半喂入花生联合收获机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是我国极具国际竞争力的优势油料作物和重要蛋白资源,多年来,我国花生产量和种植面积一直分别位居世界第一和第二位,在世界花生产业发展中,发挥着重要的引领和主导作用。但我国花生生产机械化发展却严重滞后,尤其是用工多、劳动强度大的收获作业目前仍主要靠人工完成,已成为产业发展的主要瓶颈。机械化联合收获由一台设备完成所有作业工序,效率高、成本低、缩短农时,是我国花生主产区收获机械化的发展方向,但目前国内花生联合收获技术研究基础薄弱,总体还处于起步阶段,还远不能满足生产实际和市场需求。因此,研究开发符合中国国情的花生联合收获装备既是中国花生产业发展的急需,也是提高花生生产机械化水平的关键。
     本论文在对发达国家花生等土下果实联合收获工艺技术与设备结构形式消化吸收与系统研析基础上,根据我国花生品种、种植农艺、作业条件、经营规模和模式等生产实际,采用基础研究与产品开发并举,部件优化与整机研发并重,吸纳先进技术和自主创新结合,并强化自主创新,紧扣市场,重点突破、攻克关键、全面提升的技术路线;理论分析、台架试验、田间试验、提升优化等方法相结合并贯穿整个论文研究内容,研究开发出能一次完成花生挖掘、输送、清土、摘果、清选、集果、秧蔓处理等所有收获作业的花生联合收获设备,以期为研发土下果实联合收获设备提供借鉴和参考。
     主要研究内容和结果简要如下:
     (1)结合我国花生的种植农艺和生物学特征,提出花生联合收获设备设计依据和要求,完成整机设计方案。设备采用履带自走式底盘、半喂入摘果原理,一次完成花生挖掘、输送、清土、摘果、清选、集果、秧蔓处理等所有收获作业工序,主要由底盘、传动系统和分禾装置、扶禾装置、挖掘装置、夹持输送装置、清土装置、摘果系统、清选系统、集果系统等作业组件组成,作业组件和底盘呈前视右侧向配置。
     (2)采用挖-拔组合起秧技术,理论分析和田间、台架试验相结合,优化组配分禾、挖掘、扶禾以及夹持输送等部件,确保各工作部件协调作业,实现秧果最佳出土和夹持输送状态,为后续作业工序提供便利条件,尽可能减少阻力、降低损失、提高作业顺畅性。采用扶禾器倾角80°、夹持链倾角35°、扶禾速度比1.5、夹持速度比1.2等设计参数,起秧作业时花生秧蔓与夹持链呈近似垂直夹持状态,夹持链拔取作用力近似垂直向上;在解析花生秧蔓扶禾运动过程的基础上,确定了秧蔓扶禾次数M和作用于单穴秧蔓最大拨指数Nb的计算方法,优化扶禾器拔指间距db为150mm。优化确定了扶禾器、挖掘铲、夹持链三部件左侧视图方向的合理位置关系参数为H1170mm,L1325mm,H2290mm,L225mm,试验表明,此配置下起秧作业整齐、有序、顺畅。
     (3)系统分析和比较花生收获清土作业部件的类型和工作原理,系统归纳分析各类型部件特点,确定选用清土部件为横向同向摆拍式结构,并开展结构设计。分析了花生植株在清土段的运动特性,确定拍击次数的计算方法,理论分析与试验验证相结合,确定拍土板进出口端的垂直距离600mm、拍土板宽度160mm、拍土板内侧固定4mm软橡胶板、拍土板与夹持链距离300mm等设计参数。最后对清土频率、拍土板角振幅进行试验优化,试验表明,清土作业采用高摆拍频率、小角振幅的作业参数较为适宜。
     (4)以降低破损率、摘不净率,提高果荚清洁度为目标,优化设计摘果机构的结构形式、结构参数以及运动参数。优化研究结果为:摘果辊与夹持链采用倾斜配置方式,双摘果辊采用渐紧型夹角配置方式,摘果辊采用6个后倾弧形叶片,叶片圆弧半径为35mm,弧度为70°。在此设计方案基础上,分别对摘果辊长度z1、辊筒直径z2、出口端重叠距离z3、摘果辊转速z4以及夹持输送速度z5等5个因素进行单因素试验,最后通过响应曲面优化试验方案,确定了破损率和摘不净率的二次多项式回归模型(Y1=11.23205-0.02587222-0.124323-0.059118z4+9.333×10"5z2z4+5.67×10-4z3-+7.0167x10-5242、Y2=14.0744-0.005722Z1-0.0057522-0.0476824+2.87525+1.2778×10-5z1z4-0.006z4z5+4.4074×10-5242),并获得各影响因素的最佳参数组合:摘果辊长度1200mm,链辊夹角7.12°,辊筒直径152.5mm,辊筒出口端重叠距离5mm,摘果辊转速371rpm,夹持输送速度1.025m/s(机器前行速度为0.854m/s)。本摘果部件为了获得较好的摘果性能(低破损率、低摘不净率),适宜采用较高摘果频率,适中的摘果强度。最佳参数组合条件下,摘果叶片的最大线速度为5.93m.s-1,秧果通过摘果段的理论摘果次数为86次。摘果辊采用静止护罩并与摘果辊端面呈“动套静”的配置形式设计可有效克服地膜缠绕问题。
