高产小麦耗水特性和干物质积累与分配及水分利用效率的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1不同品种小麦耗水特性和产量及水分利用效率的差异
     供试品种为泰山23(T23)和济麦20(J20)。设置2个水分处理:全生育期不灌水(W0);底水+拔节水+开花水(W1),每次灌水量为60mm。研究了小麦耗水特性和产量及水分利用效率的差异。结果如下:在W0和W1条件下,T23品种的籽粒产量和水分利用效率均高于J20。
     1.1不同品种小麦耗水特性和水分利用效率的差异
     在W0处理条件下,播前至返青期两个品种主要利用了0~80cm土层土壤水分;返青至开花期T23品种利用了80~160cm土层土壤水分,J20利用了80~140cm土层土壤水分;开花至成熟期T23主要利用了160~200cm土层土壤水分,J20主要利用了140~200cm土层土壤水分。
     在W1处理条件下,播前至返青期两个品种主要利用了0~40cm土层土壤水分;返青至开花期T23利用了40~140cm土层土壤水分,J20利用了40~100cm土层土壤水分;开花至成熟期T23主要利用了80~200cm土层土壤水分,J20主要利用了100~200cm土层土壤水分。
     T23品种的0~200cm土层土壤耗水量显著高于J20;对0~200cm各土层分析,在W0处理条件下,T23 40~100cm土层土壤耗水量显著高于J20,100cm以下各土层无显著差异,T23对40~100cm土层土壤水分利用高于J20;在W1处理条件下,T23的60~100cm和120~200cm土层土壤耗水量显著高于J20,对深层(120~200cm)土壤水分的利用能力高于J20。
     在W0处理条件下,返青至拔节期两个品种土壤贮水消耗量最大,T23显著高于J20;在W1处理条件下,土壤贮水消耗量最大的时期后移,T23在开花至成熟期最大,J20在拔节至开花期最大,T23土壤贮水消耗量高于J20,对土壤水的利用能力高。
     播种至冬前期的耗水量,在W0和W1处理条件下T23品种比J20分别低7.42%和42.32%,在开花至成熟期耗水量分别高10.27%和13.11%。T23的土壤供水量占耗水量的比例高于J20,降水量占耗水量的比例低于J20;T23对土壤水的利用能力高于J20。
     1.2不同品种小麦干物质积累与分配和产量的差异
     T23的旗叶衰老缓慢,光合速率、蔗糖含量、干物质积累量和开花后干物质向籽粒的再分配率显著高于J20,T23的籽粒产量亦高于J20。
     2水氮互作对高产小麦耗水特性和产量及品质的影响
     供试品种泰山23(T23)和济麦20(J20)。采用裂区设计,主区为灌水量,副区为施氮量;设置6个灌水处理:不灌水(W0)、底水(W1)、底水+拔节水(W2)、底水+拔节水+开花水(W3)、底水+冬水+开花水(W4)、底水+冬水+拔节水+开花水(W5),每次灌水60mm;设置2个施氮量处理:N1 180kg/hm2; N2 240kg/hm2。研究了灌水量和施氮量对小麦耗水特性、产量和品质的影响。结果如下:
     N1W2处理的水分利用效率和产量高于其他处理,品质较优。
     2.1水氮互作对小麦耗水特性的影响
     N1W2处理冬前至返青期和返青至拔节期的耗水量高于N1W0处理,低于N1W4和N1W5处理;拔节至开花期的耗水量高于其他处理;开花至成熟期的耗水量低于N1W3、N1W4和N1W5处理。
     N1W2处理的农田耗水量低于N1W3、N1W4和N1W5处理,水分利用效率高于上述各处理。在W2处理基础上增加灌水量的N1W3、N1W4和N1W5处理,灌水量占耗水量比例提高,土壤供水量占比例降低,不利于提高水分利用效率。
     2.2水氮互作对小麦干物质积累与分配的影响
     N1W2处理J20品种开花前贮存在营养器官中的干物质开花后向籽粒的再分配量和再分配率高于其他处理, T23籽粒中来自花后积累干物质的比例高于其他处理,两个品种均获得高产。
     2.3水氮互作对小麦植株氮素吸收、转运和分配及氮素利用效率的影响
     N1W2和N1W3处理的成熟期籽粒氮素积累量和氮素转运量高于其他处理,N1W0和灌水量多的处理均不利于氮素向籽粒的转运;两个品种N1W2处理面粉吸水速率、湿面筋含量、面团稳定时间和沉降值高于其他处理。
     两个品种在N2处理条件下,各灌水处理的产量和水分利用率均和N1处理中的各相应灌水处理无显著差异。
     3灌水时期和数量对高产小麦耗水特性和产量及品质的影响
     供试品种济麦22(J22)。设置5个灌水处理:全生育期不灌水(W0);底水(W1);底水+拔节水(W2);底水+拔节水+开花水(W3);底水+开花水(W4),每次灌水量为60mm。研究了公顷产9000kg条件下小麦的耗水特性和干物质与氮素的积累与分配规律。结果如下:
     W2处理的籽粒产量和水分利用效率高于其他灌水处理、品质较优。
     3.1灌水时期和数量对高产小麦耗水特性和产量的影响
     W2处理在拔节期,0~20、20~60、60~100、100~140和140~200cm土层的土壤含水量分别为19.50%、19.40%、18.95%、19.45%和21.93%;拔节期补充60mm灌水,拔节至开花期降水19.9 mm,开花期上述各土层土壤含水量分别为19.00%、17.90%、17.60%、20.05%和21.90%;开花至成熟期降水107.5mm,成熟期上述各土层的土壤含水量分别为15.77%、15.05%、14.33%、13.38%和15.89%。
     W2处理的农田耗水量为520.73 mm,降水量、灌水量和土壤供水量分别占农田耗水量的比例分别为47.32%、23.04%和29.64%,土壤供水量占农田耗水量的比例高于W3和W4处理。W2处理增加了拔节至开花期的耗水量,返青至拔节期的耗水量低于W0处理,开花至成熟期的耗水量高于W0和W1处理,低于W3和W4处理。W2处理的产量和水分利用效率均高于其他灌水处理。
     3.2灌水时期和数量对小麦植株氮素转运和分配及品质的影响
     W2处理植株氮素积累量、氮素吸收效率和氮素收获指数最高;湿面筋含量、吸水速率、面团形成时间和面团稳定时间均高于其他灌水处理,籽粒品质较优。
     3.3灌水时期和数量对土壤氮素淋溶的影响
     灌水促进了氮素向深层土壤的运移,W2处理在1m以下土层硝态氮含量低于W3、W4处理,说明该处理氮素向深层土壤淋溶少。
1 Differences of water consumption characteristic and grain yield and WUE between different wheat cultivars
     Differences of water consumption characteristic and water use efficiency (WUE) between different wheat cultivars was studied by using two wheat cultivars including Taishan 23(T23) which with medium gluten and Jimai 20(J20) which with strong gluten. Setting up two treatments including no irrigation (W0), and irrigated before sowing, at jointing and anthesis stage (W1). Each irrigation received 60 mm water. The principal results were as follows.
