一种无铼镍基单晶合金的蠕变行为及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过热力学及TEM方法测算了Ni基合金的层错能,并对[001]取向的镍基单晶合金、P-型结构单晶合金进行蠕变性能测试和SEM、TEM形貌观察,研究了合金元素、层错能对镍基单晶合金稳态蠕变期间位错运动内摩擦应力及蠕变特征的影响,考察了组织结构对单晶合金蠕变期间组织演化规律及蠕变寿命的影响,并对合金的变形机制进行了深入讨论。得出如下结论:
     单晶合金在凝固期间形成的共晶组织由条状粗大和细网状γ/γ'两相构成,其中粗大的γ/γ'相由包晶反应生成,细网状γ/γ'共晶组织形成于共晶反应。铸态单晶合金在枝晶臂/间存在明显的成分偏析和γ/γ'两相的尺寸差别,致使铸态合金有较大的晶格错配度。通过差热曲线分析及尝试法,制定出合金的热处理工艺。经完全热处理后,元素的偏析程度明显减少,且立方γ'相以共格方式嵌镶在γ基体相中,且均匀分布,可使合金的晶格错配度减小。
     元素Al可明显降低Ni-Al-M合金的层错能,随着Al含量的增加,合金层错能降低的幅度增加,随温度提高,合金的层错能增加;其中元素Al降低合金中原子的偏聚自由能,促进γ'有序相的形成是降低Ni-Al-M合金层错能的主要原因。高层错能合金有较低的内摩擦应力和蠕变抗力,随层错能降低,单晶合金的内摩擦应力和蠕变抗力提高,并延长蠕变寿命;与其它合金比较,设计及制备的低层错能无Re镍基单晶合金具有较高的蠕变抗力,在1040℃、137MPa条件下的持久寿命达到1280h。
     在中温高应力蠕变期间,该合金的变形机制是位错在γ基体中运动和剪切γ'相,切入γ'相内的<11O>超位错即可在{111}八面体晶面滑移,也可在{100}立方体晶面滑移;当(1/2)[110]位错在γ'/γ两相界面切入γ'相发生分解,可形成(1/3)<112>超肖克莱不全位错加层错的位错组态。而在高温低应力的蠕变初期,合金的变形机制是(1/2)<110>位错在γ基体通道的八面体滑移系中以交滑移方式运动;γ'相形成筏状结构后,合金的变形机制是位错攀移越过筏状γ'相;而蠕变后期,合金的变形机制是<110>螺、刃型超位错剪切γ'相。
     在蠕变期间,P-型结构合金发生了复杂的组织演化,其P-型γ'相转变成具有较短尺寸的N-型筏状结构,使位错易于滑移越过γ'相,是使P-型结构合金具有较高应变速率和较短蠕变寿命的主要原因。在实验的温度和应力范围内,与P-型结构合金相比,完全热处理态合金具有较低的应变速率和较长的持久寿命;分别计算出热处理态合金和P-型结构合金在稳态蠕变期间的激活能分别为Q_a=462kJ/mol和Q_a=412.5 kJ/mol,表观应力指数分别为n_a=3.5和n_a=5.2。
     在拉伸蠕变期间,不同成分合金中γ'相具有不同的定向粗化速率,随合金中Ta+Mo含量及Ta/W比值的增加,溶质元素(Al、Ta)的扩散及γ'相的定向粗化速率降低。拉伸蠕变期间,类立方γ'相中与施加应力轴垂直的界面受水平切应力,使晶格收缩可排斥较大半径的Al、Ta原子;与应力轴平行的界面受拉伸张应力,使晶格扩张可诱捕较大半径的Al、Ta原子,由此引起的原子偏聚形成γ'相是自由能降低的过程;其中,较大半径的Al、Ta原子扩散迁移至{100}晶面,形成异类原子结合键及稳定的堆垛方式,是促使γ'相形成N-型筏状结构的主要原因;而γ'相不同界面的应变能密度变化是元素扩散及γ'相定向粗化的驱动力。
In this dissertation,the stacking fault energies of nickel-base superalloys are calculated by the thermodynamic and TEM methods,the influence of elements,stacking fault energy on the internal friction stress and creep features of single crystal nickel base superalloys during creep are investigated by means of the measurement of creep properties and SEM,TEM observation,to explore the microstructure evolution regularlity during tensile creep and the influence of the microstructure on the creep lifetimes of superalloys, and in the further,to discuss the creep mechanism of the designed alloy during creep.Some of the conclusions are given as following:
     The eutectic microstructure of the single crystal nickel-base superalloy formed during solidification consists of the thicker strip-likeγ/γ′phases and finer network-likeγ/γ′phases, thereinto,the thicker strip-likeγ/γ′phases result from the peritectic reaction,and the finer network-likeγ/γ′phases originate form the eutectic reaction.The obvious composition segregation and size difference ofγ′phase in as-cast single crystal nickel-base superalloy apprear in the dendrite and interdendrite regions,which results in a bigger lattice misfit betweenγandγ′phases in the alloy.The heat treatment regimes of the alloy are constituted by means of the DTA curve analysis and a trial and error method.After fully heat treatment,the composition segregation in the alloy was obviously improved,and the cubicalγ′phase was coherently embedded in theγmatrix phase,which decreases the lattice misfit betweenγandγ′phases in the alloy.