     (5)研究分析影响秧蔓抛送作业效果的因素,并针对夹持链、抛秧链的齿顶角、齿顶高进行台架优化试验,选定齿形链的齿顶角和齿高分别为90°、l0mm。分析夹持链、抛秧链呈夹角配置时,齿形链和秧蔓的运动特性,并确定抛秧链、夹持链运动速度比k3和夹角λ分别为1.2、15°。夹持链、抛秧链、压板所构成的三角区结构总体设计思想为:秧蔓从入口端到出口端受压紧状态呈“强→弱→强”的变化趋势。通过台架试验对三角区的两轮设计方案进行验证,第一轮设计方案中的三角区空间大,造成秧蔓回带、缠绕以及排秧不顺等问题;改进的设计方案中,减小压板与夹持链、抛秧链间的距离,三角区空间减小,实现了有序顺畅排秧。
     (6)在上述关键作业部件优化设计的基础上,有效组配各作业部件,完成整机总体设计和制造,对整机进行田间性能试验,研究收获时间、土壤含水率和坚实度以及机器前进速度、发动机转速、清土角振幅等作业参数对主要作业性能指标的影响。分析判定试验用的花生生育期为130d,收获时间应在生育期前2-3天为宜;土壤含水率对收获总损失率和含土率均有较大影响,适宜的土壤(沙壤土)含水率为8-15%;田间正交试验分析表明:机器前进速度(A)、发动机输出转速(B)、清土角振幅(C)3因素对总损失率、破损率和含土率等性能指标的交互作用影响均不显著;总损失较优水平为A283C3,破碎率较优水平为B1A1C2,含土率较优水平为A1B3C3。采用综合加权评分法对各因素水平进行优化组合分析,尽可能使各项指标保持较优水平,加权综合优化结果为A1B2C2,优化后的作业参数组合为:机器前进速度0.8m/s、发动机输出转速2100r/min、清土角振幅24.5°、清土频率315次/min、夹持输送速度0.96m/s、摘果辊转速365rpm。
Peanut in China is an important oil crop and a protein resource being of great international competitive advantage. For many years, China has been the first largest peanut productive country of the international total production and the second largest one in peanut planting area in the world, which plays a leading and dominant role in the industrial development of international peanut production. However, the development of peanut mechanization in China has lagged seriously far behind its industrial requirements. Especially the peanut harvesting in China, having a labor-cost and high-intensity operation, is still mainly relying on labor, which has become a major bottleneck of peanut industrial development. Combine harvesting is the development orientation for Chinese peanut harvest mechanization. It can complete all the operation procedure of peanut harvest just only depending on one equipment, with many advantages including high efficiency, low cost and saving farming season. But the study on peanut combine harvesting technology is very few, it is still in an infant stage, and far from meeting the requirements of practical production and marketing. Therefore, the development of an innovative combine harvester according with national situations is not only the urgent need of Chinese peanut industry, but also the key point to enhance the mechanization level of peanuts production.