     Under the treatments W0 and W1, the grain yield and WUE of T23 were significantly higher than that of J20.
     1.1 Differences of water consumption characteristic and WUE between different wheat cultivars
     Under the treatment W0, the two wheat cultivars were mainly using the soil moisture of 0~80cm soil layers from sowing to revival. From revival to anthesis, T23 was mainly using the soil moisture of 80~160cm soil layers, but J20 was mainly using the soil moisture of 80~140cm soil layers. From anthesis to maturity, T23 was mainly using the soil moisture of 160~200cm soil layers, but J20 was mainly using the soil moisture of 140~200cm soil layers.
     Under the treatment W1, the two wheat cultivars were mainly using the soil moisture of 0~40cm soil layers from sowing to revival. From revival to anthesis, T23 was mainly using the soil moisture of 40~140cm soil layers, but J20 was mainly using the soil moisture of 40~100cm soil layers. From anthesis to maturity, T23 was mainly using the soil moisture of 80~200cm soil layers, but J20 was mainly using the soil moisture of 100~200cm soil layers.
     The soil consumption amount in 0~200cm of T23 was significantly higher than that of J20. Analysis of every soil layer in 0~200cm, the soil consumption amount in 40~100cm of T23 was higher than that of J20, there was no significant change in 100~200cm soil layers for the both wheat cultivars under the treatment W0. The soil consumption amount in 60~100cm and 120~200cm of T23 was higher than that of J20, so T23 could use the soil moisture of more deeper soil layers(120~200cm) under the treatment W1.
     The soil consumption amount was the highest from revival to jointing for the two wheat cultivars under the treatment W0. Under the treatment W1, the stages from anthesis to maturity of T23 and from jointing to anthesis of J20 were the highest stage of soil consumption amount. The soil consumption amount of T23 was higher than that of J20, so T23 had higher ability utilizing the soil moisture than J20.
     Under the treatments W0 and W1, water consumption amount of T23 was lower 7.42% and 42.32% respectively than that of J20 from sowing to pre- wintering, but it was higher 10.27% and 13.11% respectively from anthesis to maturity. The water consumption amount and the ratio of soil water amount on water consumption amount of T23 were higher than J20, the ratio of precipitation on water consumption amount of T23 was lower than J20 under both W0 and W1 treatments. There was no significant difference for the ratio of irrigation on water consumption amount between T23 and J20 under the treatment W1. So T23 had higher ability utilizing the soil moisture than J20.
     1.2 Differences of dry matter accumulation and grain yield between different wheat cultivars
     The senescence speed of flag leaf with T23 was slower than that of J20. The photosynthetic rate, sucrose content, dry matter accumulation amount and dry matter redistribution ratio to kernel after anthesis of T23 were significantly higher than J20 under the treatments W0 and W1. The yield of T23 was higher than that of J20.
