈丰强,等.银杏树中干环割、主干环剥试验[J].江苏林业科技,2005,32(4):32~34
    杜红岩,杜西山,等.杜仲优良无性系剥皮再生能力及剥皮综合技术研究[J].西北林学院学报,1996,11(2):18~22
    樊汝汶,尹增芳,周坚.植物木质部发育生物学研究[J].植物学通报,1999,16(4):387~397
    樊启昶,白书农.发育生物学原理[M].北京:高等教育出版社,2002:324.345~347
    发育生物学编写组.中国大百科全书·生物学·发育生物学[M].北京·上海:中国大百科全书出版社,1988,331~332
    方金豹,田莉莉,陈锦永,等.猕猴桃源库关系的变化对果实特性的影响[J].园艺学报,2002,29(2):113~118
    方清茂,曹浩,舒光明.川黄柏中盐酸小檗碱的含量极其道地性研究[J].华西药学杂志,2004,19(4):275~276
    高莉萍.月季品种‘萨蔓莎’植株再生体系的建立和根癌农杆菌介导的遗传转化研究[D].华中农大博士论文.2005
    葛军,刘振虎,卢欣石.紫花苜蓿再生体系研究进展[J].中国草地,2004,26(2):63~67
    顾海清,王国良,徐伟民,等.厚朴剥皮再生研究[J].浙江林业科技,1997,17(5):64~69
    桂建芳,易梅生.发育生物学[M].北京:科学出版社,2002,422
    龚月桦,高俊凤.高等植物光合同化物的运输与分配[J].西北植物学报,1999,3:19
    国家药典委员会.中华人民共和国药典(一部)[M].北京:化学工业出版社,2000:252
    郭书好,周明辉,等.川黄柏果中挥发油的化学成分研究[J].暨南大学学报:自科与医学版,1998a,19(3):61~63
    郭书好,周明辉.川黄柏叶中黄酮成分的研究[J].暨南大学学报:自科与医学版,1998b,19(5):68~72
    郭志华,张旭东.落叶阔叶树种蒙古栎对林缘不同光环境和水分的利用[J].生态学报,2006,26(4):1047~1056
    郭延平,周慧芬,曾光辉,等.高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响[J].应用生态学报,2003,14(6):867~870
    郭延平,陈屏昭,张良诚,等.缺磷胁迫加重柑橘叶片光合作用的光抑制及叶黄素循环的作用[J].植物营养与肥料学报,2003,9(3):359~363
    赫俊峰,刘应竹,朱世兵,等.东北马鹿、东北梅花鹿再生茸增质增量的研究[J].哈尔滨师范大学自然科学学报,2004,20(4):91~94
    宏君.培育捆束水浸应激性溃疡易发系小鼠以及黄柏提取物成分的药理遗传学解析[J].国外医学—中医中药分册,1992,14(1):52
    胡芳名,谭晓风,刘惠民主编.中国主要经济树种栽培与利用[M].北京:中国林业出版社,2005,438~440
    胡美君,郭延平,等.柑橘属光合作用的环境调节[J].应用生态学报,2006,17(3):535~540
    黄明远,周仕春,等.四川的川黄柏资源调查[J].乐山师范学院学报,2002,4:45~48
    黄郑爽,周宁.关于黄柏种类的探讨[J].中草药,1999,30(8):621~623
    黄旭明,王惠聪,袁炜群.荔枝环剥时期对新梢生长及碳素储备的影响[J].园艺学报,2003,30(2):192~194
    简令成,孙龙华,孙德兰.小麦穗轴中ATP酶活性及物质运输通道的定位与分布及其与小穗发育的关系[J].植物学报,1983,25(4):313~315
    柯玉琴.改良的半叶法测定茶光合速率时韧皮部处理方法的比较[J].植物生理学通讯,2001,37 (1):43~44
    库尔萨诺夫.植物体内同化物的运输[M].北京:科学出版社,1996,231~223
    李保国,王永蕙.增施氮肥和环剥对枣树光合速率的影响[J].河北农业大学学报,1991,14(3):33~37
    李家实,闻玉琵.杜仲皮与叶化学成分的初步研究[J].中药通报,1986,11(8):41~42
    李正理,崔克明,鲁鹏哲.构树剥皮再生的研究[J].植物学报,1988,30(3):286~241
    李正理,崔克明.杜仲剥皮再生的解剖学研究.植物学报,1981a,23(1):6~11
    李正理,崔克明,余椿生,等.杜仲茎部剥皮后塑料薄膜包裹的效应[J].中国科学,1981b,12:1524~1527
