‘风味甜瓜’系列果实高糖高酸品质形成的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜生产在世界园艺产业中占有重要地位,我国是甜瓜生产大国,随着生活水平的提高,人们对果实品质的要求越来越高。改善果实内在品质是提升甜瓜品质的关键,其中糖、酸组分及其含量对果实内在品质有着重要的影响,是决定果实风味的重要指标。本研究以新疆农业科学院哈密瓜研究中心培育出的风味甜瓜系列品种(‘风味2号’、‘风味3号’、‘风味4号’)、相关亲本(‘酸瓜’——高酸积累型和‘寿星’——低酸积累型)和传统品种(‘雪丽’和‘雪里红’)为主要实验材料,从生理、生化和基因表达等多个层面,深入探讨风味甜瓜果实高糖高酸性状形成的生物学基础。主要研究结果如下:
     1.对风味甜瓜果实特性的观察结果表明,‘风味2号’果实的最佳成熟期在30~35DAP之间,该时期内果实的鲜重、大小、果肉厚度、糖酸含量和一些营养指标等各项指标均有较高值。风味甜瓜的独特之处在于成熟时果肉含有酸味。独特酸味主要由柠檬酸引起,属于柠檬酸积累类型果实。
     2.对风味甜瓜和对照品种甜瓜植株的光合特性的观察结果表明,不同甜瓜品种的光合特性表现出一定差异。‘风味3号’和‘雪丽’在结果初期的净光合速率都高于幼苗期,‘雪里红’则略有下降,到结果中期,3个品种都较结果初期有所下降,但是‘风味3号’的下降幅度最小;‘风味3号’的叶色值显著高于对照,是其具有高光合速率的直观表现;而引起3个品种的光合效率降低的原因是叶片受到气孔限制,但是程度不一致;另外,在结果中期,‘风味3号’的胞间CO2浓度显著低于对照,表明此时‘风味3号’羧化效率高,更多的CO2被固定,生成的同化物供应果实的生长发育。
     3.采用GC和Real-time PCR等技术测定了不同发育时期风味甜瓜和对照品种甜瓜果实中主要可溶性糖的含量、蔗糖代谢途径关键酶基因的表达以及酶活性。结果表明,甜瓜果实在成熟前约15~20 d时出现大量的蔗糖积累,在果实成熟时,蔗糖是果实中主要的可溶性糖。在‘风味4号’和‘酸瓜’的果实发育中,SPS基因的表达和酶活性与蔗糖的积累一致,而‘寿星’在整个发育期间表现出很低的AI活性和高蔗糖含量。所以,很可能存在两种蔗糖积累的机制:一种是果实随着SPS活性增加而积累,另一种是果实在AI低于某一阈值时才出现蔗糖积累。
     4.采用GC和Real-time PCR等技术测定了不同发育时期风味甜瓜和对照品种甜瓜果实中主要有机酸的含量、代谢途径关键酶基因的表达以及酶活性。结果表明,柠檬酸是甜瓜果肉中的主要有机酸;在5-25 DAP期间,ACO和ME的活性都与柠檬酸含量的变化呈显著正相关,而‘风味3号’中2种酶的活性比‘雪里红’高,因此‘风味3号’的柠檬酸含量更高;‘风味4号’和‘酸瓜’中柠檬酸代谢酶类的活性普遍高于‘寿星’,表明前二者的卡尔文循环加速,柠檬酸作为中间产物其含量提高。然而‘寿星’的蔗糖含量最高,其次依次是‘风味4号’和‘酸瓜’,而酸含量的排序正好相反,该结果表明,在有机酸积累型果实中更多的同化物被分配到柠檬酸循环中来,故‘风味4号’中柠檬酸的积累很可能是由于柠檬酸循环加速导致中间产物柠檬酸的积累。
     5.采用GC-MS技术测定了成熟的风味甜瓜和对照品种甜瓜果实的挥发性物质。结果表明,‘风味2号’甜瓜果实成熟时有代表性的挥发性物质为邻苯二甲酸二乙酯、邻苯二甲酸二甲酯和(E,E)-2,4-癸二烯醛;而‘风味3号’和‘雪丽’果实的挥发性物质主要是酯类和酮类,其含量分别占各自总挥发性物质含量的70%以上,其余的为醇类、醛类和硫代化合物等其他物质;而‘风味3号’的酯类含量为43.03%,‘雪丽’为65.61%,‘风味3号’的酮类含量为30.08%,‘雪丽’为10.07%;4-羟基-2-丁酮和邻苯二甲酸异丁酯是‘风味3号’果实的主要挥发性物质。
     以上研究结果表明,相对传统甜瓜品种以及风味甜瓜亲本品种而言,风味甜瓜果实的品质发生了根本性的变化,形成了糖酸兼具的独特口感。这种品质形成的过程是:具有较强光合作用的植株为果实发育提供了更多同化物,在具有较高的糖分积累的基础上,果实还将相对更多的同化物分配到有机酸循环中而形成较多有机酸,从而使果实同时具有的较高的糖酸含量。
The melon production plays an important role in the horticultural industry of the world, and China is one of the great melon-producing countries. The fruit quality became more and more cruial to consumers with the improvement of living standards of people. To improve the fruit inner quality is the key to raise melon quality, and the compositions and contents of sugars and acids impact the melon inner quality significantly because they reflect an important indicator of fruit flavor. Cucumis melo L. Flavor Melon series were a kind of novel melon and bred out by Xinjiang Academy of Agricultural Science. These melon fruits cause both high sugar and high acid accumulation. In this reserach, the leaves and fruit flesh of Flavor Melon series ('Flavor No.2','Flavor No.3', and'Flavor No.4'), some parents of Flavor Melon ['Suangua'(high organic acid accumulation-type) and'Shouxing'(low organic acid accumulation-type)] and some traditional melon cultivars ('Xueli'and'Xuelihong') as the experiment materials, in order to conduct a combined physiology, biochemical and gene expression study to understand the differential accumulation of sugar and acid in melon fruits and to explore the biological basis of the formation of high sugar and high acid contents. The main results were as follows:
     1. The observation of fruit characteristics of Flavor Melon revealed that the fruit of 'Flavor No.2'obtained the best quality during 30-35 DAP, involving fresh weight, size, pulp thickness, contents of sugar and acid, and some other index. The sour tasted fruit was the novelty of'Flavor No.2', and this was resulted from the accumulation of citric acid.