     2 Effects of water and nitrogen interaction on water consumption characteristic, yield and quality
     Cultivar Taishan 23 (T23), a middle gluten winter wheat cultivar and cultivar Jimai 20 (J20),a strong gluten winter wheat cultivar were used. The experiment was laid out in a split-plot design. Main-plot treatments were irrigation rate, consisting of no irrigation (W0), irrigation applied before sowing (W1), before sowing and jointing stage (W2), irrigation applied before sowing, jointing stage and anthesis (W3), irrigation applied before sowing, pre-wintering stage and anthesis (W4), irrigation applied before sowing, pre-wintering stage, jointing and anthesis stage (W5), each irrigation received 60mm water. Sub-plot treatments were nitrogen application rate, consisting of 180kg N·hm-2 (N1) and 240kg N·hm-2 (N2). Effects of water and nitrogen interaction on water consumption characteristic, yield and quality were studied in this experiment. The principal results were as follows.
     The WUE and grain yield of treatment N1W2 were higher than other treatments, the quality of treatment N1W2 was better.
     2.1 Effects of water and nitrogen interaction on water consumption characteristic
     The water consumption amount of treatment N1W2 from pre-wintering to jointing was higher than that of treatment N1W0, but was lower than that of N1W4 and N1W5. From jointing to anthesis, the water consumption amount of treatment N1W2 was higher than that of other treatments. And from anthesis to maturity, the water consumption amount of treatment N1W2 was lower than that of treatments N1W3, N1W4 and N1W5.
     Water consumption amount of treatment N1W2 was lower than that of treatments N1W3, N1W4 and N1W5, but the WUE of treatment N1W2 was higher than that of treatments N1W3, N1W4 and N1W5. Based on the treatment of W2, the treatments N1W3, N1W4 and N1W5 were irrigated more water, their ratio of irrigation amount on water consumption amount increased, the ratio of soil water amount on water consumption amount decreased, which were unfavorable improvement of WUE.
     2.2 Effects of water and nitrogen interaction on dry matter accumulation and distribution
     Under the treatment of N1W2, dry matter redistribution amount after anthesis and dry matter redistribution ratio after anthesis of J20 were higher than that of other treatments, and contribution of dry matter assimilation amount after anthesis to kernels of T23 was also higher than that of other treatments. Both T23 and J20 could achieve high yield under the treatment of N1W2.
     2.3 Effects of water and nitrogen interaction on nitrogen absorption, translation, distribution and nitrogen use efficiency
     Nitrogen accumulation amount of kernel at maturity and nitrogen translocation amount from vegetative organ to kernel of treatments N1W2 and N1W3 were higher than other treatments. The treatment N1W0 and treatments that irrigated more water were unfavorable the nitrogen translocation from vegetative organ to kernel. Under the treatment N1W2, water absorption, wet gluten content, dough stability time and sedimentation volume of both T23 and J20 were higher than other treatments.
     Compared with treatment N1, there was no significant difference in grain yield and WUE among irrigated treatments in treatment N2 both T23 and J20.
     3 Effects of the stage and amount of irrigation on water consumption characteristic, yield and quality in high-yielding wheat
     Cultivar Jimai 22 (J22),a middle gluten winter wheat cultivar was used. Five treatments were included: no irrigation (W0); irrigation before sowing (W1); irrigation before sowing and jointing stage (W2); irrigation before sowing, jointing and anthesis stage (W3); irrigation before sowing and anthesis stage (W4). Each irrigation received 60mm water. Effects of the quantity and period of irrigation on water consumption characteristic, yield and quality in high-yielding wheat were studied in this experiment. The principal results were as follows.
     The WUE and grain yield of treatment W2 were higher than other irrigation treatments, the quality of treatment W2 was better.
     3.1 Effects of the stage and amount of irrigation on water consumption characteristic and yield in high-yielding wheat
     According to the developing rule of wheat root, soil layer of 0~200cm were divided into 5 layers, 0~20cm, 20~60cm, 60~100cm, 100~140cm and 140~200cm. Soil moisture content of treatment W2 in 0~20cm, 20~60cm, 60~100cm, 100~140cm and 140~200cm soil layer were 19.50%, 19.40%, 18.95%, 19.45% and 21.93% respectively at jointing period. When it was irrigated 60mm water and the precipitation was 19.9mm from jointing to anthesis, soil moisture content of the 5 layers were 19.00%, 17.90%, 17.60%, 20.05% and 21.90% at anthesis period. At maturity, soil moisture content of treatment W2 in the 5 layers were 15.77%, 15.05%, 14.33%, 13.38% and 15.89% respectively, when the precipitation was 107.5mm from anthesis to maturity.
     Water consumption amount of treatment W2, which got the highest grain yield was 520.73mm, the contribution rate of precipitation, irrigation amount and soil water amount to water consumption amount were 47.32%, 23.04% and 29.64% respectively. The proportion of soil water amount to water consumption amount of treatment W2 was higher than that of treatment W3 and W4. The water consumption amount of treatment W2 was lower than that of treatment W0 from revival to jointing, but it was higher than that of treatments W0 and W1 from jointing to anthesis. From anthesis to maturity, the water consumption amount of treatment W2 was lower than that of treatment W3 and W4 but it was higher than that of treatments W0 and W1. Both the WUE of yield and WUE of irrigation of treatment were higher than other irrigation treatments.