     This dissertation was to develop a peanut combine harvester which can complete all the harvest operations at one time including digging, vine clamping and conveying, clod cleaning, pods picking, air-screen cleaning, pods connecting and vine throwing, hoping to provide some reference for the development of similar combine harvester. The study was firstly based on the reference, absorption and systemic analysis of the advanced combine harvesting technology and equipments of underground-fruit crops in the developed countries. During the study, Chinese national situations and actual practices were widely considered, including the peanut varieties, planting agronomy, operation conditions, management scale and patterns etc. Either basic research or product development, components optimization or the whole machine research, and absorbing advanced technology or independent innovation were all conducted in close combination. The study especially conformed to the technical path of strengthening independent innovation and market-driven design, focusing the major breakthroughs and key technology, enhancing the entireness. And the combinative methods of theoretical analysis, bench test, field test, optimization and promotion were all taken into account all through the dissertation's study.
     The main study tasks and results were as follows:
     (1) According to Chinese planting agronomy and peanut biological characteristics, the design foundation and requirements of the combine harvester were proposed, and the design schemes of the whole machine were completed. The harvester employed the tracked self-propelled chassis and the principle of semi-feed picking pods. It can complete all the harvest operations at one time including digging, vine clamping and conveying, clod cleaning, pods picking, air-screen cleaning, pods connecting and vine throwing. And it was composed of chassis, driven system, vine detaching device, vine uprearing device, digging device, clamping and conveying device, clod cleaner, pods picking device, air-screen separation system, pods collecting system and other devices. All the operating components were configured on the right-hand orientation of the chassis from the front view of the harvester.
     (2) By employing the digging-pulling plant lifting technology and the combinative methods of theoretical analysis, bench test and field test, the configuration of vine detaching device, digging device, vine uprearing device, clamping and conveying device were optimized to ensure good coordination for the operation of all the parts, and to achieve best state for underground lifting, clamping and conveying of peanut plants, which can create advantageous conditions for the follow-up operations and can minimize resistance, reduce losses, improve operational smoothness as possible. When adopting the design parameters of vine uprearing device in obliquity80°, clamping chain in obliquity35°, vine uprearing speed ratio1.5, chain speed ratio1.2etc., peanut plants were nearly perpendicular with the clamping chain, and the pulling force on peanut plants was nearly directed in up-vertical orientation. Based on the analysis of the peanut vine lifting motion process, the calculation methods of the vine lifting times and the maximum active uprearing fingers for individual peanut plant were determined, and the separation distance of lifting fingers was optimized to be150mm. The optimization results of relative position parameters of the vine uprearing device, digging shovel, clamping chain in the left-side view were H1170mm, L1325mm, H2290mm, L225mm. And the field experiments showed that peanut plant lifting operation under the optimized configuration achieved a regular, orderly and smooth performance.
     (3) Based on the systemic analysis on the types, theories and characteristics of clod cleaners of peanut harvesters, the clod cleaner was designed adopting the structure of a pair of transverse swinging plates. The motion property of peanut plants and the computational method of flapping times during the clod cleaning were analyzed and defined. According to the combinative methods of theoretical analysis and experimental verification, some design parameters were determined as follows:the exit-entrance distance of flap plate is600mm, the width of flap plate is160mm,4mm soft rubber is fixed on the inboard side of the flap plate, the distance between the flap plate and the clamping chain is300mm. Subsequently, vibration frequency and angular amplitude of flap plates were optimized by field tests. The results showed that higher vibration frequency and smaller angel amplitude are suitable during the cold cleaning operation.