     2. The observation of photosynthetic characteristics of Flavor Melon and control cultivars revealed that there were some differences in different melon cultivars. The net photosynthetic rate of'Flavor No.3'and'Xueli'in the initial stage of fruit development were higher than those in vegetative growth stage, instead'Xuelihong'was lower. In the middle stage of fruit development, the net photosynthetic rate of three cultivars were all lower than those in the initial stage, additionally the decline in'Flavor No.3'was the least. The SPAD value of 'Flavor No.3'was higher than those of control melons, and this was an obvious appearance suggesting its higher photosynthetic rate. The declines of photosynthetic rate in three cultivars were because of the stomatal limitation in different degree. In the middle stage of fruit development, the intercellular CO2 concentration of 'Flavor No.3'was significant lower than the control melon, this indicated that the carboxylation efficiency of Flavor No.3'was higher, and more CO2 was fixed, so more photosynthate were supplied for the fruit development.
     3. GC and real-time PCR techniques were used to determine the main soluble sugar content, sugar metabolic pathway key enzyme genes expression and activity in Flavor Melon and control cultivars at different developmental stages. The results showed that there was a large number of sucrose accumulation when 15-20 d before melon fruit got mature. And sucrose is the major soluble sugar in mature fruit. In'Flavor No.4'and 'Suangua', SPS gene expression and enzyme activity consistent with the accumulation of sucrose, while the'Shouxing' performed a very low activity and high sucrose content of AI during the entire development. Therefore, it is likely that there are two mechanisms for the accumulation of sucrose, one is the accumulation of sucrose is along with the increasing SPS activity, the other is the accumulation of sucrose occurs when AI activity was below a certain threshold.
     4. GC and real-time PCR techniques were used to determine the dominant orgaic acids content, acid metabolic pathway key enzyme genes expression and activity in Flavor Melon and control cultivars at different developmental stages. The results revealed that citric acid is the major organic acid in mature fruit. During 5-25 DAP, the ACO and ME activities were correlated to the citric acid content, and the activities in 'Flavor No.3' were hgher than those in 'Xuelihong', so the citric acid content was higher in the former. The activities of citric acid metabolic pathway key enzymes in'Flavor No.4'and 'Suangua' were mostly higher than those in'Shouxing', as a result, citric acid increased. However, the sucrose content in'Shouxing'was the highest, and followed by'Flavor No.4'and'Suangua', and the acid content was inverse。So it suggested that the Krebs cycle was accelerated and more photosynthate were subjected to the partitioning in the citric acid metabolism in acid-accumulation melons.
     5. The volatile substances in mature Flavor Melon and control cultivars fruits was measured by GC-MS. The results showed that, the representative volatile substances in mature'Flavor No.2'fruit were diethyl phthalate, dimethyl phthalate, and (E, E)-2,4-decadienal; and the volatile substance in'Flavor No.3' and 'Xueli'fruit were mainly esters and ketones, which accounted for more than 70% of the total content of volatile substances, and the rest were alcohols, aldehydes, sulfur-containing compounds and so on. The ester content was 43.03% in 'Flavor No.3', and 65.61% in 'Xueli', while the ketone content was 30.08% in 'Flavor No.3', and 10.07% in 'Xueli'.4-Hydroxy-2-butanone and 1,2-benzenedicarboxylic acid butyl 2-methylpropyl ester were the main volatile substances is'Flavor No.3'.
     Taken together, the quality of Flavor Melon fruits are dramatically different from the traditional cultivars and its parents, and the formation mechanism is speculated in two aspects as follow:on the one hand, the photosynthesis of leaves are stronger, so they could supply more photosynthate for fruit development; on the other hand, as there are more photosynthate in fruit, some are metabolized to be sugars and accumulation, at the same time, some assimilates are subjected to the partitioning in the citric acid metabolism, and as a result citric acid increased in amount as an intermediate product in the cycle.