     3.2 Effects of the stage and amount of irrigation on nitrogen translation, distribution and grain quality in high-yielding wheat
     Nitrogen accumulation rate of plant, nitrogen uptake efficiency and nitrogen harvest index of treatment W2 were the highest among the different irrigation treatments. Its wet gluten content, water absorption, dough stability time and dough developing time were higher than other irrigation treatments. The quality of treatment W2 was better.
     3.2 Effects of the stage and amount of irrigation on soil nitrate leaching
     Irrigation promoted the soil NO3-N to move in deeper soil layers. The soil NO3-N content of treatment W2 was lower than that of treatment W3 and W4 in the soil layers below 1m, which indicated treatment W2 reduce N leaching loss.
引文
[1]安顺清,朱自玺,吴乃元,焦仪珍.黄淮海中部地区作物水分胁迫和干旱研究结果[J].中国农业科学,1991,24(2):13-18
    [2]蔡永萍,陶汉之,张玉琼.土壤渍水对小麦开花后叶片几种生理特性的影响[J].植物生理学通讯, 2000, 36(2):110-113
    [3]曹翠玲,李生秀.水分胁迫和氮素有限亏缺对小麦拔节期某些生理特性的影响[J].土壤通报, 2003, 34(6):505-509
    [4]曹广才,王绍中.小麦品质生态[M].北京:中国科学技术出版社, 1994, 89-92
    [5]柴小清,印莉萍,刘祥林等.不同浓度的NO3-和NH4+对小麦根谷氨酰胺合成酶及其相关酶的影响[J].植物学报, 1996, 38(10):803-808
    [6]陈晓远,罗远培.开花期复水对受旱冬小麦的补偿效应研究[J].作物学报,2001, 27(4): 513-516
    [7]程宪国,汪德水,张美荣,周涌,金轲,郭世昌,王自力,王书子.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29(4):67-74
    [8]程献云,秦海英,王宪章,刘东亮.灌水量对耗水量及小麦产量的影响[J].作物杂志, 2002, 2:18-19
    [9]崔欢虎,张松令,闫翠萍,靖华,马爱萍.黄土高原旱地小麦最佳土壤库容深度模拟研究[J].水土保持学报,2003,17(4):110-112
    [10]董宝娣,张正斌,刘孟雨,张依章,李全起,石磊,周永田.小麦不同品种的水分利用特性及对灌溉制度的响应[J].农业工程学报,2007,23(9):27-33
    [11]范雪梅,戴廷波,姜东,等.花后干旱与渍水下氮素供应对小麦碳氮运转的影响[J].水土保持学报, 2004, 18(6):63-67
    [12]范雪梅,姜东,戴廷波,等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响[J].生态学杂志, 2006, 25(2):149-154
    [13]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报, 2004, 28(5):680-685
    [14]范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报,2006,30(1):71-77
    [15]方昭希,王明录,彭代平等.硝酸还原酶活性与氮素营养的关系[J].植物生理学报, 1979, 5(2):346-354
    [16]冯兆忠,王效科,段晓男,等.不同氮水平对春小麦光合速率日变化的影响[J].生态学杂志, 2003, 22(4):90-92
    [17]何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社, 1985
    [18]洪庆文,黄不凡.农业生产中的若干土壤学与植物营养学问题[M].北京:科学出版社, 1994, 139-141
    [19]侯爱新,陈冠雄,吴杰.稻田CH4和N2O排放关系及其生理学机理和一些影响因子[J].应用生态学报, 1998, 9(2):176-180
    [20]胡继超,曹卫星,姜东,罗卫红.干旱和渍水胁迫对光合、蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320
    [21]胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报,2007,33(10):1711-1719
    [22]黄勤妮,印莉萍,柴小清等.不同氮源对小麦幼苗谷胺酰胺合成酶的影响[J].植物学报, 1995, 37(11):856-862
    [23]季书勤,赵淑章,吕凤荣,王绍中,朱冬芹.水氮配合对强筋小麦产量和品质的影响及其相关性分析[J].中国农学通报, 2003, 19(1):36-38
    [24]姜东,谢祝捷,曹卫星,等.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报, 2004, 30(2):175-182
    [25]姜东,于振文,李永庚等.高产冬小麦茎中果聚糖代谢及氮素水平的调控[J].作物学报, 2002, 28(1):79-85