    李正理,崔克明.杜仲再生树皮的不正常发育[J].植物学报,1984,26(3):252~257
    李正理,张新英.植物解剖学[M].北京:高等教育出版社,1983,230
    龙明华,唐小付,干文进,等.不同钙素水平对厚皮甜瓜叶片光合作用和保护酶活性的影响[J].广西植物,2005,25(1):77~82
    廖静,鄂征,等.中药黄柏的光敏抗癌作用研究[J].首都医科大学报,1999,20(3):153~155
    梁红,蔡业统.肉桂环状剥皮与新皮的再生[J].植物资源与环境,1997,6(3):1~7
    梁龙,李光玉.秃叶黄檗化学成分研究[J].中药材,1995,18(2):85
    刘平,温陟良,等.库—源关系对枣树14C-光合产物分配的影响[J].林业科学,2003,39(4):37~42
    刘淑明,梁宗锁,董娟娥.土壤水分对杜仲剥皮再生的影响[J].林业科学,2006,42(9):44~48
    刘寿山.中药研究文献摘要[M].北京:科学出版社,1963,608~614
    刘庆华,王奎玲,张秀芬.梨树茎干环剥的组织学研究[J].莱阳农学院学报,1992,9(3):185~188
    刘庆华,李正理.植物生长物质对茄茎剥皮后新皮再生的影响[J].植物学报,1990,32(12):969~972
    李绍长,王荣栋.作物源库理论的发展及其在生产中的应用[J].作物杂志,1998,(1):9~12
    李绍长,胡昌浩,龚江,等.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响[J].作物学报,2004,30(4):365~370
    鲁长虎.黄檗的更新特点及食果实鸟类对其种子的传播[J].生态学杂志,2004,23(1):24~29
    吕燕,邱全瑛.黄柏对小鼠DTH及其体内几种细胞因子的影响[J].北京中医药大学学报,1999,22(6):48~50
    李卫东,李绍华.果实不同发育阶段去果对桃源叶光合作用的影响[J].中国农业科学,2005,38(3):565~570
    李西林,周秀佳,南艺蕾.中药濒危药用动植物资源保护与可持续利用[J].上海中医药大学学报.2006,20(2):69~71
    罗海波,钱晓刚,等.增施氮肥和环割对烤烟光合速率的影响[J].土壤.2003,35(3):259~261
    罗俊,张木清,林彦铨,等.蔗苗期叶绿索荧光参数与抗旱性关系研究[J].中国农业科学,2004,37(11):1718~1721
    吕丰曼,王锡武,等.杜仲大面积剥皮对再生的影响[J].浙江林业科技,1997,17(4):38~40
    马成仓,高玉葆,王金龙,等.内蒙古高原甘蒙锦鸡儿光合作用和水分代谢的生态适应性研究[J]. 植物生态学报,2004,28(3):305~311
    孟庆东,刘帅.桃树茎干环剥愈伤组织观察[J].河北农业技术师范学院学报,1993,7(3):79~80
    宁安中.苹果树环剥存在的问题与对策[J].落叶果树,2005,(4):11~13
    聂磊,李淑仪,廖新荣,等.沙田柚叶绿素荧光特性及其与叶片矿质元素含量的关系[J].果树科学,1999,24(4):123~126
    聂竹兰,李霞.海参再生的研究[J].海洋科学,200,30(5):78~82
    潘瑞炽.植物生理学[M].北京:高等教育出版社,2001,57
    彭良志,胥洱,汤军,等.脐橙剥皮再生的解剖学研究[J].园艺学报,1993,20(1):93~94
    蒲光兰,周兰英,胡学华,等.干旱胁迫对金太阳杏叶绿素荧光动力学参数的影响[J].干旱地区农业研究,2005,23(3):44~48
    齐莉萍,戈峰,周晓东.蚯蚓再生能力的研究[J].应用与环境生物学报,2002,8(3):27~279
    秦红玫.黄柏组织培养技术[J].农业科技通讯,2004,12:33
    乔书瑞,叶萌.树木剥皮再生研究综述[J].四川林业科技,2005:2:49~51
    石发翔.杜仲剥皮再生技术[J].农村实用技术,2004,11:22
    冉懋雄.杜仲[M].北京:科学技术文献出版社,2002,76
    神农本草经[M].北京:科学技术文献出版社,1996,39
    沈增学.桑树大田光合作用测定方法的改进试验[J].江苏农业,2004,1:54~56
