棉花组织诱导体系中大丽轮枝菌分泌蛋白分析及其致病性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将大丽轮枝菌在棉花组织诱导和非诱导(查比克基础培养)体系中分别进行培养,观察其生长表型,提取分泌蛋白并进行致病性研究。结果表明棉花组织诱导培养基更适合大丽轮枝菌的生长,能够促进它产生更多的分生孢子,向培养上清液中分泌更多的蛋白质,胞外蛋白接种棉花能够引起更加典型的黄萎病症。可见,棉花组织诱导体系可以诱导大丽轮枝菌分泌型致病蛋白的表达,通过其分泌蛋白谱差异分析,可以进行潜在致病因子的挖掘。
     离子交换富集法分别提取棉花组织诱导与非诱导体系中大丽轮枝菌分泌蛋白,利用iTRAQ标记和质谱检测技术进行分泌蛋白差异分析。结果表明,棉花组织诱导体系中有502个蛋白被上/下调表达,变化倍数在1.5倍以上,其中266个蛋白被注释为潜在致病因子,包括221个预测的分泌蛋白、107个细胞壁水解酶类蛋白、86个宿主-病原菌互作(PHI)蛋白、17个小的富含半胱氨酸蛋白、2个乙烯诱导坏死蛋白和1个赖氨酸模体(LysM)蛋白。另外,97个分泌型细胞壁水解酶类蛋白显著上调,它们主要参与果胶、纤维素和木质素的降解。
     实时定量PCR对显著上调的细胞壁水解酶进行体内表达水平检测,结果发现它们在大丽轮枝菌侵染棉花前和侵染后期基因低水平表达,在侵染的初期阶段均被显著诱导表达。可见,细胞壁水解酶在大丽轮枝菌侵染寄主过程中可能发挥着重要作用。
     比较基因组分析发现大丽轮枝菌参与果胶降解机制的酶类相比其它病原菌发生了明显扩增,尤其是GH28、GH43、PL1和PL3超家族成员。分泌蛋白谱鉴定结果中也发现了多个GH28、GH43、PL1和PL3超家族成员。其中,3个果胶裂解酶(PL3)超家族成员被显著上调,其上调倍数分别为15.02±0.26,13.17±0.92和7.01±0.8。构建PL3超家族进化树分析发现,VDAG_3551位于一个独立的进化分支,其它PL3超家族成员位于另一个进化分支。将VDAG_3551(VdPL3.1)编码基因敲除后,其突变体(ΔVdPL3.1)接种感病棉种的致病力明显下降,从野生型61%下降到29.3%。将VDAG_9536(VdPL3.3)编码基因敲除后,其突变体(ΔVdPL3.3)接种感病棉种的致病力为54.5%,相比野生型几乎没有改变。
     综上所述,本研究利用离子交换法对大丽轮枝菌VdG1在诱导和非诱导条件下的分泌蛋白进行提取,通过iTRAQ标记和质谱鉴定技术对分泌蛋白组差异蛋白进行定量分析,挖掘差异蛋白中潜在致病因子,分析大丽轮枝菌对棉花细胞壁组织的降解机制,验证了细胞壁水解酶PL3家族在大丽轮枝菌致病过程中的关键作用。
To study the growth, generation of conidium and pathogenicity for secretome of V. dahliae andwhcich are influenced with natural sources, this fungus was cultured in the presence of cotton tissueextracts to mimic in vivo cotton infection system. The results showed that V. dahliae growth wassignificantly favored in the presence of host extracts, exhibiting the production of more spores andlarger amount of secretome compared with basic medium cultivation. Especially, the secretome inducedby cotton tissue caused more serious wilt phenotype in cotton leaves. To further identify theup-regulated secreted proteins induced by cotton tissue extract, we conducted an itraq-labeledcomparative proteomics of V. dahliae secretomes between the cotton tissue induction or non-inductionsamples. In total,502differentially expressed proteins were identified (Fold change>1.5or <0.6,p-value<0.05). Of which, a large number of potential pathogenicity factors were identified, including221secreted proteins,107plant cell wall degradation enzyme (PCWDE),86pathogen-host interaction(PHI) candidates,17small cysteine-rich proteins,2necrosis and ethylene-inducing-like proteins (NLPs)and a LysM effector candidate. Meanwhlie, we found that86secreted proteins were strongly induced(fold change>5.0, p-value<0.05), and76of which were PCWDEs which are suggested to involve inplant cell wall degradation and contribute to virulence in many fungal pathogens. To verify the inducedproteins exactly involved in cotton-V. dahliae interaction, we randomly selected some PCWDE genesand examined their transcripts by real-time quantitative PCR. The results revealed that most of selectedPCWDEs were activated in V. dahliae-cotton interaction, especially at the early of infection process. Inaddition, two of pectin lyses (PL) genes (VdPL3.1and VdPL3.3) belonging to PL3subfamily (there are11PL3genes in the V. dahliae genome) were further selected for knock-out assays. The resultsindicated that deletion of VdPL3.1, which separated from other PL3proteins in phylogenetically, causedover50%virulence reduction. However, loss-of-function of VdPL3.3did not affect virulence. Thatwould be caused by functional redundance among VdPL3.3and other PL3proteins in the samephylogenetic clade. This study provides a comprehensive resource for pathogenicity factor discovery inV. dahliae, and the highly induced PCWDEs are suggested to play significant roles in pathogenicity atthe early of cotton infection process. Further functional characterization of these PCWDEs may greatlyenhance the research on molecular mechanisms of pathogenicity in V. dahliae.