    [26]姜东,于振文,李永庚等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学, 2002, 35(2):157-162
    [27]姜东,于振文,李永庚等.施氮水平对鲁麦22籽粒淀粉合成的影响[J].作物学报, 2003, 29(3):462-467
    [28]姜东,于振文,苏波,许玉敏,余松烈.不同施氮时期对冬小麦根系衰老的影响[J].作物学报, 1997, 23(2):181-190
    [29]荆奇,戴廷波,姜东,等.不同生态条件下不同基因型小麦干物质和氮素积累与分配特征[J].南京农业大学学报, 2004, 27(1):l-5
    [30]兰涛,姜东,谢祝捷,戴廷波,荆奇,曹卫星.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报, 2004, 18(1): 193-196
    [31]李豪喆,崔雄范,崔明子等.硝酸还原酶活力与作物耐肥性的研究,Ⅲ:北方梗稻品种演变过程中硝酸还原酶活力与品种性状之间的关系[J].作物学报, 1988, 14(2):163-166
    [32]李金才,屈会娟,魏凤珍.氮素运筹技术对冬小麦籽粒产量和品质的影响[J].河南农业科学, 2005, 2:8-10, 11
    [33]李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质含量及组分的影响[J].中国粮油学报, 2001, 16(2):6-8
    [34]李金才,尹钧,李德福.不同生育时期渍水对冬小麦K素吸收和分配的影响[J].安徽农业科学,2004,32(3) : 447-455
    [35]李全起,陈雨海,于舜章,等.灌溉条件下秸秆覆盖麦田耗水特性研究[J].2005, 19(2):130-132, 141
    [36]李守谦,谢忠奎,兰念军,等.干旱地区春小麦耗水量和节水措施的探讨[J].高原气象, 1993, 12(2):209-216
    [37]李树军,马玉堂.潍坊旱作麦田春季土壤水分动态规律及干旱特征[J].山东气象, 2001, 21(1):25-26, 28
    [38]李向民,许春霞,李开元.黄土高原沟壑区水费因子对冬小麦经济性状的影响[J].应用生态学报.1999, 10(3):309-311
    [39]李秀菊,职明星,卫秀英. BA和GA对小麦不同花位籽粒粒重的影响[J].作物学报, 2001, 27(6):1007-1010
    [40]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报, 1996, 16(3):258-264
    [41]刘安勋.施氮量对小麦蛋白质的影响.青海大学学报[J], 2000, 18(3):4-6
    [42]刘光栋,吴文良.桓台县高产农田土壤硝态氮淋失动态研究[J].中国生态农业学报.2002, 10(4):71-74
    [43]刘敏超,曾长立,王兴仁等.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响[J].农业现代化研究, 2000, 21(5):309-313
    [44]刘晓冰,李文雄,张志学.春小麦籽粒灌浆过程中淀粉和蛋白质积累规律的研究[J].东北农业大学学报, 1995, 26(3):220-225
    [45]刘晓冰,刘娜,金剑,等.蛋白质含量不同的春小麦开花后籽粒内源激素的变化[J].麦类作物学报, 2000, 20(3):1026-1032
    [46]刘彦军.灌水量灌水时间对麦田耗水量及小麦产量的影响[J].河北农业科学, 2003, 7(2):6-11
    [47]刘仲齐,吴兆苏,俞世蓉. IAA和ABA对小麦籽粒淀粉积累的影响[J].南京农业大学学报, 1992, 15(1): 7-12
    [48]刘仲齐.植物激素在籽粒发育中的作用[J].种子, 1991, 52(2):33-35
    [49]吕金印,山仑,高俊凤,等.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干旱地区农业研究, 2003, 21(2):77-81
    [50]莫良玉,吴良欢.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报, 2001, 7(2):223-231
    [51]南京农学院等主编.作物栽培学(上册) [M].上海,科学技术出版社, 1979, 173-239
    [52]潘庆民,于振文,田奇卓,王月福,刘万兴,王瑞英.追氮时期对超高产冬小麦旗叶和根系衰老的影响[J].作物学报, 1998, 24(6):924-929
    [53]潘庆民,于振文,王月福等.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响[J].中国农业科学, 2002, 35(7):771-776
    [54]彭芳,史海滨,翟进,张运河.非充分灌溉条件下春小麦三水利用效果研究[J].灌溉排水学报,2007,26(3):82-85
    [55]彭琳,彭祥林,卢宗藩.娄土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用[J].土壤学报, 1981, 18(3):212-222
    [56]彭永欣,郭文善,居春霞.氮素营养对小麦籽粒产量及品质调节效应的研究.小麦栽培与生理[M].南京:东南大学出版社, 1992, 127-145
    [57]任巍,姚克敏,于强,欧阳竹,王菱.水分调控对冬小麦同化物分配与水分利用效率的影响研究[J].中国生态农业学报,2003,11(4):92-94
    [58]山东农业大学编著.作物栽培学[M].北京:中国农业出版社, 1995, 61-63
    [59]山仑,康绍忠,吴普特主编.中国节水农业[M],中国农业出版社, 2004
    [60]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70-76.