    师生波,李惠梅,王学英,等.青藏高原几种典型高山植物的光合作用特性比较[J].植物生态学报,2006,30(1):40~46
    史瀛仙.发育生物学[M].上海:知识出版社,1988:103~109
    四川森林编辑委员会.四川森林[M].北京:中国林业出版社,1992,941
    四川省经济植物资源开发编委会.四川省经济植物资源开发[M].成都:四川省社会科学出版社,1988,181~185
    苏荣辉,金武祚,中岛修平,等.川黄檗果实中的酰胺类化合物[J].植物学报,1994,36(10):817~820
    苏颂(宋).本草图经.合肥:安徽科学技术出版社,1994,47
    宋太伟,周光龙,等.杜仲树皮生长理论及剥皮再生技术[J].湖北民族学院学报(自然科学版),1997,15(3):20~23
    孙超,张勇民,朱立.贵州珍惜濒危药用植物与可持续开发利用[J].资源开发与市场,2006,22(4):15
    谭浩,翟衡.干旱胁迫对不同葡萄砧木光合特性和荧光参数的影响[J].应用生态学报,2006,17(5):835~838
    谭志雄,廖建良.龙眼剥皮再生的解剖学研究[J].广西植物,1991,11(4):312~315
    唐大岳.杉木黄柏混交林初期生长研究[J].湖北林业科技,2000,(3):5~7
    唐崇钦,李国庆,左宝玉,等.莲萌发过程中叶绿体光合特性的研究[J].植物学报,2003,35(5):349~355
    滕云武,陈光景.果树环剥应用技巧[J].农业科技通讯,1998,7:17
    童新旺,曹谷云,李柏海,等.杜仲专用型植物增皮素的研制及应用[J].林业科技开发,1996, 4:27~28
    万德光.彭成.赵军宁.四川道地中药材志[M].成都:四川科学技术出版社,2005,523~534
    王书林.中药材GAP技术t-M1.北京:化学工业出版社,2004,93~99
    王惠清.中药材产销[M].四川:四川科技出版社,2003,531~535
    王丽燕.盐胁迫对海蓬子、玉米光合速率和叶绿体超微结构的影响[J].德州学院学报,2006,22(3):91~95
    王孟卿,彩万志.昆虫肢体再生的研究进展[J].昆虫知识,2004,41(2):127~131
    王雅清,曹静,崔克明.木质部细胞分化的研究进展[J].植物学通报,2001,18(4):402~410
    王可玢,赵福洪,王孝宣,等.用体内叶绿素a荧光动力学鉴定番茄的抗冷性[J].植物学通报,1996,13(2):29~33
    王立.秋冬季茶树养分的积累与分配的研究[J].茶叶科学,1985,5(1):39~44
    王丽琴,唐芳,张静,等.苹果矮化砧对~(14)C-同化物运输分配的影响[J].核农学报,2003,17(3):212~214
    王承南,何方,杨志玲,等.厚朴生产栽培技术的研究[J].经济林研究,1998,16(1):1~5
    王涌,于涛.多效唑及环割环剥对温室无花果生长结果的影响fJ].北方果树,2004,(4):4~6
    王群瑛,胡昌浩.玉米不同叶位叶片结构与光合性能的研究[c].全国作物栽培生理学术讨论会材料之五,北京,1986
    王满莲,冯玉龙,李新.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J].应用生态学报,2006,17(4):602~606
    王丽丽,李向东,等.改变源库比对花生叶片和根系衰老的影响[J].花生学报,2005,34(3):1~5
    王福均.农学中同位素示踪技术[M].北京:农业出版社,1989,234
    王庆,丁朝华,林刚,等.杜仲剥皮促皮再生的新探索.中国中药杂志,2003,28(11):1079~1080
    王志芬,刘益同,孙尚仁.利用~(14)C和~(32)P示踪研究流胶对大樱桃树体生理功能的影响[J].核农学报,1991,12(6):285~288
    王忠,王三银,李合生,等.植物生理学[M].北京:中国农业出版社,2000,170
    王衡奇,秦民坚,等.黄柏的化学成分及药理学研究进展[J].中国野生植物资源,2001,20(4):6~8
    王跃华,苟小军,等.川黄柏不同部位中盐酸小檗碱的研究[J].成都大学学报(自然科学版),2004,23(1):15~17
    汪炳良,徐敏,史庆华,等.高温胁迫对早熟花椰菜叶片抗氧化系统和叶绿素及其荧光参数的影响[J].中国农业科学,2004,37(8):1245~1250
