大型锻件高温扩散的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温扩散是大型锻件生产中的重要环节,源于上世纪70年代。其目的是通过在高温状态下长时间地加热钢锭,减轻或消除钢锭中的枝晶偏析,以提高大锻件产品的性能。尽管高温扩散在我国已有数十年的使用历史,但由于我国采用该技术时可参考的资料非常少,工艺参数的确定缺乏理论分析和实验研究依据。随着我国电力、冶金、石油化工、造船等工业的迅速发展,大锻件的需求量迅速增加,大型锻件出现了产量与产能的严重矛盾。加之来自成本、节能减排政策和环境法规的压力,对高温扩散工艺提出了一系列问题。本文以加氢锻件用2.25Cr-1Mo-0.25V钢为对象,通过理论分析和多种实验,研究了高温扩散对其在不同变形条件下成分分布、组织结构和力学性能的影响规律,给出了一些新的看法和结论。
     本文提出了基于偏析比SR的Guass解形式的枝晶偏析均匀化数学模型。用最小二乘实验拟合方法确定了1100oC~1200oC范围内Cr、Mo元素在2.25Cr-1Mo-0.25V钢中的扩散系数,并进一步确定了Cr、Mo元素在1100oC~1200oC范围内的扩散常数和扩散激活能,最终建立了预测2.25Cr-1Mo-0.25V钢锭中Cr、Mo元素均匀化程度的数学模型。
     本文通过组织实验,细致全面地研究了加热温度、保温时间对2.25Cr-1Mo-0.25V钢锭中的树枝晶、枝晶组织、残余奥氏体、显微硬度的影响。基于偏析比SR,依据组织实验结果,建立了制定高温扩散工艺参数的判定准则。
     本文通过力学性能实验,研究了不同锻比条件下保温时间对锻后强度的影响。研究了不同锻比条件下高温扩散对锻后冲击韧性的影响。力学性能实验结果表明,对于以2.25Cr-1Mo-0.25V钢锭为坯料的加氢反应器筒体锻件,可以不做锻前高温扩散。
     为缩短保温时间、优化工艺,本文提出了预变形高温扩散的概念。在枝晶偏析均匀化数学模型的基础上,建立了预变形后合金元素的均匀化数学模型,实验测得的数据与模型曲线基本吻合。还用实验的方法,研究了预变形高温扩散对树枝晶、枝晶组织的影响。依据理论分析和实验结果,给出了2.25Cr-1Mo-0.25V钢的预变形高温扩散工艺参数。
The high temperature diffusion, originating in the 1970s, is a significant process in the production of large forgings. It aims at mitigating or eliminating the dendritic segregation in steel ingots to improve the capability of large forging products by the way of heating up steel ingots in high temperature. Although the use of high temperature diffusion has a history of dozens of years in China, we are short of theoretical analysis and experimental research foundation in confirming the processing parameters because of the sparsity of reference materials. With the rapid development of electric power, metallurgy, petrochemical engineering, shipbuilding and other industries, more large forgings are highly demanded. The increasing demand causes the severe disproportion between the output and productivity of large forgings. Together with the pressure from the cost, the energy-saving policy of reducing discharge and environmental legislation, the technology of high temperature diffusion is facing a series of problems. With 2.25Cr-1Mo-0.25V Steel used in hydrogenation forgings as a research object, this paper explores the law of impact of the high temperature diffusion on its ingredient distribution, organization, and mechanical property under different deformation conditions, and puts forward some new views and conclusions through theoretical analysis and all kinds of experiments.
     The paper suggests the dendritic segregation homogenization mathematic model based segregation ratio and shaped Guass Solution.The least square experimental fitting method is used to determine the diffusion coefficient of Cr and Mo in 2.25Cr-1Mo-0.25V Steel under 1100oC~1200oC, and further determine their diffusion constant and diffusion activation energy. Finally, a mathematic model is created to forecast the homogenization degree of Cr and Mo in 2.25Cr-1Mo-0.25V Steel Ingot.
     Relying on experiments, the paper gives a comprehensive research about the impact of heating and holding time on dendrite, dendritic structure, retained austenite and microhardness. The decision rule for processing parameter of the high temperature diffusion is found on the basis of segregation ratio and experiment results.