    [61]上官周平,刘文兆,徐宣斌.旱作农田冬小麦水肥耦合增产效应[J].水土保持研究, 1999, 6(1): 103-106
    [62]沈建辉,姜东,戴廷波.施肥量对专用小麦旗叶光合特性及籽粒产量和蛋白质含量的影响[J].南京农业大学学报, 2003, 26(1):1-5
    [63]沈善敏.中国土壤肥料[M].北京:科学出版社, 1999
    [64]石岩,林琪,位东斌,李忠军,李华.不同灌水处理冬小麦耗水规律与节水灌溉方案确立[J].干旱地区农业研究, 1996, 14(4):7-11, 33
    [65]石岩,位东斌,于振文,等.控灌对小麦植株内激素含量与籽粒灌浆速率的影响[J].西北植物学报, 1999, 19(3):466-470
    [66]宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯, 1998, 34(3):230-238
    [67]孙彦坤,梁荣欣,张洪泽.春小麦耗水规律研究[J].东北农业大学学报, 1997, 28(4): 340 - 344
    [68]谭维娜,戴廷波,荆奇,曹卫星,姜东.花后渍水对小麦旗叶光合特性及产量的影响[J].麦类作物学报,2007,27(2):314-317
    [69]田纪春,王学沉,刘广田.植物的光合作用与光合氮、碳代谢的藕联及调节[J].生命科学, 2001, 13(4):145-147
    [70]田纪春,张忠义,梁作勤.高蛋白质和低蛋白质小麦品种氮素吸收和运转分配差异的研究[J].作物学报, 1994, 20(1):76-83
    [71]王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J].中国农业科学,2004,37(2):208-214
    [72]王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报,2004,15(8):1339-1343
    [73]王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报, 1992, 7(4):1-8
    [74]王芳,田波.中间脉孢霉谷氨酸脱氢酶基因的克隆及在大肠杆菌和烟草中的表达[J].科学通报, 2001, 46(2):137-140
    [75]王慧.水分亏缺对冬小麦净光合速率影响程度研究[J].生态学杂志, 1997, 16 (5):1-6
    [76]王家仁,郭风洪,孙茂真,崔若亮,郭春荣,边萍,付光永.冬小麦调亏灌溉节水高效技术指标试验初报[J].灌溉排水学报,2004, 23(1):36-40
    [77]王可玢,许春辉,赵福洪,等.水分胁迫对小麦旗叶某些体内叶绿素a荧光参数的影响[J].生物物理学报, 1997, 13(2):273-278
    [78]王立秋,靳占忠,曹敬山,王占宇.水肥因子对小麦籽粒及面包烘烤品质的影响[J].中国农业科学,1997, 30(3): 67-73
    [79]王立秋.春小麦产量及其品质的水肥效应研究[J].干旱地区农业研究, 1997, 15(1): 58-63
    [80]王淑芬,张喜英,裴冬.不同供水条件对小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32
    [81]王月福,陈建华,曲健磊等.土壤水分对小麦籽粒品质和产量的影响[J].莱阳农学院学报, 2002, 19(1):7-9
    [82]王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报, 2003, 23(3):417-421
    [83]王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报, 2002, 22(2):55-59
    [84]王月福,于振文,李尚霞,余松烈.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报, 2002, 28(6):743-748
    [85]王在阳.小麦需水规律及节水灌溉初探[J].陕西农业科学, 1992, 1:38-40
    [86]王志平,王克武,郑雅莲,朱青燕,张娜.有限灌溉条件下小麦高WUE品种的筛选和需水规律的研究[J].北京农业,2007,10:17-20
    [87]吴大付,杨文平.黄淮海平原节水农作制的水氮耦合效应分析[J].河南职业技术师范学院学报, 2004, 32 (4): 27-29
    [88]武继承,龚子同,孔祥旋.试论高效节水型农业的可持续发展模式[J].灌溉排水, 1999(增刊):71-75
    [89]夏叔芳,徐健,苏丽英等.水稻叶片的蔗糖合成酶[J].植物生理学报, 1989, 15(3): 239-243
    [90]徐阳春,蒋廷惠,蔡大同,等.氮肥用量对安农9192面包小麦加工品质的影响[J].南京农业大学学报, 1999, 22(4):49-52
    [91]许振柱,于振文.限量灌溉对冬小麦水分利用的影响[J].干旱地区农业研究,2003,21(1):6-10.
    [92]袁光耀.农田灌溉中几个需要探讨的问题[J].灌溉排水, 1994, 13(4):19-21
    [93]袁新民,同延安,杨学云,等.灌溉与降水对土壤NO3--N累积的影响[J].水土保持学报,2000, 14( 3) : 71- 73
    [94]袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱区研究, 2000, 17(4):46-53
    [95]翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报,2003,9(1):26-32
    [96]翟唯青.黑龙江易旱地区冬小麦耗水与麦田土壤水分变化[J].北京农业大学学报, 1988, 14(2):167-174
    [97]张建华,杨文元,赵燮京.川中丘陵区小麦耗水及其与产量的关系[J].西南农业学报, 1995, 8(2):11-18
    [98]张丽华,贾秀领,张全国,姚艳荣,杨利华,马瑞昆.不同小麦品种产量构成和水分利用效率差异分析[J].河北农业科学,2008,12(1):1-3
    [99]张利.旱地冬小麦耗水规律研究[J].河北农业大学学报, 1994, 17(增刊):136-139
    [100]张秋英,刘娜,金剑等.春小麦籽粒淀粉和蛋白质积累与底物供应的关系[J].麦类作物学报, 2000, 29(1):55-58
    [101]张旭东,柯晓新,杨兴国,万信.甘肃河东小麦需水规律及其分布特征[J].干旱地区农业研究, 1999, 17(1):39-44
    [102]张永丽,于振文.灌水量对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报, 2007, 21(5):155-158, 174
    [103]张永平,王志敏,王璞,赵明.冬小麦节水高产栽培群体光合特征[J].中国农业科学,2003,36(10):1143-1149
    [104]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2003
    [105]张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报,2003,22(2):1-4.