引文
1.曹晶,沈诚频,张军,姚鋆,申华莉,刘银坤,陆豪杰,杨芃原.肝癌细胞分泌蛋白质的多种提取方法比较.中国科学:生命科学.2010,40(9):853-858.
    2.曹友志,杨树黑斑病病原-杨生核盘二孢菌分泌蛋白及效应因子研究[博士学位论文].南京:南京林业大学,2012.
    3.陈相永,大丽轮枝菌不同毒力菌株全基因组测序及重测序分析[博士学位论文].北京:中国农业科学院,2011.
    4.陈旭升,陈永萱,黄骏麒.棉花黄萎病菌致萎峰蛋白质氨基酸组分及其有关生化特性分析.江苏农业学报.2000,16:10-14.
    5.储昭庆,贾军伟,周向军,陈晓亚.大丽轮枝菌分泌糖蛋白的分离及其致萎性研究.植物学报.1999,41:972-976.
    6.简桂良,卢美光,仇家山,王凤行,张洪成.棉花黄萎病防治策略.中国植保导刊.2004,24(4):30-31.
    7.简桂良,邹亚飞,马存.棉花黄萎病连年流行的原因及对策.中国棉花.2003,30(3):13-14.
    8.柳少燕,高毒力大丽轮枝菌特异分泌蛋白基因VdSSP1的克隆和功能初步分析[硕士学位论文].北京:中国农业科学院,2013.
    9.李延军,中国棉花黄萎病菌(Verticillium dahliae)营养体亲和性的研究[硕士学位论文].北京:北京农业大学,1989.
    10.马存,陈其,简桂良,丁之铨.综合防治棉花黄萎病刻不容缓.中国棉花,1994,21(7):8.
    11.田李,陈捷胤,陈相永,陈相永.大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析.中国农业科学.2011,44(15):3142-3153.
    12.田李,陈捷胤,汪佳妮,王金龙,戴小枫.高效大丽轮枝菌(Verticillium dahliae)基因敲除体系的构建.微生物学报.2011,07:906-913.
    13.田李,大丽轮枝菌基因敲除体系的建立及分泌蛋白初步分析[博士学位论文].北京:中国农业科学院,2011.
    14.王淑民,项时康.翼鲁豫棉花生产现状与前景.棉花学报.1997,2:57-63.
    15.王永山,王风良,金中时,梁文斌.棉花黄萎病频繁重发原因分析及可持续控制对策.安徽农学通报.2010,16(7):132-133.
    16.徐明,桂月晶,祁伟彦,柳少燕,陈捷胤,戴小枫.绿色荧光蛋白基因标记棉花黄萎病菌.植物保护.2013,5:128-133.
    17.杨华,棉花黄萎病研究进展浅述.江西棉花.2006,128(16):3-5.
    18.张宇,贺丹,王爽,张艳华,李涵,王丽.烟曲霉分泌蛋白质提取方法的比较.中国生物制品学杂志.2010,3(23):313-316.
    19.赵凤轩,绿色荧光蛋白标记的大丽轮枝菌的获得及其在棉花中侵染过程研究.[硕士学位论文].北京:中国农业科学院,2010.
    20.朱荷琴,冯自立,李志芳,赵丽红,师勇强.蛭石沙土无底纸钵定量蘸菌液法鉴定棉花品种(系)的抗黄萎病性.中国棉花.2010,12:15-17.
    21. Adav SS, Chao LT, Sze SK. Protein abundance in multiplexed samples (PAMUS) for quantitationof Trichoderma reesei secretome. J Proteomics.2013,83:180-96.
    22. Adav SS, Ravindran A, Cheow ES, Sze SK. Quantitative proteomic analysis of secretome ofmicrobial consortium during saw dust utilization. J Proteomics.2012,75(18):5590-603.
    23. Adav SS, Chao LT, Sze SK. Quantitative secretomic analysis of Trichoderma reesei strainsrevealsenzymatic composition for lignocellulosic biomass degradation. Mol. Cell. Proteomics.2012,11: M111.012419.
    24. Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R. Plant secretome: unlocking secrets of thesecreted proteins. Proteomics,2010,10(4):799-827.
    25. El-Bebany AF, Rampitsch C, Daayf F. Proteomic analysis of the phytopathogenic soilborne fungusVerticillium dahliae reveals differential protein expression in isolates that differ in aggressiveness.Proteomics2010,10:289-303.
    26. Altschul SF, Madden TL, Sch ffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLASTand PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res.1997,25(17):3389-402.
    27. Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP,Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM,Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M,Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J,Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S,Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C,Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C,Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M,Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M. Genomic analysis of thenecrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet.2011,7(8):e1002230.
    28. An HJ, Lurie S, Greve LC, Rosenquist D, Kirmiz C, Labavitch JM, Lebrilla CB. Determination ofpathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products ofplant cell walls. Anal. Biochem.2005,338:71-82.