    温陟良,张良诚,陈志辉,等.环剥及外源激素对柑桔光合产物运转分配的影响[J].河北农业大学学报,1997,20(3):67~73
    卫发兴,杨晓忠,钟显.杜仲剥皮及再生技术[J].河南林业科技,1998,18(1):26~27
    魏振东,粱臣.环剁对仰韶黄杳曲树生长与结果的影响[J].中国果树,1993,34(2):25~26
    吴楚,谢裕春,甘彩霞.磷胁迫对黄瓜幼苗生长·光合作用·生物量及其分配的影响[J].安徽农业科学,2005,33(10):1825~1827
    吴俊,钟家煌,徐凯,等.生长季修剪和环剥对藤稔葡萄果实生长及叶片光合作用的影响[J].山东农业大学学报(自然科学版),2002,33(2):148~153
    吴普(魏),等.神农本草经[M].北京:人民卫生出版社,1982,41
    吴琼富,张良海,林明堂.复方乙烯利刺激割胶生产性开发试验[J].热带作物科技,1992,4:47~48
    肖培根,杨世林.黄柏[M].北京:中国中医药出版社,2001,4,90
    许大全.光合作用效率[M].上海:上海科学技术出版社,2002,84~92
    许宁.不同施氮水平对茶树~(14)C-同化产物积累与分配的影响[J].核农学报,1997,11(30):184~186
    叶萌.黄柏规范化育苗技术[J].林业科技开发.2005,19(1):56~58
    叶萌.四川“三木药材”的产业化探讨[J].四川林业科技,2006,6(27):88
    叶萌.荥经川黄柏的产业化开发[J].四川林业科技,2003,24(2):66~69
    向丽,叶萌,胡莹莹,等.秃叶黄皮树和黄檗种子萌发习性的比较.林业科技开发,2006,20(3):30~32
    谢红丽.毛白杨剥皮再生过程中蛋白质的表达分析及差异蛋白的肽质量指纹鉴定[D].中国农业大学硕士论文,2003
    谢学民.不同技术措施对碳氯在茶树内分布及茶叶品质的影响[J].核农学报,1993,7(1):29~36
    杨勇,蒋德安,孙骏威,等.不同供镁水平对水稻叶片叶绿索荧光特性和能量耗散的影响[J].植物营养和肥料学报,2005,11(1):79~86
    荥经县志.乾隆版.1746.
    鄢正益.杜仲全剥皮再生方法[J].林业科技开发,2004,18(4):72~72
    伊稍,李正理.种子植物解剖学[M].上海:上海科学技术出版,1982,313
    于凤义,张萍,周洪杰,等.玉米籽粒建成过程中功能叶片~(14)C-同化物运转与分配特性研究[J].核农学报,1993,7(4):227~230
    云建英,杨甲定,赵哈林.干旱和高温对植物光合作用的影响机制研究进展[J].西北植物学报,2006,26(3):641~648
    赵双民.生物再生及其相关的几个问题[J].生物学杂志,1993,1:11~14
    赵国凡,王冶钢.黄柏剥皮再生新皮试验[J].中草药,1980,3:129~131
    赵国凡,曹阳,范方,等.黄柏剥皮再生的解剖学研究[J].植物学报,1984,26(3):320~323
    赵国凡,于仲平.黄柏再生皮小檗碱含量研究[J].植物学通报,1993,10(1):55~56
    赵青华,胡焕平.环剥和喷施赤霉素对冬枣果实与品质的影响[J].北方园艺,2006,(4):100
    朱建华,欧世金,麦福珍,等.环剥和剪顶芽促进芒果徒长枝成花试验[J].广西热带农业,2006,(4):3~4
    赵林详,张新民,李建林,等.杜仲主干剥皮再生对雌株结实及种子质量的影响[J].西北林学院学报,1996,11(2):29~30
    赵林祥,李建林,等.杜仲剥皮再生利用技术[J].林业科技开发,1995,3:46~47
    郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080~1087
    中国科学院主编.中国高等植物图鉴补编 第2册[M].北京:科学出版社,1985,156
    中国植物志编辑委员会.中国植物志(43卷2分册)[M].北京:科学出版社,1997,43(2):99~105
    中国大百科全书—生物学发育生物学[M].北京:中国大百科全书出版社,1988:331~332
    张丹雁.肉桂再生皮与原生皮挥发油含量比较[J].中药材,2001,24(7):476.