     With mechanical property experiments, the paper painstakingly explores the impact of holding time on as-forged force and the impact of high temperature diffusion on as-forged impact-toughness under different forging ratios. The result of mechanical property shows that the pre-forging high temperature diffusion is not necessary for hydrogenation reactor tube forging with 2.25Cr-1Mo-0.25V Steel Ingot as stock.
     The paper advances the idea of predeformation high temperature diffusion for the sake of shortening the holding time and optimizing the craft. The homogenization mathematic model of predeforming alloying agents is created on the basis of the dendritic segregation homogenization mathematic model. The data from experiments tally with the model curve. With the method of experiments, the paper also researches the impact of the predeformation high temperature diffusion on dendrite and dendritic structure. By theoretical analysis and results from experiments, the paper presents the predeformation high temperature diffusion processing parameter of 2.25Cr-1Mo-0.25V Steel.
引文
1姚泽坤.锻造工艺学.西安:西北工业大学出版社,1998:77
    2康大韬.大型锻件材料及热处理.北京:龙门书局,1998:1-91
    3郭会光,曲宗实.我国大锻件制造业的发展.大型铸锻件,2003,(1):42-45
    4吕炎.锻件缺陷分析与对策.北京:机械工业出版社,1999:10-17
    5王凤喜.大锻件生产行业与锻造技术发展.锻压机械,2002,(4):3-6
    6北京机电研究所.国外机械工业基本情况——锻压.北京:机械工业出版社,2002:30-71
    7蔡墉.我国自由锻液压机和大型锻件生产的发展历程.大型铸锻件,2007,(1):37-44
    8黄鹂.大型铸锻件和重型容器再次成为重大技术装备制造业的“瓶颈”.中国机电工业, 2004,(2):43-44
    9蔡开科.浇注与凝固.北京:机械工业出版社.1987:107-181
    10刘全坤.材料成形基本原理.北京:机械工业出版社,2001:200-250
    11陈平昌.材料成形原理.北京:机械工业出版社,2001:143-264
    12胡汉起,金属凝固.北京:冶金工业出版社,1985
    13安阁英.铸件形成理论.北京:机械工业出版社,1989:157-161
    14 M.C.Flemings. Solidification Processing. NewYork:McGraw-Hill,1974
    15 M.Solari, H.J.Biloni. Microsegregation in Celluar and Celluar Dendritic Growth. J. Crystal. Growth,1980,49:451-457
    16 J.D.Hunt. Solidification and Casting of Metal. NewYork:Academic Press,1977:70-77
    17 E.Scheil. Retrograde Saturation Curves. Z. Metallk,1942,34:70-72
    18 H.D.Brody, M.C.Flemings. Solute Redistribution during Dendritic Solidification. Trans. Met. Soc. AIME,1966,236:615-624
    19胡汉起.铈对高锰钢奥氏体胞晶稳定性及锰枝晶偏析的影响.北京钢铁学院学报, 1982,1:27-36
    20 B.Chalmers. Principles of Solidification. California: John Wiley&sons, Inc,1964:176-194
    21刘静华,张定铨.钢铁热处理.西安:陕西科学技术出版社,1981:109
    22夏立芳.金属热处理工艺学.哈尔滨:哈尔滨工业大学出版社,1986:26-27
    23慈军,冯泽民,王全山.金属学及热处理.沈阳:东北工学院出版社,1990:145
    24安运铮.热处理工艺学.北京:机械工业出版社,1982:40-46
    25胡立光,谢希文.钢的热处理.第2版.西安:西北工业大学出版社,1993:70
    26第二重型机械厂总工程师办公室、大型铸锻件研究所.大型铸锻件专有技术赴日培训总结汇编.1988:153-154
    27冯端.金属物理学(第一卷结构与缺陷).北京:科学出版社,1987:473-579
    28孙振岩,刘春明.合金中的扩散与相变.沈阳:东北大学出版社,2005:1-60
    29 J.Crank. The Mathematics of Diffusion. 2nd Edition. Oxford: Clarendon Press,1975
    30 W.Jost. Diffusion in Solids, Liquid, Gases. California: Academic Press,1952:1-82