    29. Aro N, Pakula T, Penttila M. Transcriptional regulation of plant cell wall degradation byfilamentous fungi. FEMS Microbiol. Rev.2005,29:719-39.
    30. Battaglia E1, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP.Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specializedapproach to carbohydrate degradation depicted at genome level. BMC Genomics.2011,12:38.
    31. Ben-Daniel BH, Bar-Zvi D, Tsror Lahkim L. Pectate lyase affects pathogenicity in natural isolatesof Colletotrichum coccodes and in pelA gene-disrupted and gene-overexpressing mutant lines. MolPlant Pathol.2012,13(2):187-97.
    32. Benhamou N, Rey P, Picard K, Tirilly Y. Ultrastructural and Cytochemical Aspects of theInteraction Between the Mycoparasite Pythium oligandrum and Soilborne Plant Pathogens.Phytopathology.1999,89(6):506-517.
    33. Bent AF, Mackey D. Elicitors, effectors, and R genes: the new paradigm and a lifetime supply ofquestions. Annu Rev Phytopathol.2007,45:399-436.
    34. Bhadauria V, Zhao WS, Wang LX, Zhang Y, Liu JH, Yang J, Kong LA, Peng YL. Advances infungal proteomics. Microbiol. Res.2007,162:101-116.
    35. Bhat RG, Subbarao KV. Host range specificity in Verticillium dahliae. Phytopathology.1999,89:1218-1225.
    36. Bishop CD, Cooper RM. Ultrastructure of vascular colonization by fungal wilt pathogens. II.Invasion of resistant cultivars. Physiol Plant Pathol.1984,24:277-289.
    37. Blümke A, Falter C, Herrfurth C, Sode B, Bode R, Sch fer W, Feussner I, Voigt CA. SecretedFungal Effector Lipase Releases Free Fatty Acids to Inhibit Innate Immunity-Related CalloseFormation during Wheat Head Infection. Plant Physiol.2014,165(1):346-358.
    38. Bolton MD1, van Esse HP, Vossen JH, de Jonge R, Stergiopoulos I, Stulemeijer IJ, van den BergGC, Borrás-Hidalgo O, Dekker HL, de Koster CG, de Wit PJ, Joosten MH, Thomma BP. The novelCladosporium fulvum lysin motif effector Ecp6is a virulence factor with orthologues in otherfungal species.Mol Microbiol.2008,69(1):119-136.
    39. Bravo-Ruiz G, Ruiz-Roldan C, Roncero MI. Lipolytic system of the tomato pathogen Fusariumoxysporum f. sp. lycopersici. Mol Plant Microbe Interact.2013,26:211054-1067
    40. Briesemeister S, Rahnenführer J, Kohlbacher O. YLoc--an interpretable web server for predictingsubcellular localization. Nucleic Acids Res.2010,38(Web Server issue):W497-502.
    41. Brito, N., Espino, J. J., Gonzalez, C., The endo-beta-1,4-xylanase xyn11A is required for virulencein Botrytis cinerea. Mol. Plant Microbe Interact.2006,19:25-32.
    42. Bu B, Qiu D, Zeng H, Guo L, Yuan J, Yang X. A fungal protein elicitor PevD1induces Vertic illiumwilt resistance in cotton. Plant Cell Rep.2014,33(3):461-470.
    43. Buchner V, Nachmias A, Burstein Y. Isolation and partial characterization of a phytotoxicglycopeptide from a proteinlipopolysaccharide complex produced by a potato isolate ofVerticillium dahliae. FEBS Letters.1982,138:261-264.
    44. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. TheCarbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. NucleicAcids Res.2009,37:233-38.
    45. Chisholm ST, Coaker G, Day B, Staskawicz BJ. Hostmicrobe interactions: shaping the evolution ofthe plant immune response. Cell.2006,124:803-814.
    46. Cho SJ, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL. Structure and dynamics of thefusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology.2002,143(3):1144-1148.
    47. Clovis S. Palmer, Jennifer A. Saleeba, Bruce R. Lyon. Phytotoxicity on cotton ex-plants of an18.5kDa protein from culture filtrates of Verticillium dahliae. Physiological and Molecular PlantPathology.2005,67:308-318.
    48. Cooper RM., Wood RK. Regulation of synthesis of cell wall degrading einzymes by Verticilliumalbo-atrum and Fusarium oxysporum f. sp. lycopersici. Physiol. Plant Pathol.1975,5:135-156.
    49. Cooper RM, Wood RK. Cell wall degrading enzymes of vascular wilt fungi. III. Possibleinvolvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol. Plant Pathol.1980,16:285-300.
    50. Cornelis GR, Van Gijsegem F. Assembly and function of type III secretory systems. Annu RevMicrobiol2000,54:735-774.
    51. Coumans JV, Moens PD, Poljak A, Al-Jaaidi S, Pereg L, Raftery MJ. Plant-extract-inducedchanges in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola. Proteomics.2010,10(8):1573-1591.
    52. Coutinho PM, Henrissat B: Carbohydrate-active enzymes: an integrated database approach.Cambridge: The Royal Society of Chemistry1999.
    53. Daayf, F., Nicole, M., Geiger, J.P. Differentiation of Verticillium dahliae populations on the basisof vegetative compatibility and pathogenicity on cotton. European Journal of Plant Pathology.1995,101:69-79.