     (4)In order to reduce peanut breakage rate, unpicked peanut content and improve pods cleanliness, the structural configuration, structure parameters and motion parameters of the picking rollers were optimized. The optimized results were as follows:Adopting the oblique configuration of the picking rollers and the clamping chain, the constrictive angle configuration of the pair of picking rollers, and6backward curved blades, was fixed on each roller, the blade radius is35mm, the blade radian is70°. Based on the above design scheme, single-factor tests were respectively performed in terms of the five factors including the roller length z1, the roller diameter Z2, overlap distance at roller exit Z3, roller rotate speed Z4and chain conveying speed Z5. And the quadratic polynomial regression models of peanut breakage rate Y1and unpicked peanut content Y2and the optimal combination of factor parameters were obtained by Response Surface Method. The models were as follows:Y1=11.23205-0.025872z2-0.1243z3-0.059118z4+9.333×10-5Z2z4+5.67×10-4z3z4+7.0167×10-5z42, Y2=14.0744-0.005722z1-0.00575z2-0.04768z4+2.875z5+1.2778×10-5ziz4-0.006z4z5+4.4074×10-5Z42. The optimal parameters were:the roller length z1in1200mm, the roller diameter z2in152.5mm, overlap distance at roller exit z3is5mm, roller rotate speed z4is371rpm and chain conveying speed z5is1.025m/s(when the machine speed of going forward is0.854m/s). To obtain a good performance (for the low peanut breakage rate and unpicked peanut content), the high frequency and medium intensity of pods picking were preferred. Based on the optimal parameters combination, the maximum velocity of the picking blade was5.93m·-1, the theoretical picking times was86. The picking rollers were covered with static shield, and the shield-roller configuration of "static inside motion" was employed at entrance and exit of the roller, which can overcome the intertwist of the mulch film.
     (5) The effect factors of the operation of peanut vine throwing were analyzed and studied. The main parameters of the clamping chain and the vine throwing chain were optimized through the bench tests, determining the addendum angle and addendum height as90°and10mm, respectively. Based on the angular configuration of the clamping chain and the vine throwing chain, the motion properties of silent chain and peanut vines were analyzed, and the velocity ratio k3, the angle λ between the clamping chain and the vine throwing chain were determined as1.2and15°respectively. The design principle of the triangle area formed by vine throwing chain, clamping chain and binder plate should ensure that the peanut vines can be hold according the program of "strong→loose→strong" from the entrance to the exit. Two circulations of design schemes in the configuration of the triangle area were tested by bench experiments, which proved that the triangle area of the first circulation design scheme was too large resulting in the problems of backward conveying, intertwist and low smoothness of vine throwing. And the improved second circulation design scheme solved those problems by reducing the distance among the binder plate, clamping chain and vine throwing chain.
     (6)Based on the design and optimization of the key operation parts, the whole machine was designed and manufactured by effectively assembling all the parts. The field experiments on the operation performance of the whole machine were conducted to make certain how the performance indexes were influenced by the condition and operation parameters including harvest time, soil moisture content, soil hardness, forward speed of the machine, rotate speed of the engine, and the angular amplitude of the clod cleaner etc. The growth period of the tested peanut variety was ascertained to be130days, and the peanuts should be harvested before2to3days or so of its growth period. Soil moisture content had significant effect on the total loss rate and the clod content, and the optimal one for peanut harvesting was proved to be in the range of8-15%. The orthogonal tests in field showed that:in terms of the operational parameters of forward speed of the machine(A), rotate speed of the engine(B), and angular amplitude of the clod cleaner(C), there were no interaction effects on the performance of total loss rate, breakage rate and clod content. The optimal parameters combinations for total loss rate, breakage rate and clod content were A2B3C3, B1A1C2and A1B3C3, respectively. In order to obtain the optimum levels for all the three indexes, the weighted scoring method was employed to optimize the combination of the factors of A,B and C. The result of the comprehensive optimization was A1B2C2. And the optimized operational parameters were:forward speed of the machine0.8m/s, rotate speed of the engine2100r/min, angular amplitude of the clod cleaner24.5°, vibration frequency of the clod cleaner315times/min, clamp conveying speed0.96m/s, picking roller rotate speed365r/min.