    张治礼,郝秉中.巴西橡胶树剥皮再生及乳管发生的研究[J].热带作物学报,2000,21(2):12~18
    张煊,崔征等.高效液相色谱法测定关黄柏不同采收期以及黄檗不同部位的小檗碱、巴马汀含量[J].沈阳药科大学学报.2003,20(5):194~197
    张志军.黄柏提取物的抗溃疡效果[J].国外医学—中医中药分册,1994,16(1):29
    张运涛.核果类果树环剥技术研究概述[J].果树科学,1997,14(3):193~197
    张运涛,董存田,王景安.环剥对麦香桃生长发育的效应[J].沈阳农业大学学报,1994,25(3):295~298
    张运涛,王子峰.环剥对“麦香”桃生长和结实效应的研究[J].国外农学:果树,1992,1:18~21
    张维涛,张伟,等.气象因子对杜仲剥皮再生的影响[J].西北林学院学报,1998,11(2):23~26
    张运涛,辛红.环剥和针刺对李予生长发育的影响[J].河北农业技术师范学院学,1998,12(3):18~21
    张伟成,严文梅.高等植物的有机物运输[M].北京:科学出版社,1987,36~37
    周艳虹,黄黎锋,喻景权.持续低温弱光对黄瓜叶片气体交换、叶绿素荧光猝灭和吸收光能分配的影响.植物生理与分子生物学学报,2004,30(2):153~160
    周贤军,吴定尧,黄辉白.螺旋环剥对荔枝~(14)C光合产物转运及分配的影响[J].核农学报,1998,12(6):365~368
    周光龙.杜仲剥皮再生技术[J].湖北林业科技,2004,4:65~66
    周明兵,侯磊,朱冬雪,等.杜仲树皮CDNA文库的构建与分析[J].山地农业生物学报,2004,23(1):58~59
    朱建华,欧世金,麦福珍,等.环剥和剪顶芽促进芒果徒长枝成花试验[J].广西热带农业,2006,4:3~4
    朱隆静,喻景权.不同供磷水平对番茄生长和光合作用的影响[J].浙江农业学报,2005,17(3):120~122
    Ariyoshi K. Plantlet cultivation techniques of kihada (Phellodendron amurense Rupr. ) by tissue and organ culture [J]. Bulletin of the Tottori Prefecture Forest Experiment Station, 1989, 32: 47~57
    Asada M, Ahnxh, Sagisake S. Changes in parenchyrma cells of popular xylem during trasentine from grow to winter stages[J]. Plant Cell Physlol, 1988, (29): 234~246
    Andrews T J, Lorimer G M. Rubisco. structure mechanism and prospects for improvement. In:Hatch M D, Boardman N K (eds) [M].The Biochemisty of Plants Vol 10.New York:Academic Press, 1987, 131~218
    Aloni B, Pashkar T. Kaeni L Partitioning of carbon~14 sucrase and invertase activity in repronductive organs of pepper plants in relation to their abscission under heat stress [J]. Annals of Botany (London) , 1991, 67 (5) : 371-378
    
    Azad M. A. K.,Yokota S., Ohkubo T., et al. Micropropagation of plantlets through callus in kihada (Phellodendron amurense Rupr.) [J]. Journal of Society of High Technology in Agriculture, 2004, 16 (3): 122-130
    Azad M. A. K., Yokota S., Yahara S., et al. Effects of explant type and growth regulators on organogenesis in a medicinal tree Phellodendron amurense Rupr.[J]. Asian Journal of Plant Sciences, 2004, 3 (4): 522-528
    Azad M A. K., Yokota S., Ohkubo T., et al. In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves [J]. Plant Cell, 2005, 80 (1): 43-50
    Barker,W.G A contibution to the concept of wound repair in woody stems. Can. Jour. Bot., 1954, 32 (3): 486-490
    Bernacchi C J, Singsaas E L, Pimentel C, et al. Improved temperature response functions for models of Rubisco control the rate of photosynthesis [J]. plant cell environ, 2001, 24: 253-259
    Bhautt R. M, Rao N. K. S.. Carbon movement in hot pepper as influenced by defoliation [J]. Lndian Journal of Experimental Biology, 1991, 29 (7) : 686-688
    BR.Loveys Internal Control of Stomatal Physiology and Photosynthesis. I. Stomatal Regulation and Associated Changes in Endogenous Levels of Abscisic and Phaseic Acids. Aust. J. Plant Physiol,, 1974, 858-863
    Brown,C.L.,andK.Sax., The influence of pressure on the differention of secondary tissues. Amer. Jour. Bot. 1962, 49 (7): 490-683
    Chen L, Fuchigami L H. Rubisco avtivation state decreases with increasing nitrogen content in apple leaves[J]. Exp Bot, 2000, 51: 1687-1694.