    54. Davis DA, Lowb PS, Heinstein P. Purification of a glycoprotein elicitor of phytoalexin formationfrom Verticillium dahliae. Physiological and Molecular Plant Pathology.1998,52(4):259-273.
    55. de Jonge R, Bolton MD, Kombrink A, van den Berg GC, Yadeta KA, Thomma BP. Extensivechromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res.2013,23(8):1271-1282.
    56. de Jonge R, van Esse HP, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z,Usami T, Lievens B, Subbarao KV, Thomma BP. Tomato immune receptor Ve1recognizes effectorof multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U SA.2012,109(13):5110-5115.
    57. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N,Joosten MH, Thomma BP. Conserved fungal LysM effector Ecp6prevents chitin-triggeredimmunity in tomato plants. Science.2010,329:953-955.
    58. De Vries RP, Parenicová L, Hinz SW, Kester HC, Beldman G, Benen JA, Visser J..Endogalactanase A from Aspergillus niger is specifically induced on L-arabinose and galacturonicacid and acts synergistically with Aspergillus rhamnogalacturonases. Eur. J. Biochem.2002,269:4985-4993.
    59. De Wit PJ, Mehrabi R, Van den Burg HA, Stergiopoulos I. Fungal effector proteins: past, presentand future. Mol Plant Pathol.2009,10(6):735-747.
    60. Dow JM,Clarke BR,Milligan DE,Tang J-L,Daniels MJ.Extracellular proteases from Xanthomonascampestris pv.campestris,the black rot pathogen.App Environ Microbio.1990, l56:2994-2998.
    61. Durrands, P. K., and Cooper, R. M.. Selection and characterization of pectinase-deficient mutantsof the vascular wilt pathogen Verticillium albo-atrum. Physiol. Mol. Plant Pathol.1988a,32:343-362.
    62. Durrands, PK. and Cooper, RM. The role of pectinases in vascular wilt disease as determined bydefined mutants of Verticillium albo-atrum. Physiol. Mol. Plant Pathol.1988b,32:363-371.
    63. Pegg GF and Brady BL. Verticillium Wilts. Wallingford, UK:2002, CABI Publishing.
    64. Federici, L., Di Matteo, A., Fernandez-Recio, J., Tsernoglou, D., Cervone, F., Polygalacturonaseinhibiting proteins: Players in plant innate immunity? Trends Plant Sci.2006,11:65-70.
    65. Feret R, Lilley KS. Protein Profiling Using Two-Dimensional Difference Gel Electrophoresis (2-DDIGE). Curr Protoc Protein Sci.2014,75(22):1-17.
    66. Fradin E.F., Thomma B.P., Physiology and molecular aspects of Verticillium wilt diseases causedby V. dahliae and V. albo-atrum. Molecular Plant Pathology.2006,7(2):71-86.
    67. Fradin EF, Zhang Z, Rovenich H, Song Y, Liebrand TW, Masini L, van den Berg GC, Joosten MH,Thomma BP. Functional Analysis of the Tomato Immune Receptor Ve1through Domain Swapswith Its Non-Functional Homolog Ve2. PLoS One.2014,9(2):e88208.
    68. Fradin EF, Thomma BP. Physiology and molecular aspects of Verticillium wilt diseases caused byV. dahliae and V. albo-atrum. Mol Plant Pathol.2006,7(2):71-86.
    69. Girard V, Dieryckx C, Job C, Job D. Secretomes: the fungal strike force. Proteomics.2013,13:597-608.
    70. Glass NL, Schmoll M, Cate JH, Coradetti S. Plant cell wall deconstruction by ascomycetefungi.Annu Rev Microbiol.2013,67:477-98.
    71. Gonzalez-Fernandez R, Jorrin-Novo JV. Contribution of proteomics to the study of plantpathogenic fungi. J Proteome Res.2012,11(1):13-16.
    72. González-Fernández R, Aloria K, Valero-Galván J, Redondo I, Arizmendi JM, Jorrín-Novo JV.Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. JProteomics.2014,97:195-221.
    73. Hamer J.E. and Talbot N.J. Infection-related development in the rice blast fungus Magnaporthegrisea. Curr Opin Microbiol.1998,1(6):693-697.
    74. Hawke M.A. and Lazarovits G. The production of microsclerotia of Verticillium dahliae for use instudies of survival.6th International Verticillium Symposium, Dead Sea, Israel. Phytoparasitica.1995,23:53.
    75. Hématy K, Cherk C, Somerville S. Host-pathogen warfare at the plant cell wall. Curr Opin PlantBiol.2009,12(4):406-13.
    76. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estra o C, Haldar K. Ahost-targeting signal in virulence proteins reveals a secretome in malarial infection. Science.2004,306(5703):1934-1937.
    77. Howard R.J. and Valent B. Breaking and entering: host penetration by the fungal rice blastpathogen Magnaporthe grisea. Annu Rev Microbiol.1996,50:491-512.
    78. Howell, C. R.. Use of enzyme deficient mutants of Verticillium dahliae to assess the importance ofpectolytic enzymes in symptom expression of Vertic illium wilt of cotton. Physiol. Plant Pathol.1976,9:279-283.