     The stacking fault energy(SFE) of Ni-Al-M alloys may be decreased by adding the element Al,the decreased extent of SFE increases with Al element,and the SFE of the Ni-base superalloys decreases with the elevated temperature.The element Al may decrease the accumulated Gibbs free energy of Ni-base alloy,and promotes the formation of theγ′-Ni_3Al ordered phase,this is a main reason of decreasing the SFE of the Ni-Al-M alloys. The alloys with higher stacking fault energy possess a lower internal fracture stress and creep resistance.The internal fracture stresses and creep resistance of the nickel-base single crystal supralloys are improved with the drop of stacking fault energy,this enhances the creep lifetimes of the superalloys.Compared with the other alloys,the designed Re-free nickel base single crystal superalloy possesses a better creep resistance,and the creep lifetimes of the alloy at 1040℃,137MPa conditions is enhanced to 1280 h.
     During intermediate temperature and high stress creep,the deformation mechanism of the alloy is theγ′phase sheared by the <110> super dislocations which may move both on {111} octahedral crystal planes and on {100} cubical crystal planes,the super-dislocations resulted from the reaction may be cross-slipped to {100} the cubical crystal planes from the {111} ones.If(1/2)<110> dislocation shears into theγ′phase from theγ′/γinterface to occur the reaction,this may promote the formation of(1/3)<112> super partial dislocation+stacking fault configuration.During the initial stage of high temperature and low stress creep,the deformation mechanism of the superalloy is the slipping of(1/2)<110> dislocations activated on the octahedral slipping planes of theγmatrix channel in the form of cross-slip.After theγ′phase transformed into the rafted structure,the deformation mechanism of the superalloy during creep is the dislocations over the raftedγ′phase by climbing.And in the later stage of creep,the deformation mechanism of the superalloy is the screw or edge <110> super-dislocations in character shearing into the raftedγ′phase.
     In the range of experimental temperatures and stresses,compared to the P-type structure alloy,the fully heat treated superalloy displays a lower strain rate and longer stress rupture lifetime,the creep activation energies and apparent stress exponents of the fully heat treated and P-type structure alloys are calculated to be Q_a =462 kJ/mol and Q_a=412.5 kJ/mol,respectively,and the apparent stress exponents being n_a=3.5 and n_a=5.2,respectively.During tensile creep,a complicated microstructure evolution occurs during creep of P-type structure alloy in which theγ′phase with the P-type structure is transformed into the N-type rafted structure with a shorter size,so that the moving dislocations are easily over the rafts by slipping.This is a main reason of P-type structure alloy possessing a higher strain rate and shorter creep lifetime.