    [106]赵广才,常旭虹,刘利华,杨玉双,李振华,周双月,郭庆侠,刘月洁.不同灌水处理对强筋小麦籽粒产量和蛋白质组分含量的影响[J].作物学报,2007, 33(11):1828- 1833.
    [107]赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量的协同提高的研究[J].中国农业科学,2004,37(3):351-356
    [108]周凌云.封丘地区雨养麦田的水分供应和产量潜力[J].土壤学报, 1993, 30(3): 297- 303
    [109]周希琴.光呼吸、碳循环和氮循环的相互关系[J].新疆教育学院学报, 2002, 18 (4): 112-117
    [110]朱新开,郭文善,周君良,胡宏,张影,李春燕,封超年,彭永欣.氮素对不同类型专用小麦营养和加工品质调控效应[J].中国农业科学,2003, 36(6), 640-645
    [111]朱云集,李向阳,郭天财,等.不同冠温特征冬小麦籽粒灌浆过程中内源激素含量的变化[J].植物生理学通讯, 2005, 41(6):720-724
    [112]朱兆良.农田中氮肥的损失与对策[J].土壤与环境, 2000, 9(1):1-6
    [113] Aharoni N, Richmond A E. Endogenous gibberellin and abscisic acid content as related to senescence of detached lettuce leaves[J]. Plant Physiol, 1978, 62:224-228
    [114] Banziger M. Competition between nitrogen accumulation and grain grown for carbohy- drates during filling of wheat[J]. Crop Sci.1994, 34:440-446
    [115] Barber J S, Tessop R S. Factors affecting yield and quality in irrigated wheat[J]. Agric. Sci. Camb, 1987,109: 19-26
    [116] Champigny M L. Intergration of photosynthetic carbon and nitrogen metabolism in higher plants[J]. Photsyn. Res, 1995, 46:117-127
    [117] Chatterton N J, Harrison P A, Thornley W R eta. Structure soffructa noligomer sinorchard-grass (Dacty lisglomerata L.) [J]. Journal of Plant Physiology. 1993, 142(5) :552-556
    [118] Chatterton N J, Harrison P A. Structure and quantity of fructan oligomers in oat (Avena spp.) [J]. New Phytol , 1993,123: 725-734
    [119] Darbyshire B. Changes in IAA oxidase activity associated with plant water potentials[J]. Physiol Plant, 1971, 25:82-87
    [120] Doorenbos J.& Praitt W. O. Crop water requirement. FAO Irrigation and Drainage paper. FAO[M], 1977, 24
    [121] Echeverria E. Intracellular localization of sucrose phosphate in storagecells[J]. Physio Plant, 1995, 95:559-562
    [122] Geigenberger P, Stitt M. Sucrose synthase catalysesaueadilyre versiblere action in vivoin developing potatotubers and other planttissues[J]. Planta, 1993, 189:329-339
    [123] Guillard K, Griffin G F, Allinson D W, Yamartino W R, Rafey M M and Pietryzk S W. Nitrogen utilization of selected cropping system in the U.S. northeast:Soil profile nitrate distribution and accumulation[J]. Agronomy Journal, 1995, 87: 199-207
    [124] Hilld, D. Advances in Irrigation[M]. Academic Press. 1983.
    [125] Itai C, Vaadia.Y. Cytokinin activity in water-stressed shoots[J]. Plant Physiol , 1971, 47:87-90
    [126] Kang S Z, Zhang L, Liang Y L, Hu X T, Cai H J, Gu B J. Effect of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China. Agric[J]. Water Management, 2002, 55: 203-216
    [127] Keeling P L, Wood J R, Tyson R H eta. Starch biosynthesis in developing wheat grain[J]. Plant Physiol., 1988, 87:311-319
    [128] Kerentajer L, Berliner P R. Effects of moisture stress on nitrogen fertilizer response in dryland wheat[J]. Agronomy Journal, 1988, 80:977-981
    [129] King.B.J. Studies of the uptake of nitrate in barley, V. Estimation of root cytoplasmic nitrate concentration. Using nitrate reductase activity-implication for nitrate influx[J]. Plant Physiol., 1992, 99:1582-1589
    [130] Kleinhofs A, Warmer R L. Advances in nitrogen assimilation In Mifflin BJ, Lea PJ, Intermediary Nitrogen Metabolism[M], San Dieqo:Academic, 1991 :89-120
    [131] Kuhbauch W, Thome U. Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations[J]. Plant Physiol, 1989, 134: 243-250
    [132] Li A G, Hou Y S, Gerard W. Wall, Anthony Trent, Bruce A. Kimball, Paul J. Pinter. Free-Air CO2 Enrichment and Drought Stress Effect on Grain Filling Rate and Duration in Spring Wheat[J]. Crop Sci., 2000, 40: 1263-1270
    [133] Li X X, Hu Y S, Cheng Y S. Effects of different fertilizers on crop yields and nitrate accumulation[J]. Agricultural research in the arid areas, 2003, 21(3): 38-42
    [134] Liang J, zhang J. Wong M H. Can itomatal closure caused by xylem ABA explain the inhibition of leaf photosynthesis under soil drying[J]. Photosyn Res, 1997, 51:149-159.