    31 R.M.Barrer. Diffusion in and through Solids. London: Cambridge University Press,1951:1-90
    32马兹·希拉特.合金扩散和热力学.赖和怡,刘国勋.北京:冶金工业出版社,1984:1-74
    33 M.E.Glicksman. Diffusion in Solids: Field Theory, Solid-state Principles, and Applications. Canada: Hohn Wiley&sons, Inc.,2000:43-47
    34戚正风.固态金属中的扩散与相变.北京:机械工业出版社,1998:1-55
    35 C.Cicutti, R.Boeri. Analysis of Solute Distribution during the Solidification of Low Alloyed Steels. Steel Research,2006,77(3):194-201
    36 M.Kudoh, B.Wo. Effects of Solute Elements on Primary and Secondary Dendrite Arm Spacings in Fe-based Alloys. Steel Research,2003,74(3):161-166
    37 W.L?ser, S.Thiem, M.Jursch. Solidification Modeling of Microstructure in Near-Net-Shape Casting of Steel. Mater. Sci. Eng.,1993,A173:323-326
    38 J.A.Sarreal, G.J.Abbaschian. The Effect of Solidification Rate on Microsegregation. Metall. Trans. A,1986,17A:2063-2073
    39 C.Y.Wang, C.Beckermann. A Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification. Mater. Sci. Eng.,1993,A171:199-211
    40 A.A.Howe. Extension of Analytical Expressions for Microsegregation. Ironmaking and Steelmaking,1991,18(4):284-287
    41 T.Matsumiya, H.Kajioka, S.Mizoguchi, etc. Mathematical Analysis of Segregation in Continously-Cast Slabs. Trans. ISIJ,1984,24:873-882
    42 T.P.Battle, R.D.Pehlke. Mathematical Modeling of Microsegregation in Binary Metallic Alloys. Metall. Trans. B,1990,21B:357-375
    43 C.Weiss, N.Bergeon, B.Billia, etc. Effects of the Interface Curvature on Cellular and dendriticmicrostrucrtures. Mater. Sci. Eng. A,2005,413-41:296-301
    44 D.Samanta, N.Zabaras. Effect of Dendrite Coarsening and Back Diffusion on Macrosegregation in a Solidifying Alloy. JOM,2004,56(11):33-34
    45 Q.Du, A.Jacot. A Two-Dimensional Microsegregation Model for the Description of Microstructure Formation during Solidification in multicomponent Alloys: Formulation and Behavior of the Model. Acta Mater.,2005,53(12):3479-3493
    46 M.C.Flemings. Coarsening in Solidification Processing. Mater. Trans.,2005,46(5):895-900
    47 L.Nastca. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater.,1999,47(17):4253-4262
    48 P. G. Shewmon. Diffusion in Solids. NewYork: McGraw-Hill Book Co.,1963:1-85
    49 J.W.Martin, R.D.Doherty. Stability of Microstructure in Metallic Systems. Cambridge: Cambridge University Press,1976:28-30
    50 W.Kurz, D.J.Fisher. Fundamentals of Solidification. Switzerland: Trans. Tech. Publ., 1989:289-292
    51 G.R.Purdy, J.S.Kirkaldy. Homogenization by Diffusion. Metallurgical Transactions,1971,2: 371-378
    52 H.Monstadt, E.Hombogen, J.Rohde. The Effect of Heat Treatment on Microstructures of Melt-spun Fe 6.5wt% Si Alloys. Journal of Magnetism and Mangnetic Materials,1992,112: 245-250
    53 A.G.Guy, J.H.John. Elements of Physical Metallurgu. Cananda: Addison-Wesley Publishing Company,1974:394-396