引文
1. 白宝谭,张宪政.植物生物学.北京:中国科学技术出版社,1992,219
    2.陈发兴,刘星辉,陈立松.果实有机酸代谢研究进展.果树学报,2005,22:526-531
    3.陈俊伟,张良诚,张上隆.果实中糖积累机理.植物生理学通讯,2000,36:497-503
    4.陈俊伟,张上隆,张良诚.果实中糖的运输、代谢与积累及其调控.植物生理与分子生物学报,2004,30:1-10
    5.陈宗良,罗喜娜,杨特武,孙文强,傅立业.不同施肥水平对水稻生育进程中功能叶光合性能及水势变化的影响.华中农业大学学报,2007,26:759-765
    6. 范爽.设施不同光环境对桃树14C同化物分配特性及果实品质的影响.[博士学位论文],泰安:山东农业大学图书馆,2006
    7. 冯燕青,赵聪,马乐园,于喜艳、.甜瓜果实醇酰基转移酶基因的克隆及表达分析.山东农业科学,2009, (5):1-3
    8.高志奎,刘彦民,何俊萍,杨萍,高向军.西葫芦光合作用特性.园艺学报,1996,23:305-306
    9.龚月桦,高俊凤.高等植物光合同化物的运输与分配.西北植物学报,1999,19:564-570
    10.郭玮,李贵全,李玲,王鹏,赵晶.60Co诱变大豆后代农艺性状的研究.激光生物学报,2009,18:91-95
    11.洪蓉,金幼菊.日本芳香生理心理学研究进展.世界林业研究,2001,14:61-66
    12.胡颂平,王正功,张琳,刘国兰,罗利军,廖慧敏.干旱胁迫下水稻叶片光合速率与叶绿素含量的相关性及其基因定位.中国生物化学与分子生物学报,2007,23:926-932
    13.蒋玉梅,毕阳,周小平,梁琪,周围.果腔顶空法分析厚皮甜瓜‘银帝’的挥发成分.食品工业科技,2005,26:173-179
    14.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    15.李明启.果实生理.北京:科学出版社,1989:83-88
    16.李锡香.新鲜果蔬的品质及其分析法.北京:中国农业出版社,1994
    17.刘春香.黄瓜风味品质的构成因素及部分因素遗传参数的研究.[博士学位论文],泰安:山东农业大学图书馆,2003
    18.刘慧英,朱祝军.转化酶在高等植物蔗糖代谢中的作用研究进展.植物学通报,2002,19:666-674
    19.卢育华,申玉梅,陈莉平.黄瓜单个叶片光合特性研究.园艺学报,1994,21:54-58
    20.吕英民,张大鹏.果实发育过程中糖的积累.植物生理学通讯,2000,36:289-295
    21.苗平生,毕敏.现代果业技术与原理.北京:中国林业出版社,1999:260-289
    22.缪旻珉,曹碚生,薛林宝,徐强.摘除雌花对甜瓜成熟叶片中糖及相关酶活性的影响.植物生理学通讯,2003,39:131-133
    23.乔永旭.甜瓜果实蔗糖代谢酶的提取及酶与糖积累的关系研究.[硕士学位论文],太谷:山西农业大学图书馆,2004
    24.秦巧平,张上隆,谢鸣,陈俊伟.果实糖含量及成分调控的分子生物学研究进展.果树学报,2005,22:519-525
    25.索滨华,陈光,王德辉,郭卫华,许贵民.网纹甜瓜糖的积累.核农学报,1997,11:190-192
    26.王坚.中国西瓜甜瓜.中国农业出版社,北京,2000,435-436
    27.吴明珠,伊鸿平,冯炯鑫,王登明.新疆厚皮甜瓜辐射诱变育种效果的探讨.中国西瓜甜瓜,2005,(1):1-3
    28.吴平,陈昆松.植物分子生理学进展.杭州:浙江大学出版社,2000
    29.许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,33:241-244
    30.姚玉新,翟衡,赵玲玲,伊凯,刘志,宋烨.苹果果实酸/低酸性状的SSR分析.园艺学报,2006,33:244-248
    31.于喜艳.甜瓜幼果cDNA文库的构建、酸性转化酶基因的克隆及遗传转化.[博士学位论文],泰安:山东农业大学图书馆,2003
    32.张东晓.日本关于厚皮甜瓜若干品种香气成分的研究.中国西瓜甜瓜,2002,(2):45-46
    33.张红,王怀松,贺超兴,张志斌,张显,伊鸿平,吴明珠.甜瓜糖酸性状的遗传研究.园艺学报,2009,36:989-996
    34.张红,张志斌,王怀松,贺超兴,张显,吴明珠,伊鸿平.应用基因芯片检测酸味抗病甜瓜果实基因表达.西北植物学报,2009,29:669-673
    35.张建农,曹孜义,陈年来,文蕾.甜瓜不同品种叶表皮特性与光合速率的观测.甘肃农业大学学报,2003,38:79-83
    36.张明方,蒋有条,余抗.甜瓜不同变种果实发育过程中的糖转化与酶活性变化.浙江农业学报,1998,10:310-312
    37.张明方,李志凌,陈昆松,钱琼秋,张上隆.网纹甜瓜发育果实糖分积累与蔗糖代谢参与酶的关系.植物生理与分子生物学学报,2003,29:455-462
    38.张永平,乔永旭,喻景权,赵智中.园艺植物果实糖积累的研究进展.中国农业科学,2008,41:1151-1157
    39.赵光伟,徐志红,刘君璞,徐永阳.甜瓜芳香物质研究进展.中国瓜菜,2008,21:27-29
    40.赵智中,张上隆,徐昌杰,陈昆松,刘拴桃.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用.园艺学报,2001,28:112-118
    41.朱进,别之龙,李娅娜.盐胁迫对不同基因型黄瓜幼苗和光合作用的影响.沈阳农业大学学报,2006,37:476-478
    42. Arai M, Mori H, Imaseki H.Cloning and sequence of cDNAs for an intracellular acid invertase from etiolated hypocotyls of mung bean and expressing of the gene during growth of seedlings. Plant Cell Physiol 1992,33:245-252
    43. Aubert C, Pitrat M. Volatile compounds in the skin and pulp of Queen Anne's pocket melon. JAgric Food Chem 2006,54:8177-8182
    44. Balague C, Watson CF, Turner AJ, Rouge P, Picton S, Pech J, Grierson D. Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homology to the ethylene-forming enzyme. Eur JBiochem 1993,212:27-34
    45. Barreiro M, Cebola F, Pinto M. Physicochemical characterization of the postharvest senescence of the winter melon'Tendra'. Fruits 2001,56:51-58
    46. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids as their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J Chromatogr A 1997,758:99-107
    47. Bean RC, Todd GW. Photosynthesis and respiration in developing fruits I,14CO2 uptake by young orange in light and in dark. Plant Physiol 1960,35:425-429
    48. Beaulieu JC, Grimm CC. Identification of volatile compounds in cantaloupe at various developmental stages using solid phase microextraction. JAgric Food Chem 2001,49:1345-1352
    49. Beaulieu JC. Volatile changes in cantaloupe during growth, maturation, and in stored fresh-cuts prepared from fruit harvested at various maturities. J Amer Soc Hort Sci 2006,131:127-139
    50. Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM. Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 2007,49:810-828