    [135] Luo C, Branlard G, Griffin W B, McNeil D L. The effect of nitrogen and sulphur fertilisation and their interaction with genotype on wheat glutenins and quality parameters[J]. Journal of Cereal Science, 2000, 31: 185-194
    [136] Malhi S S, Brandt S A, Ulrich D, Lemke R and Gill K S. Accumulation in the soil profile under various alternative cropping system[J]. J.Plant Nutrition, 2002,25: 2499-2520
    [137] Nielsen D C, Vilgil M F. Legume green fallow effect on soil water content at wheat planting and wheat yield[J]. Agron J, 2005,97:684-689
    [138] Panda R.K., Behera S.K., Kashyap P.S..Effective management of irrigation water for wheat under stressed conditions[J]. Agric. Water Management, 2003, 63: 37-56.
    [139] Pandey R K, Maranville, J W, Admou A. Deficit irrigation and nitrogen effects on maize in a Sahelian envrionment I.Grain yield and yield components[J] . Agric Water Manage., 2000, 46: 1-13
    [140] Pandey R K, Maranville, J W, Chetima M M. Deficit irrigation and nitrogen effects on maize in a Sahelian envrionment II.Shoot growth, nitrogen uptake and water extraction[J].Agri.Water Manage, 2000, 46:15-27
    [141] Pheloung P C, Siddique K H M. Gibber llinsandre productive development in seed plants[J]. Ann Rev Plant Physiol,1985,36:517-568
    [142] Raun W R, Johnson G V, Westerman R L. Fertilizer nitrogen recovery in long term continuous winter wheat[J]. Siol Sci.Soc.Am.J, 1999, 63 (4):645-650
    [143] Richards R A, Rebetzke G J, Condon A G, van Herwaarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J]. Crop Sci, 2002, 42: 111-121
    [144] Rizza F, Badeck F W,Cattivelli L, et al. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions[J]. Crop Sci, 2004, 44: 2127-2137
    [145] Seth J, Hubert T T, Middleton G K. Nitrogen utilization in high and low protein wheat varieties[J]. Agron.J, 1960, 52:207-209
    [146] Shao Hongbo, Liang Zongsuo, Shao Mingan,et al. Investigation on dynamic changes of photosynthetic characteristics of 10 wheat(Triticum aestivum L) genotypes during two vegetative-growth stages at water deficit[J]. Colloids and Surfaces Biointerfaces, 2005. 43: 221-227.
    [147] Sharma B D, Jalota S K, Kar S, Singh C B. Effect of nitrogen and water uptake on yield of wheat[J]. Fertiliser Research, 1992, 31:5-8
    [148] Smith A M, Denyer K, Martin C. The synthesis of the starch granule[J]. Annu. Rev. Plant Physiol. Plant-Mol.-Biol. 1997, 48 (6): 67-87
    [149] Stitt M. Control analysis of photosynthetic sucrose synthesis: as sign mento felasticity coefficients and flux control coefficients to the cytosolic fructose 1,6 bisphosphatase and sucrose phosphate synthase[J]. Philos Trans RsocLondon(Biol), 1989,323:327-338
    [150] Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain[J]. Agric. Water Management, 2006, 85:211-218.
    [151] Tischner R. Nitrate uptake and reduction in higher and lower plants[J]. Plant, Cell and Environment, 2000, 23:1015-1024
    [152] Winzeler M, Dubois D, Nosberger J. Absence of fructan degradation during fructan accumulation in wheat stems[J]. Plant Physiol., 1990, 136: 324-329
    [153] Yamamori M, Quynh N T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat[J] . Theor Appl Genet, 2000, 100 (1):32-38
    [154] Yang J C, Zhang J H, Huang Z L, Zhu Q S, Wang L. Remobilization of Carbon Reserves Is Improved by Controlled Soil-Drying during Grain Filling of Wheat[J]. Crop Sci., 2000,40:1645–1655
    [155] Zhang B C, Li F M, Huang G B, Cheng Z Y, Zhang Y H. Yield performance of spring wheat improved by regulated deficit irrigation in an arid area[J]. Agric. Water Management, 2006, 79:28-42
    [156] Zhang Xiying, Chen Suying, Liu Mengyu, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China Plain[J]. Agronomy Journal, 2005,97(3):783-790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700