    54 J.Philibert. Atom Movements:Diffusion and Mass Transport in Solids.1991:533
    55 Y.Zhong. G.Y.Su, K.Yang. Microsegregation and Improved Methods of Squeeze Casting 2024 Aluminium Alloy. J. Mater. Sci. Technol.,2003,19(5):413-416
    56徐维,戚正风无莱氏高速钢高温扩散退火的研究.大连铁道学院学报,2000,21(2):65-70
    57龙正东,马培立,仲增墉.IN706合金锭的均匀化处理.钢铁研究学报,1997,9(1):21-24
    58田玉亮,王玲,董建新,等.GH742铸锭偏析及均匀化过程中元素分布规律.稀有金属材料与工程,2006,35(8):1315-1318
    59刘晓涛,崔建忠.铝合金均匀化扩散动力学研究.材料导报,2004,18(6):102-104
    60刘晓涛,董杰,崔建忠,等.高强铝合金均匀化热处理.中国有色金属学报,2003,13(4):909-913
    61 D.F.Zhang, J.Peng. Diffusion Models for solids-state Homogenization of Dendrite Segregation. Journal of Wuhan University of Technology-Mater. Sci. Ed.,2005,20(2):111-114
    62 M.Torkar, F.Vodopivec, S.Petovar. Analysis of Segregations in As-cast X40CrMoV51 Steel. Materials Science and Engineering,1993,A173:313-316
    63 H.E.Lippard, C.E.Campbell, U.Borggren, etc. Microstructure Behavior during Solidification and Homogenization of AerMet100 Steel. Metallurgical and Materials Transaction B,1998,29B: 205-210
    64 G.S.Cole. Inhomogenetities and Their Control via Solidification. Metallurgical Transactions, 1971,2:357-370
    65 W.Liu, K.M.Liang, Y.K.Zheng, etc. Influence of Homogenization Treatment in An Electric Field on the Workability of 1420 Al-Li Alloy during Hot Rolling. Journal of Materials Science Letters,1996,15:1918-1920
    66 R.A.Nogueira, A.F.Padilha. The Influence of Cold Working and Recrystallization on the Homogenization of As-cast Cu-50wt%Ni Alloy. Z. Metallkd,1997,88:204-208
    67 D.Fainstein, G.F.Bolling, H.Biloni. Homogenization of Primary Microsegregation. Metall. Trans.,1971,2:1315-1323
    68 M.Nili-Ahmadabadi, M.Mosallaiee-Pour. Homogenization of Ductile Iron Using Partial Molting Aided by Modeling. Mater. Sci. Eng. A,2004,373(1-2):309-314
    69 M.W.Wu, K.S.Huang, H.S.Huang, etc. Improvements in Microstructure Homogenization and Mechanical Properties of Diffusion-Alloyed Steel Compact by the Addition of Cr-Containing Powders. Metall. Mat. Trans. A,2006,37(8):2559-2568
    70 C.A.Gandian, A.Jacot. Modeling of Precipitate-free Zone Formed upon Homogenization in a Multi-component Alloy. Acta Mater.,2007,55(7):2539-2553
    71 V.S.D’yakonova, V.N.Zikeev, B.A.Klypin,etc. A Study of Homogenization of Structure and Properties over the Width of Sheets of Pipe Continuously Cast Steel 07G2FBYu. Met. Sci. Heat Treat.,2004,46(3-4):93-97
    72大冶钢厂钢铁研究所.高碳铬轴承钢钢锭解剖.金属学报,1977,13(1.2):109-121
    73内蒙一机厂,北京钢铁学院.合金铸钢均匀化处理时合金元素及杂质偏析的变化.兵器材料科学与工程,1978(01):1-11
    74沈永国.GCr15轴承钢网状碳化物质量探讨.四川冶金,1989,(03):22-25
    75方英照.低碳Cr13含Ni不锈钢叶片的热处理.重型机械,1991,(03)51-58
    76李朝华,刘英武,谢奎龙.MC5冷轧辊辊坯工艺改进研究.大型铸锻件,2005,(03):14-15
    77方顺发,1Cr12Mo电炉钢的调制处理.热处理,2006,21(02):47-50
    78雷经义,王瑞清.35CrNi3MoAQ钢中的条带组织.兵器材料科学与工程,1988,(10)