     During tensile creep,the superalloys with different compositions display a different rate ofγ′phase directional coarsening.The diffusion rates of the solutes elements andγ′phase directional coarsening are reduced with the increase of the Ta+Mo content and Ta/W ratio in the superalloys.During tensile creep,a shearing stress is applied on the cubical-likeγ′phase interface vertical to the stress axis,which results in the lattice constriction of theγ′phase to repel out the Al,Ta atoms with bigger radius. At the same time,a tension stress is applied on theγ′phase interfaces along the direction parallel to the stress axis,which results in the lattice expansion ofγ′phase to trap the Al,Ta atoms with the bigger radius.This brings out the accumulation of the solute atoms(Al,Ta) to form the N-type rafted structure.Al,Ta atoms with bigger radius diffuse to the {100} plane to form the linked bond of the heterogeneous atoms and the stable stacking mode,this is a main reason of promoting the transformation ofγ′phase into the N-type rafted structure.And the change of the strain energy density in different interfaces of the cubical-likeγ′phase is thought to be the driving force of the elements diffusion and theγ′phase directional growth during creep.
引文
[1]陈金国.军用航空发动机的发展趋势.航空科学技术,1994,(5):9-13
    [2]F.R.Nabarro,H.L.De.Villiers.The Physics of Creep.London:Taylor and Francis Ltd.,1997.83-86
    [3]孔祥鑫.第四代战斗机及其动力装置.航空科学技术,1994,(5):21-27
    [4]吴仲棠,钟振纲,代修彦等.我国第一个单晶燃气涡轮叶片合金DD3的研究.航空制造工程,1996,(2):3-5
    [5]陈荣章.单晶高温合金发展现状.材料工程,1995,(8):3-12
    [6]J.R.Stephens,R.L.Dreshfield,M.V.Nathal et al.Refractory Alloying Elements in Superalloys.Metal Park:ASM,1984:39-44
    [7]黄乾尧.高温合金.北京:冶金工业出版社,2000.4-5
    [8]M.McLean.Directionally Solidified Materials for High Temperature Service,Warrendale:TMS,1983.9-14
    [9]G.H.Gessinger.Recent Development in Powder Metallurgy.Warrendale:Metal Park:ASM,1984.277-283
    [10]F.L.VerSnyder,M.E.Shank.The development of columnar grain and single crystal high temperature materials through directional solidification.Mater.Sci.Eng.,A,1970,6:213-247
    [11]P.J.Henderson,M.McLean.Creep transient in the deformation of anisotropic nickel-base alloys.Acta Metall.,1982,30:1121-1128
    [12]R.F.Decker.Symposium on steel-strengthening mechanisms.Zurich:CLIMAX,Molyb-denum Company,1969:147-153
    [13]F.L.VerSnyder,R.W.Guard.Directional grain structures for high temperature strength.Trans.ASM.,1960,52:485-496
    [14]M.Gell,D.N.Dupta,K.D.Sheffier.High temperature super conductors with Tc over 30 K.Journal of Metals,1987,7:11-12
    [15]J.J.Jackson,M.J.Donachie,R.J Henricks et al.The effect of volume percent of fine γ' on creep in DS Mar-M200+Hf.Metall.Trans.A,1977,8(10):1615-1622
    [16]M.Gell,G.R.Leverant.The fatigue of the Nickel-base superalloy Mar-M200 in single crystal and columnar-grained forms.Trans.AIME.,1968,242:1869-1874
    [17]K.Harris,G.L.Erickson,R.E.Schwer.High Temperature Alloys for Gas Turbines and Other Applications 1986.Dordrecht:Reidel D Publishing Company,1986.709-718
    [18]M.V.Nathal,L.J.Ebert.Elevated temperature creep-rupture behavior of the single cystal nickel-base superalloy NASAIR100.Metall.Trans.A,1985,16:427-432
    [19]T.P.Gabb,R.V.Miner,J.Gayda et al.The tensile and fatigue deformation structures in a single crystal Ni-base superalloy.Scripta Metall.,1986,20:513-524
    [20]M.Gell,D.N.Duhl,A.F.Giamei.The development of single crystal superalloy turbine blades.Superalloy 1980,Metals Parks:AMS,1980:205-211
    [21]T.Khan,P.Carron,C.Duret.The development and characterization of a high performance experimental single crystal superalloy.Superalloys 1984,New York:AIME,1984:145-152
    [22]M.J.Goulette,P.D.Spilling,R.P.Arthey.Cost effective single crystals.Superalloys 1984,New York:AIME,1984:167-172
    [23]P.E.McHugh,R.Mohrmann.Modelling of creep in a Ni base superalloy using a single crystal plasticity model.Comp.Mater.Tech.,1997,9:134-140
    [24]K.O.Yutaka,K.O.Toshiharu,Y.O.Tadaharu et al.Development of next-generation Ni-base single crystal superalloys.Superalloys 2004,Metal Park:TMS,2004:35-43
    [25]师昌绪,陆达,荣科.中国高温合金40年.北京:中国科技出版社,1996,33(1):1-8.