    51. Bogin E, Wallace A. Organic acid synthesis and accumulation in sweet and sour lemon fruit. J Amer Soc Hort Sci 1966,89:182-194
    52. Bruhn CM, Feldman N, Gardlitz C, Harwood J, Ivans E, Marshall M, Riley A, Williamson DTE. Consumer perceptions of quality:apricots, cantaloupes, peaches, pears, strawberries, and tomatoes. J Food Qual 1991,14:187-195
    53. Burger Y, Sa'ar U, Paris HS, Lewinsohn E, Katzir N, Tadmor Y, Schaffer AA. Genetic variability as a source of new valuable fruit quality traits in Cucumis melo. Isr J Plant Sci 2006,54:233-242
    54. Burger Y, Sa'ar U, Distelfeld A, Katzir N, Yeselson Y, Shen S, Schaffer AA. Development of sweet melon(Cucumis melo) genotypes combining high sucrose and organic acid content. J Amer Soc Hort Sci 2003,128:537-540
    55. Burger Y, Schaffer AA. The contribution of sucrose metabolism enzymes to sucrose accumulation in Cucumis melo. J Amer Soc Hort Sci 2007,132:704-712
    56. Buttery RG, Teranishi Ry, Ling LC. Fresh tomato aroma volatiles:A quantitative study. JAgric Food Chem 1987,35:540-544
    57. Cameron JW, Soost RK. Acidity and total soluble solids in citrus gybrids and advanced crossed involving acidless orange and acidless pummelo. J Amer Soc Hort Sci 2002,104:220-222
    58. Canel C, Bailey-Serres JN, Roose ML. Molecular characterization of the mitochondrial citrate synthase gene of an acidless pummelo (Citrus maxima). Plant Mol Biol 1996,31:143-147
    59. Cardini CE, Leloir LF, Chiriboga J. The biosynthesis of sucrose. J Biol Chem 1955, 214:149-155
    60. Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR. Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol 2003,133:1322-1335
    61. Carson DL, Botha FC. Genes expressed in sugarcane maturing internodal tissue. Plant Cell Rep 2002,20:1075-1081
    62. Cercos M, Soler G, Iglesias DJ, Gadea J, Forment J, Talon M. Global analysis of gene expression during development and ripening of citrus fruit flesh.A proposed mechanism for citric acid utilization. Plant Mol Biol 2006,62:513-527
    63. Chen FX, Liu XH, Chen LS. Developmental changes in pulp organic acid concentration and activities of acid-metabolising enzymes during the fruit development of two loquat (Eriobotrya japonica Lindl.) cultivars differing in fruit acidity. Food Chem 2009,114:657-664
    64. Chengappa S, Guillerous M, Philips W, Shields R. Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit. Plant Mol Biol 1999,40:213-221
    65. Chourey PS, Taliercio EW, Carlson SJ, Ruan YL. Genetic evidence that two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 1998,259: 88-96
    66. Crisosto CH, Crisosto G, Bowerman E. Understanding consumer acceptance of peach, nectarine, and plum cultivars. Acta Hort 2002,604:115-119
    67. D'Aoust M-A, Yelle S, Nguyen-Quoc B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 1999,11:2407-2418
    68. Defilippi BG, Kader AA, Dandekar AM. Apple aroma alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 2005,168: 1199-1210
    69. Dickinson CD, Altabella T, Chrisoeels MJ. Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol 1991,95:420-425
    70. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R. Mapping QTLs controlling fruit quality in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 1999,98:18-31
    71. Doty TE. Fructose sweetness:a new dimension. Cereal Foods World,1976,21: 62-63
    72. Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, Alarcdn AL, Alvarez JM, Knaap E. Estimating the genetic architecture of fruit quality traits in melon using a genomic liabrary of near isogentic lines. J Amer Soc Hort Sci 2007,132:80-89
    73. Eduardo I, Arus P, Monforte AJ. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 2005,112:139-148
    74. Elling L. Effect of metal-ions on sucrose synthase from rice grains-a study on enzyme-inhibition and enzyme topography. Glycobiology 1995,5:201-206
    75. Elss S, Preston C, Hertzig C, Heckel F, Richling E, Schreier P. Aroma profiles of pineapple fruit (Ananas comosus [L.] Merr.) and pineapple products. Lebensm-Wissu-Technol 2005,38:263-274