    79李宗霞,邹仲元,谢世旭,等.粉末锻造钢12Cr2Ni4A和18Cr2Ni4WA的组织与性能.航空材料学报,1996,16(1):32-37
    80王民方.锻件带状组织的分析与热处理.锻压机械,2002,(1):39-40
    81 M.J.Starink, R.C.Thomson. The Effect of High Temperature Exposure on Dendritic Segregation in a Conventionally Cast Ni Based Superalloy. J. Mater. Sci.,2001,36:5603-5608
    82 J.W.Yeh, C.H.Tsau. A Study of the Microstructure and Properties of an A390.0 Aluminum Alloy Produced by the Layer Deposition Process. Mater. Sci. Eng.,1993,A165:157-165
    83 X.Huang, M.C.Chaturvedl, N.L.Richards. Effect of Homogenization Heat Treatment on the Microstructure and Heat-Affected Zone Microfissuring in Welded Cast Alloy 718. Metall. Mater. Trans. A,1996,27A:785-790
    84 G.W.Han, Y.Y.Zhang. Segregation of Niobium and Aluminum in GH783 Alloy Ingots. Mater. Sci. Eng. A,2005,412(1-2):198-203
    85 N.P.Anyalebechi. Investigation of the Effects of As-cast Microstructure and Temperature on the Response of Aluminum Alloy 3004 Ingots to Homogenization. JOM,2004,56(1):34
    86 D.H.Herring. Understanding Aluminum Heat Treatment. Ind. Heat.,2005,72(2):12-14
    87 K.N.Braszczynska. The Microstructure of a Mg-10wt.%Al Alloy. Z Metallkd.,2002,93(8): 845-850
    88 W.Hermann, J.Lacaze, D.Cquab. Effect of Different Heat Treatments on Microstructure and Segregation of a Nickel Based Alloy. Adv. Eng. Master.,2003,24(1-2):32-37
    89 M.Tash, F.H.Sumuel, F.Mucciardi, etc. Effect of Metallurgical Parameters on the Hardness and Microstructural Characterization of As-cast and Heat-Treated 356 and 319 Aluminum Alloys. Mater. Sci. Eng. A,2007,443(1-2):185-201
    90彭建,张丁非,杨椿楣,等.ZK60镁合金铸锭均匀化处理工艺研究.材料工程,2004,(8):32-35
    91左玲立,李红宇,宋西平,等.FGH95合金铸锭均匀化处理工艺研究.热加工工艺,2006,35(16): 36-38
    92贺永东,张新明,游江海.7A55合金均匀化处理.中国有色金属学报,2006,16(4):639-644
    93李伟,梁学峰,谢永军,等.均匀化和均匀化后处理对GH742合金相γ′的影响.材料工程,2005, (12):33-36
    94孙东立,姜石峰,高兴锡.均匀化处理对3004铝合金显微组织的影响.中国有色金属学报,1999, 9(3):556-561
    95杜金辉,曲敬龙,邓群,等GH720Li合金的铸态组织和均匀化工艺.钢铁研究学报,2005,17(3): 60-64
    96黄继武,尹志民,李杰,等.均匀化处理对7055合金硬度和电导率的影响.稀有金属,2004,28(1): 175-178
    97黄光胜,汪凌云,黄光杰,等.均匀化退火对AZ31B镁合金组织与性能的影响.重庆大学学报(自然科学版),2004,27(11):18-21
    98赵炳堃,赵光普,吕桂芝.高温均匀化热处理对难变形GH141合金锭热塑性的影响.钢铁研究学报,1989,1(1):1-6
    99И.И.诺维柯夫.金属热处理理论.王子祐.北京:机械工业出版社,1987:23-25
    100陈崇刚,黎国磊.我国2 1/4Cr-1Mo-1/4V抗氢钢的开发.石油化工设备技术,2002,23(5):38-48
    101肖福仁,胡怡,张乐欣,等.3Cr-1Mo-1/4钢的组织与性能.钢铁,2001,36(10):47-50
    102 H.Kwon, S.S.Baek, H.S.Yu. The Use of Electrochemical Property Correlations to Monitor the Degradation of Cr Mo V Turbine Casting Steel. Pressure vessels and piping,2002:57-65
    103 J.H.Bulloch. The Small Punch Toughness Test: Some Detailed Fractographic Information. Pressure vessels and piping,1995:177-194
    104仇恩沧.国产3Cr-1Mo-1/4V钢加氢反应器的开发.石油化工设备技术,2000,21(4):36-44
    105方鸿生,王家军,杨志刚,等.贝氏体相变.北京:科学出版社,1999:1-58
    106俞德刚,王世道.贝氏体相变理论.上海:上海交通大学出版社,1998:1-45