    [26]T.Hino,T.Kobayashi,Y.Koizumi et al.Development of a new single crystal superalloy for industry gas turbines.Superalloys 2000,Metal Park:TMS,2000:729-736
    [27]M.McLean.Directionally Solidified Materials for High Temperature Service,London Warrendale:TMS,1983.9-14.
    [28]A.D.Cetel,D.N.Duhl.Second-generation ni-base single crystal superalloy,Proc.6th Int.Symp on Superalloys.Metal Park:ASM,1988:235-244
    [29]D.Blavette,P.Caron,T.Khan.An atom-probe study of some fine-scale microstructural features in Ni-based single crystal superalloys.Superalloys 1988,Metal Park:TMS,1988:305-314
    [30]S.M.Foster,T.A.Nielson,P.Nagy.Enhanced rupture properties in advanced single crystal alloys.Superalloys 1988,Metal Park:TMS,1988:245-253
    [31]G.L.Erickson.The development and application of CMSX-10.Superalloys 1996,Metal Park:TMS.1996:35-44
    [32]G.L.Erickson.The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application.Superalloys 1996,Metal Park:TMS.1996:45-52
    [33]W.S Walston,K S O'Hara,E.W Rose et al.Rene'N6:Third generation single crystal superalloy.Superalloys 1996,Metal Park:TMS,1996:27-33
    [34]陈荣章,王罗宝,李建华.铸造高温合金发展的回顾与展望.航空材料学报,2000,20(1):55-62
    [35]杜炜.高梯度定向凝固单晶高温合金组织和性能:博士学位论文.西安:西北工业大学,1998
    [36]郭建亭.一种性能优异的低成本定向凝固镍基高温合金DZ417G.金属学报,2002,38:1163-1174
    [37]R.R.Bowman,R.D.Noebe.Development of NiAl and NiAl-based composites for structural applications:A status report.Superalloys 1992,Metal Park:TMS,1992:341-355
    [38]R.Darolia,W.S.Walston,M.V Nathal.NiAI alloys for turbine airfoils.Superalloy 1996,Metal Park:TMS,1996:561-570
    [39]胡壮麒,刘丽荣,金涛等.单晶镍基高温合金的发展.航空发动机,2005,31(3):1-7.
    [40]李嘉荣,唐定中.铼在单晶高温合金中作用.材料工程,1997,(8):12-17
    [41]A.T.Dinsdale.SGTE data for pure elements.CALPHAD,1991,15:317-321
    [42]C.S.Wukusdick.,Nickel-base superalloy.England,GBP2235679A,1991,3
    [43]G.L.Erickson,Single crystal nickel-based superalloy.USA,5366695,1994,11
    [44]K Hsttid.Single crystal(single grain) alloy.USA,4582548,1986,4
    [45]A.F.Giamei.D.L.Anton.Rhenium additions to a ni-base superalloy:effects on microstructure.Metall.Trans.A,1985,16:1997-2005
    [46]W.R.Walston.Nickel-base superalloy and article with high temperature strength and improved stability.USA,5270123,1993,12
    [47]S.D.Naik,U K Nangia.Phase stable single crystal materials.USA,4935072,1990,6
    [48]C.M.Auslin.Nickel-based single crystal superalloy and method of making.USA,5151249,1992,9
    [49]M.V.Acharya,G.E.Fuchs.The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys.Mater.Sci.Eng.A,2004,381:143-153
    [50]A.Didier,V.Cyril,D.Yves et al.MC-NG:A 4~(th) generation single-crystal superalloy of future aero- nautical turbine blades and vanes,Superalloys 2000,Metal Park:TMS,2000:829-837.