    76. Esti M, Messia MC, Sinesio F, Nicotra A, Conte L, Notte EL, Palleschi G. Quality evaluation of peaches and nectarines by electrochemical and multivariate analysis: relationship between analytical measurements and sensory attributes. Food Chem 1997,60:659-666
    77. Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity. Physiol Plant 2002,114:259-270
    78. Fallik E, Alkali-Tuvia S, Horev B, Copel A, Rodov V, Aharoni Y, Ulrich D, Schulz H. Characterisation of'Galia' melon aroma by GC and mass spectrometric sensor measurements after prolonged storage. Postharvest Biol Technol 2001,22:85-91
    79. Faostat, http://faostat.fao.org/site/567/default.aspx#ancor.2010.05.17
    80. Farrar J, Pollock C, Gallagher J. Sucrose and the intergration of metabolism in vascular plants. Plant Sci 2000,154:1-11.
    81. Fernandez-Silva I, Eduardo I, Blanca J, Esteras C, PicoB, Nuez F, Arus P, Garcia-Mas J, Monforte AJ. Bin mapping of genomic and EST-derived SSRs in melon (Cucumis melo L.). Theor Appl Genet 2008,118:139-150
    82. Flores F, Yahyaoui FE, Billerbeck G, Romojaro F, Latche A, Bouzayen M, Pech J, Amid C. Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatile in Charentais Cantaloupe melons. JExp Bot 2002,53:201-206
    83. Gao Z, Petreikov M, Zamski E, Schaffer AA. Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo). Physiol Plant 1999,106:1-8
    84. Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda MA. MELOGEN:an EST database for melon functional genomics. BMC Genomics, 2007,8:306
    85. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arus P, Monforte A. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 2005,110:802-811
    86. Gross KC, Pharr DM. A potential pathway for galactose metabolism in Cucumis sativus L., a stachyose transporting species. Plant Physiol 1982,69:117-121
    87. Haffaker RC, Wallace A. Dark fixation of CO2 in homogenates from citrus leaves, fruits, and roots. Pro Amer Soc Hort Sci 1959,74:348-357
    88. Haritatos E, Ayre BG, Turgeon R. Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. Plant Physiol 2000,123:929-937
    89. Haritatos E, Keller F, Turgeon R. Raffinose oligosaccharide concentrations measured in individual cell and tissue types in Cucumis melo L. leaves:implications for phloem loading. Planta 1996,198:614-622
    90. Hayata Y, Li XX, Osajima Y. Sucrose accumulation and related metabolizing enzyme activities in seed and induced parthenocarpic muskmelons. J Amer Soc Hort Sci 2001,126:676-680
    91. Hirai M, Ueno I. Development of citrus fruits:fruit development and enzymatic changes in juice vesicle tissue. Plant Cell Physiol 1977,18:791-799
    92. Homatidou V, Karvouni S, Dourtouglou V, Poulos C. Determination of total volatile components of Cucumis melo L. variety cantaloupensis. JAgric Food Chem 1992,40: 1385-1388
    93. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, Vossen E, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G,Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Yinqi, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim J, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin Nan, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S. The genome of the cucumber, Cucumis sativus L. Nature Genetics 2009,41:1275-1281
    94. Hubbard NL, Huber SC, Pharr DM. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon(Cucumis melo L.) fruits. Plant Physiol 1989,91:1527-1534
    95. Hubbard NL, Pharr DM, Huber SC. Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruit of various species. Physiol Plant 1991,82:191-196
    96. Huber SC, Akazawa T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells. Plant Physiol 1986,81:1008-1013
    97. Kato T, Kubota S. Properties of invertases in sugar storage tissues of citrus fruit and changes in their activities during maturation. Physiol Plant 1978,42:67-72
    98. Katzir N, Harel-Beja R, Portnoy V, Tzuri G, Koren E, Lev S, Bar E, Tadmor Y, Burger Y, Lewinsohn E, Fei Z, Giovannoni JJ, Schaffer AA. Melon fruit quality:A genomic approach. Cucurbitaceae 2008, Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae (Pitrat M, ed), INRA, Avignon (France).