    79. Huang, L.K, Mahoney, R.R. Purification and characterization of an endopolygalacturonase fromVerticillium alboatrum. J. Appl. Micriobiol.1999,86:145-156.
    80. Jiang RH, Tyler BM, Govers F. Comparative analysis of Phytophthora genes encoding secretedproteins reveals conserved synteny and lineagespecific gene duplications and deletions. MolPlant-Microbe Interact2006,19(12):1311-1321.
    81. Jones, J. D. G., Dangl, J. L. The plant immune system. Nature.2006,444(7117):323-329.
    82. Jung YH, Jeong SH, Kim SH, Singh R, Lee JE, Cho YS, Agrawal GK, Rakwal R, Jwa NS.Secretome analysis of Magnaporthe oryzae using in vitro systems. Proteomics.2012,12(6):878-900.
    83. Kaffarnik FA, Jones AM, Rathjen JP, Peck SC. Effector proteins of the bacterial pathogenPseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. MolCell Proteomics.2009,8(1):145-156.
    84. Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu RevPhytopathol.2006,44:41-60.
    85. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation oflarge-scale molecular data sets. Nucleic Acids Res.2012,40:109-114.
    86. Kang, Z. and Buchenauer, H.,.Cytology and ultrastructure of the infection of wheat spikes byFusarium culmorum. Mycol. Res.,.2000b,104:1083-1093.
    87. Kang, Z. and Buchenauer, H.. Ultraestructural and cytochemical studies on cellulose, xylan andpectin degradation in wheat spikes infected by Fusarium culmorum. J. Phytopatol.2000a,148:263-275.
    88. Kang, Z., Zingen-Sell, I. and Buchenauer, H.,. Infection of wheat spikes by Fusarium avenaceumand alterations of a cell wall components in the infected tissue. Eur.J. Plant Pathol.2005,111:19-28.
    89. Kikot GE, Hours RA, Alconada TM. Contribution of cell wall degrading enzymes to pathogenesisof Fusarium graminearum: a review. J Basic Microbiol.2009,49(3):231-241.
    90. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Arsenal of plant cellwall degrading enzymes reflects host preference among plant pathogenic fungi. BiotechnolBiofuels.2011,4:4. doi:10.1186/1754-6834-4-4.
    91. Kirsch R, Wielsch N, Vogel H, Svato A, Heckel DG, Pauchet Y. Combining proteomics andtranscriptome sequencing to identify active plant-cell-wall-degrading enzymes in a leaf beetle.BMC Genomics.2012,1(13):587.
    92. Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B,Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P,Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S,Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ. Comparative genomics yieldsinsights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog2011,7(7):e1002137.
    93. Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV. Diversity, pathogenicity, and management ofVerticillium species. Annu Rev Phytopathol.2009,47:39-62.
    94. Lesage G, Bussey H. Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev.2006,70(2):317-343.
    95. Lévesque CA, Brouwer H, Cano L, Hamilton JP, Holt C, Huitema E, Raffaele S, Robideau GP,Thines M, Win J, Zerillo MM, Beakes GW, Boore JL, Busam D, Dumas B, Ferriera S,Fuerstenberg SI, Gachon CM, Gaulin E, Govers F, Grenville-Briggs L, Horner N, Hostetler J, JiangRH, Johnson J, Krajaejun T, Lin H, Meijer HJ, Moore B, Morris P, Phuntmart V, Puiu D, Shetty J,Stajich JE, Tripathy S, Wawra S, van West P, Whitty BR, Coutinho PM, Henrissat B, Martin F,Thomas PD, Tyler BM, De Vries RP, Kamoun S, Yandell M, Tisserat N, Buell CR. Genomesequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicitymechanisms and effector repertoire. Genome Biol.2010,11(7): R73.
    96. Liang L, Wu H, Liu Z, Shen R,Gao H, Yang J, Zhang K. Proteomic and transcriptional analyses ofArthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence againstnematodes. Appl Microbiol Biotechnol.2013,97(19):8683-92.
    97. Lievens B, Houterman PM, Rep M. Effector gene screening allows unambiguous identification ofFusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales.FEMS Microbiol Lett.2009,300(2):201-215.
    98. Lippincott-Schwartz J, Roberts TH, Hirschberg K: Secretory protein trafficking and organelledynamics in living cells. Annu Rev Cell Dev Biol.2000,16:557-589.
    99. Liu W, Zeng H, Liu Z, Yang X, Guo L, Qiu D. Mutational analysis of the Verticillium dahliaeprotein elicitor PevD1identifies distinctive regions responsible for hypersensitive response andsystemic acquired resistance in tobacco. Microbiol Res.2013, S0944-5013(13)00126-2.
    100. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time quantitativePCR and the2-ΔΔCt method. Methods.2010,25:402-408.
    101. Luderer R, De Kock MJ, Dees RH, De Wit PJ, Joosten MH. Functional analysis of cysteineresidues of ECP elicitor proteins of the fungal tomato pathogen Cladosporium fulvum. Mol PlantPathol.2002,3(2):91-95.
    102. Mandelc S, Radisek S, Jamnik P, Javornik B. Comparison of mycelial proteomes of twoVerticillium albo-atrum pathotypes from hop. European Journal of Plant Pathology September2009,125(1):159-171.