    [51]M.Marchionni,D.Goldschmidt,M.Maldni.High temperature mechanical properties of CMSX4+yttrium single-crystal nickel-base superalloy.Superalloys 1992,Metal Park:TMS,1992:775-778
    [52]M.C.Thomas.Allison Manufacturing,Property and turbine engineering performance of CMSX-4airfoils,Proc.Int.Conf.on Materials for Advanced Power Engineerings,Part Ⅱ,Metal Park:1994:1075-1082
    [53]冶军.美国镍基高温合金.北京:科学出版社,1978:208-314.
    [54]C.Lall,S.Chin,D.Pope.The orientation and temperature dependence of the yield stress of Ni_3(Al,Nb) single crystals.Metall.Trans A.1979.10:1323-1331.
    [55]马书伟,李嘉荣,候淑娥等.铼对γ′相粗化行为的影响.航空材料学报,2000,20(3):11-15.
    [56]G.I.Morozova.Balanced alloying of nickel superalloys.Metal.,1993,1:38-41.
    [57]Z.P.Luo,Z.T.Wu,D.J.Miller et al.The dislocation microstructure of a nickel-base single-crystal superalloy after tensile fracture.Mater.Sci.Eng,A.2003,354:358-368
    [58]S.Ueta,A.Miyahara,M.Kato et al.Rapid work hardening caused by cube cross slip in Ni_3Al single crystals.Phil.Mag.,1996,73(2):345-354
    [59]张静华,张志亚,胡壮麒等.一种镍基单晶高温合金热处理制度的研究.材料开发与应用,1997,12:27-31
    [60]J.Komenda,P.J.Henderson.Growth of pores during the creep of a single crystal Ni-base superalloy.Scripta Mater.,1997,37(11):1821-1826.
    [61]Kelly A,Fine M E,The strength of an alloy containing zones.Acta Metall.,1957,5:365-367.
    [62]A.J.Foreman,M.J.Makin.Dislocation movement through random arrays of obstacle,Metall.Trans.,1972,3:911-924
    [63]P.Caron,Y.Ohta,Y.G.Nakagawa et al.Creep deformation anisotropy in single crystal superalloys.Superalloys 1988,Metal Park:TMS-AIME,1988:215-224
    [64]L.Muller,U.Glatzel,M.Felle-Kniepmeier et al.Modelling thermal misfit stresses in nickel-base superalloy containing high volume fraction of γ' phase.Acta Metall Mater.,1992,40:1321-1327
    [65]M.H.Lewis,D.M.R.Taplin,The Solid Mechanics Division,Dublin Ireland:University of Waterloo and Parsons Press Trinity College:1983.77-89.
    [66]A.K.Mukherjee,J.E.Bird,J.E.Dorn et al.The stress/creep rate behaviour of precipitation-hardened alloys.Trans.ASM.,1969,62:155-163
    [67]廖化清,唐亚俊,张静华等.燃气轮机抗热腐蚀DD8单晶叶片材料及其应用研究.材料工程,1992,(1):17-19.