    
    Choi M.S. , Shin D.I. , Park Y.G . Berberine production by cell suspension cultures of cork tree (.Phellodendron amurense Rupr.) . [J]. Korean Journal of Pharmacognosy, 1996, 27 (1): 32-36
    Christiane Werner, Otilia Correia. Photoinhibition in cork-oak leaves under stress: influence of the bark—stripping on the chlorophyll fluorescence emission in Quercus suber L. [J]. Trees - Structure and Function, 1996, 12: 288-292
    Cutting JG, Lyne MC. Girdling and the reduction in shoot xylem sap concentrations of cytokinins and gibberellinsinpeach[J]. J Hort Scit, 1893, 68 (4): 619-626
    Dann IR, Jerie PH, Chaimers DJ. Short-term changes in cambial growth and endogenous IAA concentrations in relation to phloem girding of peach[J]. Aust J Plant Physiol, 1985,12:395—402
    Day KR, Dejong TM (张运涛译). 早熟袖桃五月红的环剥【J】.国外农学—果树,, 1991 (3): 9-12
    De Villiers H, Cutting FGM , Jacohs G, et al. The effect of girdling on fruit growth and internal, quality of 'Culemborg'peach[J]. J Hort Sol, 1990, 65 (2): 151-155
    De Villiers H. Cutting FGM ,Jacohs G et al. The effect of girdling on fruit growth and internal, quality of Culemborg'peach. J Hort Sol, 1990, 65 (2) : 151-155
    Dickson R. E., P.T. Tomlinson, J.G. Isebrands. Allocation of currentphoto ynthate and changes in tissue dry weight within northern red oak seedlings:ind ividual leaf and flush carbon contribute during episodic growth.[J]. C. J. For. Res., 2000, 30 (8): 1296~1307
    Eileen V Carey, Ragan M, Callaway, et al. DeLucia.Increased photosynthesis offsets costs of allocation to sapwood in an arid environment[J]. Ecology, 1998, 13: 148
    Equiza M. A., Mirave, J.P., Tognetti, J.A.. Differential inhibition of shoot vs. root growth at low temperature and its relationship with carbohydrate accumulation in different wheat cuitivars [J]. Annals of Botany. 1997. 80: 5, 657~663.
    Fagerberg W.R. Cytological changes in palisada cell of developing sunflower leaves [J]. Protoplasma, 1984, (119): 21~30
    Farrar J. F. The whole plant:carbon partitioning during development. In: Pollock C J, Farrar J F, Gordon AJ (eds). Carbon Partitioning Within and Between Organisms. Oxford: BIOS Scientific Publishers, 1992, 163~79
    Farrar J. F.. Regulation of root weight ratio is mediated by sucrose: opinion[J]. Plant and Soil, 1996, 185: 13~19
    Farqhar G D, Sharkey T D. Stomatal and photoynthesis[J]. Ann Rev Plant Physiol, 1982, 33: 317~345
    Feng YL, Cao KF, Feng ZL, et al. Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species[J]. Acta Ecol Sin, 2002, 22(6): 901~910
    Feng JC, Hu XL, Mao XJ. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance[J]. Econ For Res, 2002, 20 (4): 14~18
    Glaeser C. W., Kincaid D.. The non~native invasive Phellodendron amurense Rupr. in a New York City woodland [J]. Arboricultural Journal, 2004, 28 (3): 151~164
    Goo GwanHyo, Lee Kang Young, Youn KiSik, et al. Seed germination, seedling growth and optimal seedling density of Phellodendron amurense Rupr. in nursery[J]. Vsesoiuznoe botanicheskoe obshchestvo, 1997, 86 (4): 443~449
    Grashoff C, D Antuono L.F.. Effect of shading and nitrogen application on yield, grain size distribution and concentrations of nitrogen and water soluble carbohydrates in malting spring barley (Hordeum vulgate L.) [J]. European Journal of Agronomy. 1997. 6: 3/4, 275~293
    Heinrich G., Schultze W.. Composition and site of biosynthesis of the essential oil in fruits of Phellodendron amurense Rupr.[J]. Israel Journal of Botany, 1985, 34: 205~217
    Hou Hong-Wei, Wang Ya-Qing, et al. Changes of Soluble Protein, Peroxidase Activity and Distribution During Regeneration After Girdling in Eucommia ulmoides [J]. ACTA BOTANICA SINICA (植物学报), 2004, 46 (02): 216~223
    Holzwarth. A. R.. Time resolved chlorophyll fluorescence[J]. See Ref. 1998:21 31
    Hsiao T C, Plantre sponseto waterst ress.Annual Review of Plant Physiology, 1973, 24: 519~570
    Jonathan Slack.Essential Developmental Biology发育生物学基础(影印版).北京:高等教育出版社,2002,296~311
    KawamuraY, Kazama Y.. On the wood quality of barked kihada (Phellodendron amurense .Rupr.) trees [J]. Bulletin of the Niigata University Forests, 1988, 21: 89-97
    