    103. Mansoor GA, White WB. Ambulatory blood pressure monitoring in current clinical practice andresearch. Curr Opin Nephrol Hypertens.1995,4(6):531-7.
    104. Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BP,Rudd JJ. Analysis of two in planta expressed LysM effector homologs from the fungusMycosphaerella graminicola reveals novel functional properties and varying contributions tovirulence on wheat. Plant Physiology.2011,156:756-769.
    105. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF: Targeting malaria virulence and remodelingproteins to the host erythrocyte. Science2004,306(5703):1930-1933.
    106. Martijn Rep. Small proteins of plant-pathogenic fungi secreted during host colonization. FEMSMicrobiology Letters.2005,253(1):19-27.
    107. Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, FerreiraP, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, GaskellJ, Lindquist E, Sabat G, Bondurant SS, Larrondo LF, Canessa P, Vicuna R, Yadav J, DoddapaneniH, Subramanian V, Pisabarro AG,Lavín JL, Oguiza JA, Master E, Henrissat B, CoutinhoPM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, RamaiyaP, Lucas S,Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, JamesT, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D. Genome,transcriptome, and secretome analysis of wood decay fungus Postia placenta supports uniquemechanisms of lignocellulose conversion. Proc NatlAcad Sci U S A.2009,106(6):1954-1959.
    108. Mercado-Blanco J., Rodríguez-Jurado M.D., Pérez-Artés E., Jiménez-Díaz R.M. Detection of thedefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Eur. J. PlantPathol.2002,108:1-13.
    109. Mercado-Blanco J., Rodríguez-Jurado M.D., Pérez-Artés E., Jiménez-Díaz R.M. Detection of thenondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. PlantPathol.2001,50:609-619.
    110. Meyer R., Slater V., Dubery I.A. A phytotoxic protein-lipopolysaccharide complex produced byVerticillium dahliae. Phytochemistry.1994,35:1449-1453.
    111. Morais do Amaral A, Antoniw J, Rudd JJ, Hammond-Kosack KE. Defining the Predicted ProteinSecretome of the Fungal Wheat Leaf Pathogen Mycosphaerella graminicola. PLoS ONE.2012,7(12): e49904.
    112. Mozumder BK, Caroselli NE, Albert LS. Influence of Water Activity, Temperature, and TheirInteraction on Germination of Verticillium albo-atrum Conidia. Plant Physiol.1970,46(2):347-349.
    113. Mullins ED, Kang S. Transformation: a tool for studying fungal pathogens of plants. Cell Mol LifeScience.2001,58(14):2043-52.
    114. Nachmias VT, Kavaler J, Jacubowitz S. Reversible association of myosin with the plateletcytoskeleton. Nature.1985,313(5997):70-72.
    115. Nguyen QB, Itoh K, Van Vu B, Tosa Y, Nakayashiki H. Simultaneous silenc ing of endo-β-1,4xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol.2011,81(4):1008-1019.
    116. Oeser B, Heidrich PM, Müller U, Tudzynski P, Tenberge KB. Polygalacturonase is a pathogenicityfactor in the Claviceps purpurea/rye interaction. Fungal Genet Biol.2002,36(3):176-186.
    117. kmen B, Etalo DW, Joosten MH, Bouwmeester HJ, de Vos RC, Collemare J, de Wit PJ.Detoxification of α-tomatine by Cladosporium fulvum is required for full virulence on tomato.New Phytol.2013,198(4):1203-1214.
    118. Ospina-Giraldo MD, Griffith JG, Laird EW, Mingora C. The CAZyome of Phytophthora spp acomprehensive analysis of the gene complement coding for carbohydrate-active enzymes inspecies of the genus Phytophthora. BMC Genomics.2010,11:525. doi:0.1186/1471-2164-11-525.
    119. Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD. Comparative proteomics ofextracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum.Proteomics.2007,7(17):3171-83.
    120. Pegg GF, Cronshaw DK. Relationship of in vitro to in vivo ethylene production in Pseudomonassolanacearum infection of tomato. Physiological Plant Pathology.1976,9:145-154.
    121. Pegg GF. Phytotoxin production by Verticillium albo-atrum. Nature.1965,208:1228-1229.
    122. Pegg GF. Pathogenesis in vascular diseases of plants: Vascular wilt diseases of plants.1989,51-94.
    123. Pegg GF, Gull K, Newsam, RJ. Transmission electron microscopy of Verticillium albo-atrumhyphae in xylem vessels of tomato plants. Physiol. Plant Pathol.1976,8:221-224.
    124. Pérez-Artés E., García-Pedrajas MD., Bejarano-Alcázar J., Jiménez-Díaz RM. Differentiation ofcotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specificPCR analyses. European Journal of Plant Pathology.2000,106:507-517.
    125. Pérez-Artés E., Mercado-Blanco J., Ruz-Carrillo A.R., Rodríguez-Jurado D., Jiménez-Díaz R.M.Detection of the defoliating and nondefoliating pathotypes of Verticillium dahliae in artificial andnatural soils by nested PCR. Plant Soil.2005,268:349-356.
    126. Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Dorsselaer AV,Jeltsch JM. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. CurrGenet.2005,48(6):366-379.