    [68]崔传勇,郭建亭,齐义辉等.定向凝固NiAl-28Cr-5.8Mo-0.2Hf合金的高温拉伸蠕变行为.金属学报,2002,38:342-346
    [69]D.D.Pearson,B.H.Kear,F.D.Lemkey et al.Factors controlling the creep behaviour of a nickel-base superalloy.Swansea,1981:213-233
    [70]T.M.Pollock,A.S.Argon.Creep resistance of CMSX-3 nickel-base superalloy single crystals.Acta Metall.Mater.,1991,40:1-30
    [71]R.L.Yhreadgill,B.Wilshire.Creep strength in steels and high temperature alloys.London:The Iron and Steel Institute,1973:14-22
    [72]H.Gabrisch,D.Mukherji,R.P.Wahl et al.Deformation induced dislocation networks at the γ/γ'interfaces in the single crystal superalloy.Phil.Mag.A,1996,74(1):229-233
    [73]C.N.Ahlquist,W.D.Nix.The measurement of internal stresses during creep of Al-Mg alloys.Acta Metall.,1971,19:373-377
    [74]A.R.Miedema,P.F.Chatel.Cohesion in alloy-fundamentals of a semi-empirical model.Physica,1980,100-B:1-7
    [75]R.Burgel,J.Grossmann,O.L(u|¨)sebrink et al.Development of a new alloy for directional solidification of large industrial gas turbine blades.Superalloys 2004,Metal Park:TMS,2004:25-36
    [76]T.M.Pollock,A.S.Argon.Directional coarsening in Nickel-base single crystals with high volome fractions of coherent precipitates.Acta Metall.Mater.,1994,42:1859-1872
    [77]Y.N.Petrov,I.A.Yakubtsov.Thermodynamic calculation of stacking fault energy for multicomponent alloys with FCC lattice based on iron.Phys.Met.Metall.,1986,62:34-38
    [78]I.A.Yakubtsov,A.Ariapour,D.D.Perovic et al.Effect of nitrogen stacking fault energy of FCC iron2based alloys.Acta Mater.,1999,47:1271-1279
    [79]W.S.Yang,C.W.Wan.The influence of aluminium content to the stacking fault energy in Fe2Mn2Al2C alloy system.J Mater Sci,1990,25:1821-1823
    [80]J.C.Li,W.Zheng,Q.Jiang et al.Stacking fault energy of iron-based shape memory alloys.Mater.Lett.,1999,275(38):277-279
    [81]M.Yamaguchi,V.Vitek,D.P.Pope et al.Planar faults in the L I lattice stability and structure.Phil.Mag.A,1981,43:1027-1038
    [82]M.Yamaguchi,V.Paidar,D.P.Pope et al.Dissociation and core of <110> screw dislocation in L_(12) ordering alloys,Ⅰ-core structure in an unstressed crystal.Ⅱ—Effects of an applied shear stress.Phil.Mag.A,1982,45:867-879
    [83]刘向军,林信远,陈士仁等.两种不锈铁基形状记忆合金层错能的计算.金属学报,1998,34(9):903-907
    [84]冯端,王业宁.金属物理,北京:科学出版社,1964,132-135
    [85]何刚,赵恒北,戎咏华等.层错几率峰位移测定法及在Fe-Mn-Si合金中的应用.上海交通大学学报,1999,33(7):765-768
    [86]J.F.Wan,S.P.Chen,Z.Y.Xu et al.Electronic structure of FCC phase in Fe-Mn-Si base shape memory alloys and its stabiltiy,Sci.Chin.E,2001,44(5):486-492
    [87]M.V.Nathal,L.J.Ebert.Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100.Metall.Trans.,1985,12(3):427-437.
    [88]Z.F.Yue,Z.Z.Lu,C.Q.Zheng et al.Life study of nickel base single crystal turbine blades:viscoplastic crystallographic constitutive behavior.Theoretical and Applied Fracture Mechanics,1996,24:139-145.
    [89]J.Svobodat,P.Lukas Modelling of recovery controlled creep in Ni-base superalloy singly crystals.Acta Mater,1997,45(1):125-135.
    [90]彭志方.一种镍基单晶高温合金中γ′沉淀的定向粗化.金属学报,1995,31(12):531-538
    [91]P.J.Henderson,J.Lindblom.High temperature creep in a <001> single crystal Ni-base superalloy.Scripta Mater.,1997,37(4):491-496.
    [92]彭志方,任遥遥.镍基单晶高温合金γ′的定向粗化机理.金属学报,1999,35(1):9-14.