    Kim J.H., Goo GH., Choi M.S., et al. Micropropagation and soil adjustment of cork tree (Phellodendron amurense Rupr.) through in vitro culture [J]. Korean Journal of Plant Tissue Culture, 1992, 19 (1): 37-42
    Kara, AA Kotov, Ngbukhov. Specific distribution of gibberellins, cytokinins, indole~3~acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red LaRue J. Girdling fresh shipping peach and nectarine trees[J]. California Fruit Grower, 1986, 63: 4-5
    Lee J.H., Moon Y.H., Lee B.W., et al. Phytochemical Constituents from the Stem Bark of Phellodendron amurense Rupr.[J]. Agricultural Chemistry and Biotechnology, 2005,48 (2): 93-96
    LL Novitskaya, FV Kushnir. The Role of Sucrose in Regulation of Trunk Tissue Development in Betula pendula Roth .Journal of Plant Growth Regulation, 2006, 25 (1) : 18-29
    Li M, Ma H~C, Li F~X, et al. Effects of urban air pollution on air exchange behavior and chlorophyll fluorescence in leaves of Parakmeria yunnanensis seedlings[J]. J Northwest For Univ, 2005, 20 (2) : 46-50
    Lis A., Boczek E., Gora J.. Monoterpene and sesquiterpene hydrocarbons in the fruit essential oil of Phellodendron amurense Rupr.[J]. Herba Polonica, 2003, 49: 17-23
    
    Lis A., Boczek E., Gora J.. Chemical composition of the essential oils from fruits, leaves and flowers of the Amur cork tree (Phellodendron amurense Rupr.) [J]. Vsesoiuznoe botanicheskoe obshchestvo, 2004, 19 (6): 549-553
    Li X, Jian DM, Liu YL, et al. Chlorophyll fluorescence and membrane lipid peroxidation in the flag leaves of different high yield rice variety al late stage of development under national condition [J]. Acta Botanica Sinica, 2002, 44 (4) : 413-421.
    Lloyd J. E, BrianA .Kunke, l.Effects of Water Availability on Carbon Assimilationand Structural Integrity of Poted Greenhouse Poinsetia ( Euphorbiap ulcherrima) . Ornamental Plants Annual Reports and Research Reviews 2000[J]. Special Circular, 2000, 101-177
    Lou J ,Zhang M-N ,Lin Y~Q ,et al. Studies on the relationship of chlorophyll fluorenscence characters and drought tolerance in seedling of sugarcane under water stress[J]. Sci Agric Sin, 2004, 37 (11) : 1718-1721
    Marini RP, Barden JA. Translocation of 14C~photosynthate in one-year-old apple trees following summer pruning. Hortscience, 1983, 18(6): 926-929
    Marques J. R. B., Monteiro W. R.. Polyploidy in rubber tree. II. Assessment of the performance of the putative polyploids IAC 206 and IAC 232 [J]. Agrotropica, 1997, 9 (2): 67-74
    Marur C. J., Mazzafera P. , Magalhaes, A. C. Carbon assimilation and export in leaves of cotton plants under water deficit[J]. Revista Brasileira de Fisiologia Vegetal. 1996. 8: 3, 181-186.
    Ma S-H, Wang Q-C, Li Y-C. Effect of automobile exhaust on chlorophyll fluorescence characters of four northern decidous trees [J]. Chin J Ecol, 2005, 24 (1) : 15-20
    Massaccla, Jones HG, Use of simultaneous analysis of gansexchange and chlorophyll fluorescence quenching for analyzing the effects of water stress on photosynthesis in apple leaves [J]. Trees~Struct Fund, 1990, 4: 1-8
    Mwange K.N., H.W. Hou ( 侯宏伟 ) , K. M. Cui (崔克明) . Relationship between endogenous indole-3-acetic acid and abscissic acid changes and bark recovery in Eucommia ulmoides Oliv. after girdling[J]. J.Exp.Bot, 2003, 54: 1899-1907
    Mori H , Fuchigami M, Inoue N , et al. Principle of the bark of Phellodendron amurense to suppress the cellular immune response.. PlantaMed, 1994 ,60(5) : 445-449
    Mori H , Fuchigami M, Inoue N , et al. Principle of the bark of Phellodendron amurense to suppress the cellular immune response : Effect of Phellodendrine on cellular and humoral immune response[J]. PlantaMed, 1995, 61 (1) : 45-49
    Nurhawaty Siagian, Wattimena G.A., Solahuddin S., etal. The application of plant growth regulator to increase the rate of tapping bark regeneration of Hevea brasiliensis Muel. Arg [J]. Bulletin-Perkaretan, 1985, 3 (3): 67-73
    Ohga S., Kira K., Koga S.. Comparison of berberine content in Phellodendron amurense Rupr. inner bark in relation to its variety, stem position, season and tree age [J]. Bulletin of the Kyushu, 1992. Bulletin of the Kyushu University Forests, 66: 45-53