    127. Poinssot B, Vandelle E, Bentéjac M, Adrian M, Levis C, Brygoo Y, Garin J, Sicilia F,Coutos-Thévenot P, Pugin A. The endopolygalacturonase1from Botrytis cinerea activatesgrapevine defense reactions unrelated to its enzymatic activity. Mol. Plant Microbe Interact.2003,16:553-564.
    128. Prudovsky I, Tarantini F, Landriscina M, Neivandt D, Soldi R, Kirov A, Small D, Kathir KM,Rajalingam D, Kumar TK.Secretion without Golgi. J Cell Biochem.2008,103:1327-1343.
    129. Puhalla JE, Howell CR. Significance of endopolygalacturonase activity to symptom expression ofVerticillium wilt in cotton, assessed by use of mutants of Verticillium dahliae Kleb. Physiol PlantPathol.1975,7:147-152.
    130. Puhalla JE, Hummel M. Vegetative compatibility groups within Verticillium dahliae.Phytopathology.1983,73:1305-1308.
    131. Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpo l-Gimbert I. Fusariumverticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheatstraw. Bioresour Technol.2012,114:589-596.
    132. Rep M. Small proteins of plant-pathogenic fungi secreted during host colonization. FEMSMicrobiol Lett.2005,253(1):19-27.
    133. Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, CullimoreJ, Dumas B, Gough C, Jacquet C. NFP, a LysM protein controlling Nod factor perception, alsointervenes in Medicago truncatula resistance to pathogens. New Phytologist.2013,198(3):875-886.
    134. Rogers LM, Kim YK, Guo W, González-Candelas L, Li D, Kolattukudy PE. Requirement for eithera host-or pectin-induced pectate lyase for infection of Pisum sativum by Nectria hematococca. ProcNatl Acad Sci U S A.2000,97(17):9813-9818.
    135. Ron, M., Avni, A., The receptor for the fungal elicitor ethylene-inducing xylanase is a member of aresistance-like gene family in tomato. Plant Cell.2004,16:1604-1615.
    136. Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T, Thomma BP. Evidence for functionaldiversification within a fungal NEP1-like protein family. Mol Plant Microbe Interact.2013,26(3):278-286.
    137. Saunders DG, Breen S, Win J, Schornack S, Hein I, Bozkurt TO, Champouret N, VleeshouwersVG, Birch PR, Gilroy EM, Kamoun S. Host protein BSL1associates with Phytophthora infestansRXLR effector AVR2and the Solanum demissum immune receptor R2to mediate disease resistance.Plant Cell.2012,24(8):3420-3434.
    138. Saunders DG, Win J, Cano LM, et al., Using hierarchical clustering of secreted protein families toclassify and rank candidate effectors of rust Fungi. PLoS ONE.2012,7(1):152-162.
    139. Schnathorst W.C. Word distribution and differentiation of Verticillium dahliae strain pathogenic inGossypium hirsutum.2nd international Verticillium symposium.1976,40:142-153.
    140. Shao S, Hegde RS. A calmodulin-dependent translocation pathway for small secretory proteins.Cell.2011,147(7):1576-1588.
    141. Skamnioti P, Gurr SJ. Magnaporthe grisea cutinase2mediates appressorium differentiation andhost penetration and is required for full virulence. Plant Cell.2007,19(8):2674-2689.
    142. Spanu PD. The genomics of obligate (and nonobligate) biotrophs. Annu Rev Phytopathol.2012,50:91-109.
    143. Sposato P, Ahn JH, Walton JD. Characterization and disruption of a gene in the maize pathogenCochliobolus carbonum encoding a cellulase lacking a cellulose binding domain and hinge region.Mol Plant Microbe Interact.1995,8(4):602-609.
    144. St Leger RJ, Joshi L, Roberts DW. Adaptation of proteases and carbohydrates of saprophytic,phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches.Microbiology.1997,143(6):1983-1992.
    145. Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E. Proteomic analysisof secreted proteins from Trichoderma harzianum: Identification of a fungal cell wall-inducedaspartic protease. Fungal Genet Biol.2005,42(11):924-934.
    146. Sun Q, Jiang H, Zhu X, Wang W, He X, Shi Y, Yuan Y, Du X, Cai Y. Analysis of sea-island cottonand upland cotton in response to Verticillium dahliae infection by RNA sequencing. BMCGenomics.2013,14:852.
    147. Teertstra WR, Krijgsheld P, W sten HA. Absence of repellents in Ustilago maydis induces genesencoding small secreted proteins. Antonie Van Leeuwenhoek.2011,100(2):219-229.
    148. Thomma BP, Nürnberger T, Joosten MH. Of PAMPs and effectors: the blurred PTI-ETI dichotomy.Plant Cell.2011,23(1):4-15.
    149. Tian L, Zhang L, Zhang J, Song Y, Guo Y. Differential proteomic analysis of soluble extracellularproteins reveals the cysteine protease and cystatin involved in suspension-cultured cellproliferation in rice. Biochimica et Biophysica Acta.2009,194(3):459-467.
    150. Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kühn A, Valerius O, LandesfeindM, A hauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH. Vertic illiumtranscription activator of adhesion Vta2suppresses microsclerotia formation and is required forsystemic infection of plant roots. New Phytol.2014,17.