    99. Klotz KL, Haagenson DM. Wounding, anoxia and cold induce sugarbeet sucrose synthase transcriptional changes that are unrelated to protein expression and activity. J Plant Physiolo 2008,165:423-434
    100.Kobashi K, Sugaya S, Gemma H, Iwahori S. Effect of abscisic acid (ABA) on sugar accumulation in the flesh tissue of peach fruit at the start of the maturation stage. Plant Growth Regul 2001,35:215-223
    101.Koch K. Sucrose metabolism:regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opinion Plant Bio 2004,7:235-246
    102.Koch KE. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 1996,47:509-540
    103.Komatsu X, Takanokura Y, Moriguchi T, Omura M,Akihama T. Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits(Citrus unshiu Marc.). Plant Sci 1999,140:169-178
    104.Komatsu A, Takanokura Y, Omura M, Akihama T. Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc). Mol Gen Genet 1996,252:346-351
    105.Kourkoutas D, Elmore JS, Mottram DS. Comparison of volatile compositions and flavour properties of cantaloupe, Galia and honeydew muskmelons. Food Chem 2006, 97:95-102
    106.Kubicki B. Inheritance of some characters in muskmelons(Cucumis melo). Genet Polon 1962,3:265-274
    107.Kubo T, Kihara T, Hirabayashi T. The effects of spraying lead arsenate on citrate accumulation and the related enzyme activities in the juice sacs of Citrus natsudaidai. JJpn Soc Hort Sci 2002,71:305-310
    108.Leach DN, Sarafis V, Spooner-Hart R, Wyllie SG. Chemical and biological parameters of some cultivars of Cucumis melo. Acta Hort 1989,247:353-357
    109.Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DPS, Cheon CI. Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 2005,139:1881-1889
    110.Leon P, Sheen J. Sugar and hormone connections. Trends Plant Sci 2003,8:110-116
    111.Lester GE, Arias LS, Lim MG. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. J Amer Soc Hortic Sci 2001,126:33-36
    112.Lewinsohn E, Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger Y, Tadmor Y, Katzir N.2008. Sesquiterpene aroma biosynthesis in melon(Cucumis melo) rinds, Proceedings of the IXth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae. Pitrat, M. (ed): 249-256.
    113.Lewinsohn E, Schalechet F, Wilkinson J, Matsui K, Tadmor Y, Nam KH. Enhanced levels of the aroma and flavor compound S-Linalool by metabolic engingeering of the terpenoid pathway in tomato fruits. Plant Physiol 2001,127:1256-1265
    114.Lingle SE, Dunlap JR. Sucrose metabolism in netted muskmelon fruit during development. Plant Physiol 1987,84:386-389
    115.Liu L, Kakihara F, Kato M. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 2004,135:305-313
    116.Lowell CA, Tomlinson PT, Koch KE. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus-fruit. Plant Physiol 1989,90: 1394-1402
    117.Lucchetta L, Manriquez D, El-Sharkawy I, Flores FB, Latche A, Pech JC. The role of ethylene in the expression of genes involved in the biosynthesis of aroma volatiles in melon. Adv Plant Ethylene Res 2007,4:189-195
    118.Malundo TMM, Shewfelt RL, Scott JW. Flavour quality of fresh market tomato. Lycopersicon esculentum Mill.as affected by sugar and acid levels. Postharvest Biol Technol1995,6:103-110
    119.Manriquez D, Flores FB, El-Sharkawy I, Latche A, Pech JC. Molecular control of fruit ripening and sensory quality of Charentils melon. Acta Hort 2007,731:413-419
    120.Martin T, Frommer WB, Salanoubat M, Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 1993,4:367-377
    121.Miron D, Petreikov M, Carmi N, Shen S, Levin I, Granot D, Zamski E, Schaffer AA. Sucrose uptake, invertase localization and gene expression in developing fruit of Lycopersicon esculentum and the sucrose-accumulating Lycopersicon hirsutum. Physiol Plant 2002,115:35-47
    122.Moing A, Rothan C, Svanella L, Just D, Diakou P, Raymond P, Gaudillere J, Monet R. Role of phosphoenolpyruvate carboxylase in organic acid accumulation during peach fruit development. Physiol Plant 2000,108:1-10.