引文
[1]胡志超,王海鸥,胡良龙.我国花生生产机械化技术[J].农机化研究,2010,(04):68—71.
    [2]彭宝良,胡志超,张会娟,等.江苏省花生收获机械化概况与发展对策[J].农业机械,2008,(5):54—55.
    [3]张智猛,胡文广,许婷婷,等.中国花生生产的发展与优势分析[J].花生学报,2005,34(3):6—10.
    [4]赵荣东.发展花生收获机械化迫在眉捷[J].农业机械,2004,(9):4.
    [5]余泳昌,刘文艺,冯春丽.花生收获机械发展与应用现状[J].山东农机,2005,(6):10一11.
    [6]米书.山东大力发展花生收获机械化[J].农机质量与监督,2003,(5): 24.
    [7]尚书旗,王方艳,刘曙光,等.花生收获机械的研究现状与发展趋势[J].农业工程学报,2004,20(1):20—25.
    [8]胡志超,王海鸥,彭宝良,等.国内外花生收获机械化现状与发展[J].中国农机化,2006,(5):40—43.
    [9]尚书旗,王方艳,刘曙光.花生生产机械化的应用现状与进展分析[J].花生学报,2003,11:509—517
    [10]尚书旗,王延耀,周亚龙.花生收获机的应用现状与推广[J].农机科技推广,2004,(8):10—11.
    [11]程俊峰,张飞.河南省花生收获机应用现状分析[J].农业科技与装备,2010, (8):68—70.
    [12]马建民,张飞,楚宜民.河南省花生收获机械现状研究[J].农业机械,2009, (4):82—85.
    [13]郑月男,尚书旗,杨然兵,等.山东省花生种植和收获现状的研究[J].农业机械,2009,14:52—54.
    [14]滕美茹,田立忠,陈广成.花生收获机的现状与展望[J].农机化研究,2011,33,(10):211一215.
    [15]尚书旗,王方艳,刘曙光,等.花生收获机的发展现状[J].农业工程学报,2003(1):11~14
    [16]尚书旗,刘曙光,王方艳,等.花生生产机械的研究现状与进展分析[J].农业机械学报,2005,36(3):143—147.
    [17]http://faostat.fao.org/site/567/default.aspx
    [18]Nuti Russell, Sorensen Ronald, Truman Clinton. Equipment for Soil and Water Conservation in Peanut Production[J]. American Peanut Research and Education Society Proceedings,2008,07.
    [19]Sharon Durham. Technology Improves Peanut Grading, Moisture Detection[J]. Agricultural Research magazine,2009,02.
    [20]Butts, C.L., Lamb, M.C. Performance of Semi-Trailer Peanut Drying Units[J]. American Peanut Research and Education Society,2009.
    [21]CV Kandala. Design and Performance of an Impedance Analyzer for Nondestructive Moisture Content Determination of In-Shell Peanuts[J]. Sensors Applications Symposium 2008 IEEE,2008, (2):46-50.
    [22]Butts, C.L., Dorner, J.W., Sobolev, V., et al. Environmental Conditions During Transport of Shelled Peanuts in Overseas Containers[J]. American Peanut Research and Education Society,2008.
    [23]N.-K. KIM, Y.-C. HUNG. Mechanical Properties and Chemical Composition of Peanuts as Affected by Harvest Date and Maturity[J]. Journal of Food Science,2006, (56):137881-1392.
    [24]Ghate, S.R., Evans, M.D.; Kvien, C.K. et al. Maturity Detection in Peanuts (Arachis Hypogaea L.) Using Machine Vision[J]. Transactions of the ASAE,1993,36 (6):1941-1947.
    [25]Kandala, Chari, Butts, Christopher. Moisture content determination for in-shell peanuts with a low-cost impedance analyzer and capacitor sensor[J]. Proceedings of IEEE International Conference on Image Processing,2008,4.
    [26]Davidson, J. I., Jr., R. F. Hudgins. Development of a peanut sheller for laboratory and industrial applications[J]. Proc. American Peanut Res. Educ. Soc.,1979,11(1):43.