    Sass,J.E., Formation of callus knots on apple graft as related to histology of the graft union. Bot.Gaz., 1932:94:364-380
    Senser M , Fschotz, Beck E. Seasonal changes in structure and function of spruce chloroplasts[J]. Planta, 1975, (126): 1-10
    Sepheri A., Modarres Sanavy SAM . Waler and nitrogen stress on maize photosynthesis [J]. Journal of Biological Sciences, 2003, 3 (6): 578-584
    Sharif Hossain A.B.M., Mizutani Fusao, Onguso justus M, et al., The Journal of Horticultural Science and Biotechnology. 2007, 82 (2): 175-178
    Sharpies A., H.Gunnery. Callus formation in Hibiscus rosa-sinensis and Hevea brasiliensis Muell [J]. Arg Ann.Bot, 1933, 47: 827-840 Shear,C.B.Calcium-related disorders of fruits and vegetables[J].Hortscience, 1975,10 (4) :361-365
    Sheridan H , Bhandari P.. Canthin-6-one from the root bark of Phellodendrom chinense[J]. Planta Med , 1992, 58 (3) : 299
    
    Short KC, ToreyJG. Cytokininsin seedling roots of peas, plant Physiol, 1972, 49: 155-160
    Simard,S .W ., D .M .Durall M.D. Jones.Carbon allocation and carbon transferbetween Berula papyrfera and Pseudaruga menziesii seedlings usinga ~(13)C pulse-labeling method. Plant and Soil,
    Singh. Effect of girdling and gibberellic acid on endogenous level of ethylene in Black Corinth grapes. Haryana J HortSci, 1976, 5 (3/4): 150-153
    Starshova N.P. Germination biology of seeds of Phellodendron amurense Rupr.[J]. Botanicheskii zhurnal, 1979, 64 (8): 1159-1168
    Starshova N. P. The fertilization process in the Amur cork tree Phellodendron amurense Rupr.[J]. Doklady, 1976, 228 (6): 1485~1488
    Stewart D.P.C., A. K. Metherell. Carbon (~(13)C) up ake and allocation in pastureplants following field pulse~labelling[J]. Plant and Soil, 1999, 210: 61~73
    Stittle M. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells[J]. Plant, Cell and Environment, 1991, 14: 741~762
    Stit M, Schulze E-D, Does Rubisco control the rate of photosynthesis and plant growth. An exercise in molecular ecophysiology[J]. Plant Cell Environ, 1994, 17: 465~487
    Suliven编著.果蝇实验指南.北京:科学出版社,2004,127
    Sultan H. Begna, Lianne M. Dwyer, Daniel Cloutier, et al. Decoupling of light intensity effects on the growth and development of C3 and C4 weed species throughsucrose supplementation[J]. Journal of Experimental Botany, 2002, 53 (376): 1935~1940
    Su R H, Kim M, Yamamoto T., et al. Antifeeding constituents ofPhellodendron chinense against Reticulitermess peratus[J]. J Pesticide Sci, 1990, 15(4): 567~572
    Suzanne W. S., M. D. Daniel, D. J. Melanie. Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13Cpulse~labeling method[J]. Plant and Soil, 1997, 191: 41~55
    Svejcar, T. J., W. B.Thomas&T. D. James. Assessment of carbon allocation withstable carbon isotope labeling[J]. A gronomy Journal, 1990, 82(1): 18~21
    Thomas V, D. Premakumari, C. P. Reghu, A. O.N. Panikkar and C. K. Amma Saraswathy. Anatomical and Histochemical Aspects of Bark Regeneration in Hevea brasiliensis[J]. Annals of Botan, 1995, 75: 421~26
    Thomas V., Saraswathyamma C.K., Effect of debarking on rubber trees affected by bark dryness[J]. The Planter, 1998, 74 (867): 335~337
    Woodrow I E, Berry J A. Enzymatic regulation of photosynthetic CO~2 fixation in C_3 plant[J]. Ann Rev Plant Physiol plant Mol Biol, 1988, 39: 533~594
    Warren C R, Adams M A., Chcn Z L. I s photosynthesis related to concentration of nitrogen and Rubisco in leaves of Australian native plants[J]. Aust J Plant Physiol, 2000, 27: 407~416
    Yu FY, Xu XZ, Guy RD. Effects of water plus heat stress on gas exchange and water use efficiency in fourspecies of coniferous seedlings[J]. Sci Silvae Sin, 2004. 40(2): 38~44
    Zhang GS, Wang LH, Li YL, et al. Effects of severing stolon on chlorophyll fluorescence characteristics of Sabina vugaris.sci silvae[J]. 2004, 40 (3): 60~65
    Zhang F, Chen D, Zhang S-L, et al. 2003. Physiological effects of elevated of CO2 on loquat trees under water stress[J]. Acta Hortic Sin, 30 (6): 647~652
    Zhou R, Quebedeaux B. Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source—sink manipulatation[J]. J. Amer. suoc. Hort. Sci., 2003, 128 (1): 113~119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700