    123.Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 2004,108:750-758
    124.Morales M, Roig E, Monforte AJ, Arus P, Garcia-Mas J. Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 2004,47:352-360
    125.Moriguchi T, Abe K, Sanada T, Yamaki S. Levels and role of sucrose synthase, sucrose-phosphate synthase, and acid invertase in sucrose accumulation in fruit of Asian pear. JAmer Soc Hort Sci 1992,117:274-278
    126.Moshonas MG, Shaw PE, Baldwin EA, Yuen W. Volatile and nonvolatile components in Hami melon(Cucumis melo L.). Lebensm Wiss Technol 1993, 26:577-580
    127:Nascimanto JR, Cordenunsi BR, Lajolo, FM, Alcocer, MJ. Banana sucrose-phosphate synthase gene expression during fruit ripening. Planta 1997,203: 283-288
    128.Natalie LH, Steven CH. Sucrose Phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon(Cucumis melo L.) fruit. Plant Physiol 1989,91:1527-1534
    129.Nitsch JP. The physiology of fruit growth. Annu Rev Plant Physiol 1953,4:199-236
    130.Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP. Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Sci Hort 2009a,121:425-433
    131.Obando-Ulloa JM, Eduardo I, Monforte AJ, Fernandez-Trujillo JP. Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Sci Hort 2009a,121:425-433
    132.Obando-Ulloa JM, Nicolai B, Lammertyn J, Bueso MC, Monforte AJ, Fernandez-Trujillo JP. Aroma volatiles associated with the senescence of climacteric or non-climacteric melon fruit. Postharvest Bio Technol 2009b,52:146-155
    133.Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S. Characterization of phloem-sap transcription profile in melon plants. JExp Bot 2007:3645-3656
    134.Pangborn RM. Relative taste of selected sugars and organic acids. J Food Sci 1963, 28:726-733
    135.Pardo JE, Alvarruiz A, Varon R, Gomez R. Quality evaluation of melon cultivars. Correlation among physical-chemical and sensory parameters. J Food Qual 2000,23: 161-170
    136.Paris MK, Zalapa JE, McCreight JD, Staub JE. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic 3 elite US Western Shipping germplasm. Mol Breeding 2008,22:405-419
    137.Park SO, Hwang HY, Crosby KM. A genetic linkage map including loci for male sterility, sugars, and ascorbic acid in melon. JAmer Soc Hort Sci 2009,134:67-76
    138.Perin C, Hagen L, Conto VD, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M:A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 2002,104:1017-1034
    139.Pitrat M.2002 Gene list for melon. Cucurbit Genet Coop 2002,25:1-18
    140.Popova TN, Pinheiro de Carvalho MAA. Citrate and isocitrate in plant metabolism. Biochimica et Biophysica Acta 1998,1364
    141.Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger J, Tadmor Y, Lewinsohn E, Katzir N. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. Plant Mol Biol 2008,66:647-661
    142.Quoc BN, Foryer CH. A role for'futile cycle'involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. JExp Bot 2001,52:881-889
    143.Ramakrishnan CV. Citric acid metabolism in the fruit tissues of Citrus acida. Curr Sci 1971,5:97-100
    144.Ramloch L. cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Bio 1993,22:917-922
    145.Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell 2002,S185-S205
    146.Sadka A, Dahan E, Cohen EL. NADP+-isocitrate dehydrogenase gene expression and isozyme activity during citrus fruit development. Plant Sci 2000a,158:173-181
    147.Sadka A, Dahan E, Cohen L, Marsh KB. Aconitase activity and expression during the development of lemon fruit. Physiol Plant 2000b,108:255-262
    148.Sadka A, Dahan E, Or E, Roose ML, Marsh KB, Cohen L. Comparative analysis of mitochondrial citrate synthase gene structure, transcript level and enzymatic activity in acidless and acid-containing citrus varieties. Aust J Plant Physiol 2001,28: 383-390
    149.Saftner R, Abbott JA, Lester G, Vinyard B. Sensory and analytical comparison of orange-fleshed honeydew to cantaloupe and green-fleshed honeydew for fresh-cut chunks. Postharvest Biol Technol 2006,42:150-160
    150.Saradhuldhat P, Paull RE. Pineapple organic acid metabolism and accumulation during fruit development. Sci Hort 2007,112:297-303
    151.Schaffer AA, Aloni BA, Fogelman E. Sucrose metabolism and accumulation in developing fruit of Cucumis. Phytochemistry 1987,26:1883-1887
    152.Selli R, Sansavini S. Sugar, acid and pectin content in relation to ripening and quality of peach and nectarine fruits. Acta Hort 1995,379:345-358
    153.Senesi E, Di Cesare LF, Prinzivalli C, Lo Scalzo R. Influence of ripening stage on volatiles composition, physicochemical indexes and sensory evaluation in two varieties of muskmelon (Cucumis melo L var. reticulatus Naud). JSci FoodAgric 2005,85:1241-1251
    154.Senesi E, Lo Scalzo R, Prinzivalli C, Testoni A. Relationships between volatile composition and sensory evaluation in eight varieties of netted muskmelon (Cucumis melo L var. reticulatus Naud). JSci Food Agric 2002,82:655-662
    155.Sensoy St, Buyukalaca S, Abak K. Evaluation of genetic diversity in Turkish melons (Cucumis melo L.) based on phenotypic characters and RAPD Markers. Genet Resour Crop Evol 2007,54:1351-1365
    156.Seymour GB, McGlasson WB. Melons. Chapter 9 in Biochemistry of fruit ripening. Seymour, G. et al. (eds.).1993.Chapman & Hall, London.