    [27]Davidson, J. I., Jr., F. P. McIntosh. Development of a small laboratory sheller for determining peanut milling quality[J]. American Peanut Res. Educ. Assoc.1973,5(1):95-108.
    [28]Davidson, J. I., Jr., T. B. Whitaker, and J. W. Dickens. Grading, cleaning, storage, shelling, and marketing of peanuts in the United States[J]. Peanut Science and Technology,1982,571-623.
    [29]Faircloth, W. H., D. L. Rowland, M. C. Lamb, and J. P. Davis. Evaluation of peanut cultivars for suitability in biodiesel production systems[J]. American Peanut Res. Ed. Soc. Proc.2007,39:27.
    [30]Faircloth, W. H., J. A. Ferrell, and C. L. Main. Weed-control systems for peanut grown as a biofuel feedstock. Weed Tech.2008,22(4):584-590.
    [31]James I., Davidson, JR., Thomas B., et al. Grading, Cleaning, Storage, Shelling, and Marketing of Peanuts in The United States[J]. Peanut Science and Technology,1982,(15):571-623.
    [32]Young, J. H., N. K. Person, J. O. Donald, et al. Harvesting, curing, and energy utilization. Peanut Science and Technology,1982,458-485.
    [33]Ajit K, Roger P. Engineering Principles of Agricultural Machines[M]. Published by ASAE,1993.
    [34]Busono.Studies on the mechanical harvesting of peanuts[J]. Peanut harvester improvement, 1990,(4):134-146
    [35]Boyette M D, Sanders D C, Estes E A. Peanut Harvesting Equipment Harvesting[M]. Published by North Carolina Cooperative Extension Service,1974.
    [36]Butler,TwainJ. Forages-Rhizoma Peanut Yield and Nutritive Value are influenced by Harvest Teehnique and Timing[J]. Agronomyjournal,2007,99(6):1559-1563.
    [37]Kiniry, JR. Peanut leaf area index,light interception, radiation use effieieney, and harvest index at three sites in Texas[J]. FieldCroPsReseareh,2005,91(2):297-306.
    [38]Lal. Gene action for surrogate traits of water-use effieieney and harvest index in Peanut (AiachishyPogaea)[J]. Annals of Applied Biology,2006,148(2):165-172.
    [39]Dey,G. Influence of Harvest and post-Harvest Conditions on the physiology and Germination of Peanut Kernels[J]. Peanut Science,1999,26(2):64-67.
    [40]P.K. Padmanathan, K. Kathirvel, V.M. Duraisamy et al. Influence of Crop, Machine and Operational Parameters on Picking and Conveying Effciency of an Experimental Groundnut Combine[J]. Journal of Applied Sciences Research,2007.(8):700-705.
    [41]P.K.Padmanathan, K.Kathirvel, R. Manian et al. Design, Development and Evaluation of Tractor Operated Groundnut CombinefJ]. Journal of Applied Sciences Research,2006, (12):1338-1441.
    [42]http://www.amadas.com
    [43]http://www.kelleymfg.com/
    [44]http://peanut.tamu.edu/
    [45]http://www.pearmancorp.com/
    [46]Reaves Johnson. Green peanut harvester[P]. USA, Patent,1986.
    [47]Jack E. Thompson. Digger shaker inverter apparatus[P]. USA, Patent,1980.
    [48]Larry D. Peanut digger shaker inverter[P]. USA, Patent,1973.
    [49]Stanley A. Brantley. Self-propelled peanut combine[P]. USA, Patent,1999.
    [50]Oliver K. Hobbs. Peanut combine[P]. USA, Patent,1993.
    [51]Kuo-Ming Wang. Peanuts harvester and its harvesting method[P]. USA, Patent,1993.
    [52]Carroll J. Whitfield. Peanut combine[P]. USA, Patent,1968.
    [53]Butts C. L, Sorensen R. B., Nuti R. C, et al. Performance of Equipment for In-field Shelling of Peanut for Biodiesel Production[J]. Transactions of the ASABE,2009,52(5):1461-1469.