    107方鸿生,刘东雨,徐平光,等.贝氏体钢的强韧化途径.机械工程材料,2001,25(6):1-5
    108徐祖耀,刘世楷.贝氏体相变与贝氏体.北京;科学出版社,1991:78-96
    109康沫狂,杨品思,管敦惠.钢中贝氏体.上海:上海技术出版社,1990:114-196
    110徐平光,方鸿生,白秉哲,等.仿晶界型铁素体/粒状贝氏体复相组织的韧性.金属学报,2002, 39(3):255-260
    111 P.L.Mangonon. Effect of Alloying Elements on the Microstructure and Properties of a Hot-rolled Low Carbon Low Alloy Bainitic Steel. Metall. Trans.,1976,9A:1389-1393
    112徐达鸣,傅恒志,郭景杰,等.一种合金枝晶凝固微观溶质再分布统一模型.哈尔滨工业大学学报,2003,35(10):1156-1161
    113 T.W.Clyne, W.Kurz. Solute Redistribution during Solidification with Rapid Solid State Diffusion. Metall Trans A,1981,12A:965-971
    114 I.Ohnaka. Mathematical Analysis of Solute Redistribution during Solidification. Trans ISIJ, 1986,26:1045-1051
    115 L.Nastac, D.M.Stefanescu. An Analytical Model for Solute Redistribution during Solidification of Planar, Columnar, or Exquiaxed Morphology. Metall Trans A,1993,24A: 2107-2118
    116 S.Kobayashi. Solute Redistribution during Solidification with Diffusion in Solid Phase: A Theoretical Analysis. J. Crystal Growth,1988,28:728-735
    117 M.Hone, S.V.Subramanian, G.R.Purdy. Estimating Terminal Phase Equilibria in Ternary Systems. Can. Met. Quart,1969,8(3):251-256
    118 H.Fredriksson, L.Hellner. The Influence of Carbon on the Segregation of Chromium in Steel. Scand. J. Metall.,1974,3:61-68
    119 H.Jacobi, K.Wünnenberg. Solidification Structure and Micro-segregation of Unidirectionally Solidified Steels. Steel Research,1999,70(8+9):362-367
    120 D.Senk, B.Engl, O.Siemon, etc. Investigation of Solidification and Microsegregation of Near-Net-Shape Cast Carbon Steel. Steel Research,1999,70(8+9):368-372
    121 J.Kunze, K.H.Spitzer, S.Oswald, etc. Segregation and Precipitation during Solidification of Titanium and Nitrogen Containing Iron Alloys. Z. Metallkd,1997,88:182-190
    122 R.Sellamuthu, A.F.Giamei. Measurement of Segregation and Distribution Coefficients in MAR-M200 and Hafnium-Modified MAR-M200 Superalloys. Metall. Trans. A,1986,17A: 419-428
    123 J.Komenda, G.Runnsj?. Quantification of Macrosegregation in continuously Cast Steel Structures. Steel Research, 1998,69(6):228-236
    124 R.N.Gruqel, A.Fedoseyey, S.Kim. Minimizing Segregation during the Controlled Directional Solidification of Dendritic Alloys. Metall. Mat. Trans. A,2002,33(12):3876-3881
    125 E.El-Kashif, K.Asakura, K.Shibata. Effects of Nitrogen in 9Cr-3W-3Co Ferritic Heat Resistant Steels Containing Boron. ISIJ Int.,2002,42(12):1468-1476
    126 O.Umezawa, K.Hirata, K.Nagai. Influence of Phosphorus Micro-segregation on Ferrite Structure. Mater. Trans.,2003,44(7):1266-1270
    127 M.Ganesan, D.Dye, P.D.Lee. A Statistically Significant Analysis Technique of Microsegregation in Multicomponent Alloys. JOM,2004,56(11):74
    128李庆春,陈玉勇.混合稀土和镧对Al-4.5%合金平板铸件凝固参数、二次枝晶间距及力学性能的影响.机械工程学报,1985,(4):1-9
    129余永宁.金属学原理.北京:冶金工业出版社,2000:209-214