    157.Shalit M, Katzir N, Larkov O, Burger Y, Shalekhet F, Lastochkin E, Ravid U, Amar O, Edelstein M, Lewinsohn E. Aroma formation in muskmelon:volatile acetates in ripening fruits. Acta Hort 2000,510:455-461
    158.Shalit M, Katzir N, Tadmor Y. Acetyl-CoA:alcohol acetyltransferase activ ty and aroma formation in ripening melon fruits. JAgric Food Chem 2001,49:794-799
    159.Shimada T, Nakano R, Shulaev V, Sadka A, Blumwald E. Vacuolar citrate/H+ symporter of citrus juice cells. Planta 2006,224:472-480
    160.Shiota H. New esteric components in the volatiles of banana fruit (Musa sapientum L.). JAgric Food Chem 1993,41:2056-2062
    161.Smeeken S, Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 1997,115:7-13
    162.Stepansky A, Kovalski I, Perl-Treves R. Interspecific classification of melons (C. melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 1999a, 217:313-332
    163.Stepansky A, Kovalski I, Schaffer AA, Perl-Treves R. Variation in sugar levels and invertase activity in mature fruit representing a broad spectrum of Cucumis melo genotypes. Genet Resour Crop Ev 1999b,46:53-62
    164.Stommel J, Haynes K. Genetic of fruit sugar accumulation in a Lycopersicon esculentum×L hirsutum Cross. JAmer Soc Hortic Sci 1993,118:859-863
    165.Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 1999,121:1-8
    166.Sun JD, Loboda T, Sung SS, Black CC. Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol 1992,98: 1163-1169
    167.Sweeney JP, Chapman VJ, Hepner PA. Sugar, acid and flavor in fresh fruit. JAmer Diet Assn 1970,57:432-435
    168.Tang M, Bie ZL, Wu MZ, Yi HP, Feng JX. Changes in organic acids and acid metabolism enzymes in melon fruit during development. Sci Hort 2010,123: 360-365
    169.Villanueva MJ, Tenorio MD, Esteban MA, Mendoza MC. Compositional changes during ripening of two cultivars of muskmelon fruits. Food Chem 2004,87:179-185
    170. Wang CL, Xing JS, Chin Chee-Kok, Ho Chi-Tang, Martin C.E. Modification of fatty acids changes the flavor volatiles in tomato leaves. Phytochemistry 2001,58: 227-232
    171. Wang F, Smith AG, Brenner ML. Isolation and sequencing of tomato fruit sucrose synthase cDNA. Plant Physiol 1993,103:1463-1464
    172.Wang Y, Wyllie SG, Leach DN. Chemical changes during the development and ripening of the fruit of Cucumis melo (cv. Makdimon). J Agr Food Chem 1996,44: 210-216
    173.Wu BH, Quilot B, Genard M, Kervella J, Li SH. Changes in sugar and organic acid concentrations during maturation in peaches, P. davidiana and hybrids as analyzed by principle component analysis. Sci Hort 2005,103:429-439
    174.Wu BH, Quilot B, Kervella J, Genard M, Li SH. Analysis of genotypic variation in sugar and acid acid contents in peaches and nectarines through principle component analysis. Euphytica 2003,132:375-384
    175.Wyllie SG, Fellman JK. Formation of volatile branched chain esters in bananas. J Agric Food Chem 2000,48:3493-3496
    176.Wyllie SG, Leach DN, Wang Y. Development of flavor attributes in the fruit of C. melo during ripening and storage. In:Takeoka GR, Teranishi R, Williams PJ. Kobayashi A, eds. Biotechnology for improved foods and flavors. Amer Chem Soc 1996,228-239
    177.Wyllie SG, Leach DN. Sulfur-containing compounds in the aroma volatiles of melons (Cucumis melo). J Agric Food Chem 1992,40:253-256
    178.Yahyaoui FEL, Wongs-Aree C, Latche A, Hackett R, Grierson D, Pech JC. Molecular and biochemical characteristics of a gene encoding an alcohol acyl-transferase involved in the generation of aroma volatile esters during melon ripening. Eur J Biochem 2002,269:2359-2366
    179.Yamaki YT. Effect of lead arsenate on coenzyme A in fruit pulp of satsuma mandarin. JJpn Soc Hort Sci 1990,58:907-911
    180.Yelle S, Chetelat RT, Dorais M, Deverna JW, Bennett AB. Sink metabolism in tomato fruit:Ⅳ. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol 1991,95:1026-1035
    181.Yen C, Koch KE. Developmental changes in translocation and localization of 14C-labeled assimilates in grapefruit:Light and dark CO2 fixation by leaves and fruit. J Amer Soc Hort Sci 1990,115:815-819
    182.Yu XY, Wang XF, Fan JD, Tian HM, Zheng CC. Cloning and characterization of a sucrose phosphate synthase-encoding gene from muskmelon. J Amer Soc Hort Sci 2007,132:557-562
    183.Yu XY, Wang XF, Zhang WQ, Qian TT, Tang GM, Guo YK, Zheng CC. Antisense suppression of an acid invertase gene (MAI1) in muskmelon alters plant growth and fruit development. JExp Bot 2008,59:2969-2977
    184.Zabetakis I, Holden MA. Strawberry flavour:analysis and biosynthesis. J Sci Food Agric 1997,74:421-434
    185.Zhang MF, Li ZL. A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food Chem 2005,90:785-790
    186.Zhu HL, Zhu BZ, Fu DQ, Xie YH, Hao YL, Luo YB. Role of ethylene in the biosynthetic pathways of aroma volatiles in ripening fruit. Russian J Plant Physiol 2005,52:691-695

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700