    151. Tzima AK, Paplomatas EJ, Rauyaree P, Ospina-Giraldo MD, Kang S. VdSNF1, the sucrosenonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expressionof genes involved in cell-wall degradation. Mol Plant Microbe Interact.2011,24(1):129-142.
    152. Valent B, Khang CH. Recent advances in rice blast effector research. Current Opinion in PlantBiology.2010,13:434-441.
    153. Valette-Collet O, Cimerman A, Reignault P, Levis C, Boccara M. Disruption of Botrytis cinereapectin methylesterase gene Bcpme1reduces virulence on several host plants. Mol Plant MicrobeInteract.2003,16(4):360-367
    154. Vallad GE, Subbarao KV. Colonization of resistant and susceptible lettuce cultivars by a greenfluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology.2008,98,871-885.
    155. Van den Brink J, de Vries R P. Fungal enzyme sets for plant polysaccharide degradation. AppliedMicrobiology and Biotechnology.2011,91(6):1477-1492.
    156. Van den Wymelenberg A, Minges P, Sabat G, et al. Computational analysis of the Phanerochaetechrysosporium v2.0genome database and mass spectrometry identification of peptides inligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol.2006,43(5):343-356.
    157. Van Vu B, Itoh K, Nguyen QB, Tosa Y, Nakayashiki H. Cellulases belonging to glycosidehydrolase families6and7contribute to the virulence of Magnaporthe oryzae. Mol Plant MicrobeInteract.2012,25(9):1135-1141.
    158. Vinzant TB, Adney WS, Decker SR, et al. Fingerprinting Trichoderma reesei hydrolases in acommercial cellulase preparation. Appl Biochem Biotechnol.2001,91:99-107.
    159. Wang B, Yang X, Zeng H, Liu H, Zhou T, Tan B, Yuan J, Guo L, Qiu D. The purification andcharacterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliaethat induces resistance responses in tobacco. Applied Microbiology Biotechnology.2012,93(1):191-201.
    160. Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH, Chen XY. VdNEP, an elicitor fromVerticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol.2004,70(8):4989-95.
    161. Wang Y, Kim SG, Wu J, Huh HH, Lee SJ, Rakwal R, Agrawal GK, Park ZY, Young Kang K, KimST. Secretome analysis of the rice bacterium Xanthomonas oryzae (Xoo) using in vitro and inplanta systems. Proteomics.2013,13(12-13):1901-1912.
    162. Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev CellDev Biol.2005,21:319-346.
    163. Wilhelm S. Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology.1955,45:180-181.
    164. Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, RawlingsC, Hammond-Kosack KE, K hler J. PHI-base update: additions to the pathogen host interactiondatabase. Nucleic Acids Res.2008,(Database issue): D572-6.
    165. Yang F, Jensen JD, Svensson B, J rgensen HJ, Collinge DB, Finnie C. Secretomics identifiesFusarium graminearum proteins involved in the interaction with barley and wheat. Mol PlantPathol.2012,13(5):445-453.
    166. Yang Y, Bu D, Zhao X, Sun P, Wang J, Zhou L. Proteomic analysis of cow, yak, buffalo, goat andcamel milk whey proteins: quantitative differential expression patterns. J Proteome Res.2013,12(4):1660-1667.
    167. Yao LL, Zhou Q, Pei BL, Li YZ. Hydrogen peroxide modulates the dynamic microtubulecytoskeleton during the defence responses to Verticillium dahliae toxins in Arabidopsis. Plant CellEnviron.2011,34:1586-1598.
    168. Yi M, Park JH, Ahn JH, Lee YH. Mo SNF1regulates sporulation and pathogenic ity in the rice blastfungus Magnaporthe oryzae. Fungal Genet Biol.2008,45(8):1172-1181.
    169. Wang YM, Wu JNi, Park ZY, Kim SG, Rakwal R, Agrawal GK, Kim ST, Kang KY. Comparativesecretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. Journalof Proteome Research.2011,10(7):3136-3148.
    170. Yuan HY, Yao LL, Jia ZQ, Li Y, Li YZ. Verticillium dahliae toxin induced alterations ofcytoskeletons and nucleoli in Arabidopsis thaliana suspension cells. Protoplasma.2006,229(1):75-82.
    171. Zhang L, Hua C, Stassen JH, Chatterjee S, Cornelissen M, van Kan JA. Genome-wide analysis ofpectate-induced gene expression in Botrytis cinerea: Identification and functional analysis ofputative d-galacturonate transporters. Fungal Genet Biol.2013, pii: S1087-1845(13)00180-1.
    172. Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH. In planta stage-specific fungalgene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheatcoleoptiles. Plant Cell.2012,24(12):5159-76.
    173. Zhao P, Zhao YL, Jin Y, Zhang T, Guo HS. Colonization process of Arabidopsis thaliana roots by agreen fluorescent protein-tagged isolate of Verticillium dahliae. Protein Cell.2014,5(2):94-8.
    174. Zhou BJ, Jia PS, Gao F, Guo HS. Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant MicrobeInteract.2012,25(7):964-975.
    175. Zieske LR. A perspective on the use of iTRAQ reagent technology for protein complex andprofiling studies. J Exp Bot.2006,57(7):1501-1509

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700