    130 S.Morwec. Defects and Diffusion in Solids: An Introduction. Warszawa: PWN-Polish Scientific Publishers,1980:401-419
    131 E.A.Branders, G.B.Brook. Smithells Metals Reference Book. 7th Edition. Oxford: Butter worth- Heinemann,1992:13.5-13.83
    132Я.С.乌曼斯基,Ю.А.斯卡科夫.金属物理.冯端,王业宁.北京:冶金工业出版社,1985:108
    133汪复兴.金属物理.北京:机械工业出版社,1981:160
    134包永千.金属学基础.北京:冶金工业出版社,1986:202
    135章守华.合金钢.北京:冶金工业出版社,1981:1-8
    136李志超.先共析铁素体对粒状贝氏体性能的影响.热加工工艺,1991,(2):3-6
    137刘东雨,徐鸿,方鸿生,等.我国低碳贝氏体钢的发展.热处理,2005,20(2):12-15
    138刘鑫刚,聂绍珉.锻前高温扩散对低合金钢力学性能影响的试验研究.塑性工程学报,2007,14(2):64-68
    139方鸿生,徐光平,白秉哲,等.一种新的复相组织——仿晶界型铁素体/粒状贝氏体.金属热处理,2000,26(11):1-5
    140孙树棠.晶体X射线衍射学基础.北京:冶金工业出版社,1990:131-147
    141陈祥,李言祥.等温淬火工艺对高硅铸钢残余奥氏体量的影响.铸造,2006,55(3):284-287
    142吴化,闫肃,曹正.残余奥氏体对20Mn2SiVB钢疲劳裂纹扩展的影响.热加工工艺,2006,35(4)20-22
    143高玉芳.M-A组织对拉伸和冲击性能的影响.理化检验-物理分册,2000,36(10):442-444
    144张明星,康沫狂.粒状贝氏体和粒状组织强韧化机制的研究.钢铁,1993,28(9):51-55
    145上海市机械制造工艺研究所.金相分析技术.上海:上海科学技术文献出版社,1987:158-183
    146 M.Ahmed, I.Salam, F.H.Hashmi, ect.Influence of Banded Structure on the Mechanical Properties of a High-Strength Maraging Steel. J. Mater. Eng. Perf.,1997,6(2):165-171
    147 P.E.J.Rivera-Diaz-Del-Castillo, J.Sietsma, S.Van Der Zwaaq. A Model for Ferrite/Pearilite Band Formation and Prevention in Steels. Metall. Mat. Trans. A,2004,35A(2):425-433
    148 N.Narasaiah, K.K.Ray. Small Crack Formation in a Low Carbon Steel with Banded Ferrite-Pearlite Structure. Mater. Sci. Eng. A,2005,392(1-2):269-277
    149 I.A.Vakulenko, V.G.Razdobreev, O.N.Perkov. Effect of the Structural Parameters of a Carbon Steel on the Formation of Luders Bands. Metally,2004,(4):108-112
    150 P.Cizek, F.Bai, W.M.Rainforth, etc. Fine Structure of Shear Bands Formed during Hot Deformation of Two Austenitic Steels. Mater. Trans.,2004,45(7):2157-2164
    151 I.A.Vakulenko, V.G.Razdobreev. Structural Features Hindering Deformation-Band Formation in Thermally Hardened Carbon Steels. Russ. Metall.,2007,(1):33-35
    152李炯辉主编.金属材料金相图谱.北京:机械工业出版社,2006:293-596
    153俞德刚,谈育煦.钢的组织强度学.上海:上海科学技术文献出版社,1983:338-356
    154束德林主编.金属力学性能.北京:机械工业出版社,1987:18-23
    155尚成嘉,杨善武,王学敏,等.低碳贝氏体钢的组织类型及其对性能的影响.钢铁,2005,40(4): 57-61
    156蒲玉梅,李忠义.优化工艺改善H型钢的横向冲击韧性的研究.钢铁,2002,37(3):52-54
    157姚连登.微合金化与控制轧制的进展.宽厚板,1999,5(1):1-4
    158李松瑞,周善初.金属热处理.2nd Edition.长沙:中南大学出版社,2003:9-29
    159王民方.锻钢件带状组织的分析与热处理.新技术新工艺,2003,(8):32-33
    160 A.Kohn, J.Doumerc. Homogenization Treatment of Deformed Alloy. Mem. Sci. Rev. Metall., 1955,53:249
    161 F.Weinberg, R.K.Buhr. Homogenization of A Low-alloy Steel. Iron & Steel Inst-J,1969,207 (8):1114-1121
    162 R.W.Heckel, M.Balasubramaniam. The Effect of Heat Treatment and Deformation on the Homogenization of Compacts of Blended Powders. Met. Trans.,1971,2:379-391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700