    [54]Butts C. L, Sorensen R. B., Nuti R. C, et al. Performance of Equipment for In-field Peanut Shelling[C]. ASABE Annual International Meeting,2009, (7):1-18.
    [55]Rains.G.C. Adaptation and Testing of the Agleader Cotton yield Sensorona Peanut CombinefJ]. Applied Engineering in Agriculture,2005,21(6):979-98.
    [56]尚书旗.摆动式花生收获装置的设计原理与试验研究[D].沈阳农业大学,2005.
    [57]尚书旗,周亚龙,王晓燕,等.三种花生收获机的作业性能对比试验研究[J].农业工程学报,2008,24(6):150—153.
    [58]刘少林,韩根发,张俊才.4HFS—150型花生分段收获机研制与试验[J]. 农业机械,2009,13:75—76.
    [59]王方艳,尚书旗.常用花生收获机性能对比试验[J]. 农业机械,2009, (1):80—81.
    [60]尚书旗,王建刚,王方艳,等.4H-2型花生收获机的设计原理及运动特性分析[J].农业工程学报,2005,21(1):87—91.
    [61]胡志超,陈有庆,王海鸥,等.振动筛式花生收获机的设计与试验[J].农业工程学报,2008,24(10):114—117.
    [62]王晓燕.半喂入式花生摘果试验台的设计与试验研究[D].莱阳农学院,2006.
    [63]胡志超,彭宝良,尹文庆,等.4LH2型半喂入自走式花生联合收获机的研制[J].农业工程学报,2008,24(3):148—153.
    [64]胡志超,王海鸥,王建楠,等.4HLB-2型半喂入花生联合收获机试[J].农业机械学报,2010,41(4):79—84.
    [65]胡志超,彭宝良,谢焕雄,等.升运链式花生收获机的设计与试验[J].农业机械学报,2008,39(11):220—222.
    [66]胡志超,彭宝良,尹文庆,等.多功能根茎类作物联合收获机设计与试验[J].农业机械学报,2008,39(08):58-61.
    [67]青岛农业大学、青岛万农达花生农业机械有限公司.花生联合收获机[P].中国,发明,200810132957.6.2010.
    [68]王传琪.背负式多功能花生联合收获机[P].中国,发明,200910246329.5.2010.
    [69]武万水.小型花生联合采收机[P].中国,发明,200810167933.4.2010.
    [70]孙洪军.花生联合收获机[P].中国,发明,201020014459.4.2010.
    [71]王洪君,闵令强,黄保申等.4HD-1型花生联合收获机[J].农业机械,2005,(6):71.
    [72]陈书法,李耀明,孙星钊.花生联合收获机挖掘装置的设计研究[J].中国农机化,2005(1):47—49.
    [73]尚书旗,李国莹,杨然兵等.4HQL-2型全喂入花生联合收获机的研制[J].农业工程学报,2009,25(6):125—130.
    [74]丁保江,唐殿明,付华良等.小型背负式花生联合收获机的设计研究[J].农业装备与车辆工程,2005,(3):30-32.
    [75]毕华敏.背负式花生联合收获机[P].中国,发明,ZL200820002475.4 2009.
    [76]李国莹,尚书旗,孙同珍等.4HQL-2型全喂入花生联合收获机三维建模设计[J].农业机械,2009,(1):82—83.
    [77]孙同珍,尚书旗,李国莹等.4HQL-2型花生联合收获机摘果及清选部件的研制[J].农机化研究,2009,31(6):54—57.
    [78]杨然兵.4HQL-2型花生联合收获机主要装置的设计与试验研究[D].沈阳农业大学,2009.
    [79]杨然兵,尚书旗.花生联合收获机柔性夹持装置设计与试验[J].农业机械学报,2010,41(8):67—71.
    [80]张日红,朱立学.花生联合收获机清选系统振动筛运动仿真分析[J].仲恺农业工程学院学报,2010,23(4):39—41.
    [81]杨然兵,徐玉凤,梁洁,等.花生机械收获中根、茎、果节点的力学试验与分析[J].农业工程学报,2009,25(9):127—132.
    [82]王伯凯,吴努,胡志超,等.国内外花生收获机械发展历程与发展思路[J]. 中国农机化,2011,4:6—9.
    [83]陈有庆,王海鸥,胡志超.半喂入花生联合收获损失致因与控制对策研析[J]. 中国农机化,2011, (1):72—77.
    [84]吕翠芳.春花生高产栽培技术[J].河北农业科技,2007, (4):8.
    [85]唐志红,梁桂芝,蒋复.花生高产栽培技术[M].北京:金盾出版社,2001
    [86]封海胜,万书波.花生栽培新技术100问[M].中国农业出版社,1999
    [87]董昭和,耿文清.花生、大豆、油菜、芝麻施肥技术[M].北京:金盾出版社,2000
    [88]段淑芬,胡文广.世界花生生产及贸易展望[J].中国农学通报,1990,6(2):21~25
    [89]陶寿祥.山东省花生高产现状与展望[J].花生科技,1993,2:26~29
    [90]山东省花生生产机械化课题组.花生生产综合机械化技术[M].山东省机械技术出版社,1989, 61-87.
    [91]王冠华,陈宗法,胡明娟,等.绿色食品花生高产栽培技术[J].江苏农业科学,2007,(1):40—41.
    [92]黄从福,段解良,谈胜,等.花生高产栽培及配套的病虫防控技术[J].湖北植保,2007,(3):39—40.
    [93]顾克军,杨四军,李博,等.几个特色花生新品种(系)特征特性及其配套栽培技术[J].江苏农业科学,2006, (6):86—88.
    [94]NY/T 502-2002,花生收获机作业质量标准[S].
    [95]DB37/T316-2002,农业机械作业质量花生机械收获[S].
    [96]DB 34/T 534-2005花生收获机械化作业技术规范[S].
    [97]DB 34/T 434-2004花生收获机械作业质量评定办法[S].
    [98]李奇,闫恒.花生联合收获机试验方法的研究[J].农机质量与监督,2009, (5):32—33.
    [99]杨然兵,徐玉凤,尚书旗,等.花生联合收获机去土装置的设计与对比试验[J].农机化研究,2009,31(6):106—109.
    [100]李云雁.试验设计与数据处理[M].化学工业出版社,2005
    [101]盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    [102]袁志发,周静芋.试验设计与分析[M].高等教育出版社,2000
    [103]茆诗松.回归分析及其试验设计[M].上海教育出版社,1978
    [104]蔡兴旺.旋转回归设计在农机试验中的应用[J].农业工程学报,1998,14(2):54—58
    [105]何月娥.农机试验设计[M].北京:机械工业出版社,1986
    [106]张宏梅,王耀华,陆明,等.正交回归法在机械优化设计中的应用[J].解放军理工大学学报(自然科学版),2002,3(4):50一53
    [107]张志涌等.精通MATLAB教程6.5版[M].北京航空航天大学出版社,2003
    [108]潘晓辉,陈强MATLAB5.1全攻略宝典[M].中国水利水电出版社,2000
    [109]李海涛,邓樱.MATLAB教程设计教程[M].高等教育出版社,2002
    [110]楼顺天,陈生潭,雷虎民.MATLAB5.x程序设计语言[M].西安电子科技大学出版社,2000
    [111][美]Edward B.Magrab等编,.MATLAB原理与工程应用[M].电子工业出版社,2002
    [112]张平等.MATLAB基础与应用简明教程[M].北京航空航天大学出版社,2001
    [113]庄楚强.应用数理统计基础[M].广州:华南理工大学出版社,1992.
    [114]刘瑞江,张业旺,闻崇炜,等.正交试验设计和分析方法研究[J].实验技术与管理,2010,27(9):52—55.
    [115]方开泰,马长兴.正交试验与均匀设计[M].北京:科学出版社,2001.
    [116]李悦凤.用“正交试验法”优化滚锥轴承滚道粗超精工艺参数[J].机械工程师,2010,(9):34—36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700