    [93]T.Kuttner,M.Feller-Kniepmeier.Microstructure of a nickel-base superalloy after creep in[011]orientation at 1173K.Mater.Sci.Eng.A,1994,A188:147-152
    [94]J.Svoboda,P.Luk(?).Model of creep in <001> oriented superalloy single crystals.Acta Mater.,1998,46:3421-3431
    [95]R.L.Fleischer.Substitutional solution hardening.Acta Metall.,1963,11:203-208
    [96]D.D.Pearson,F.D.Lemkey,B.H.Kear et al.Proc.Fourth Inst.Symp.,Stress coarsening of γ'phase and its influence on creep properties of a single crystal superalloy.Superalloys 1980,Metals Park:ASM,1980:513-519
    [97]Yoshihiro Kondo,Naoya Kitazaki.Effect of morphology of γ' phase on creep resistance of a single crystal nickel based superalloy,CMSX-4.Superalloys 1996,Metal Park:TMS,1996:297-303
    [98]Nobuhiro Miura,Yoshihiro Kondo.Influence of dislocation substructure on creep rate during accelerating creep stage of single crystal nickel-based superalloy CMSX-4.Superalloys 2000,Metal Park:TMS,2000:377-385
    [99]R.A.MacKay,L.J.Ebert.The development of γ-γ' lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing.Metall.Trans.A,1985,16:1969-1982
    [100]G.J.S.Higginbotham,From research to cost-effective directional solidification and single-crystal production-an integrated approach.Mater.Sci.Tech.,1986,2:442-456
    [101]A.Wagner,B.A.Shollock,M.McLean et al.Grain structure development in directional solidification of nickel-base superalloys,Mater.Sci.Eng.,A,2004,374:270-279
    [102]T.L.Lin,Mao Wen.The deformation mechanism of a γ' precipitation-hardened nickel-base superalloy.Mater.Sci.Eng.A,1990,A128:23-31
    [103]B.Reppich.Microstructural modelling of the creep behaviour of particle strengthened superalloys.Steel Research.,1990,61:251-257
    [104]R.A.Ricks,A.J.Porter,R.C.Ecob et al.The growth of γ' precipitates in nickel-base superalloys.Acta.Metall.,1983,31:43-53
    [105]F.S.Yin,X.F.Sun,C.Yuan et al.Effect of heat treatment on microstructure and high temperature tensile properties of cast nickel-base superalloy with high W,Mo and Nb contents.Trans.Non Met.Soc.China,2002,12:83-87
    [106]E.Balikci,A.Raman,R.A.Mirshams et al.Influence of various heat treatments on the microstructure of polycrystalline IN738LC.Metall.Mater.Trans.A,1997,28:1993-2003
    [107]Yuan Chao,Sun Xiao-feng,Yin Feng-shi et al.Characteristics of hight temperature rupture of a cast nickel base superalloy M963.J.Mater.Sci.Tech.,2001,17(3):1-4
    [108]顾林喻,刘忠元,史正兴等.高梯度快速定向凝固下DZ22高温合金的显微偏析.中国有色金属学报,1996,(6):110-113
    [109]R.Schmidt,M.Feller-Kniepmeier.Effect of heat treatments on phase chemistry of the nickel-base superalloy SRR99.Metall.Trans.A,1992,23:745-757
    [110]N.D.Souza,H.B.Dong.Solidification path in third-generation ni-based superalloys with an emphasis on last stage solidification.Scripta Mater.,2007,56:41-44
    [111]P.Caron,P.J.Henderson,T.Khan et al.On the effects of heat treatment on the creep behaviour of a single crystal superalloy.Scripta Metall.,1986,20:875-880
    [112]N.Warnken,D.Ma,M.Mathes,I.Steinbach,Investigation of eutectic island formation in SX superalloys Mater.Sci.Eng.,A,2005,413-414:267-271
    [113]F.Pettinari,J.Douin,G.Saada et al.Stacking fault energy in short-range ordered y-phase of Ni-based superalloys.Mater.Sci.Eng.,A,2002,325:511-519
    [114]T.Khan,High temperature alloys for gas turbines and other applications,Part I,D.Reidel Publishing Company,Dordrecht,Holland,1986,21-50
    [115]P.Lukas,P.Preclik,J.Cadek et al.Notch effect on creep behaviour of CMSX-4 superalloy single crystals.Mater.Sci.Eng.,A,2001,298:84-89
    [116]Shogo,Morimoto,Akira Yoshinari.High speed single crystal casting technique,Superalloy 1988,NewYork,1988,325-334
    [117]P.S.Burkholder.Allison engine testing CMSX-4 single crystal blades and vanes.Proceedings of 3rd International Charles Parsons Turbine Conference,London,1995:22-28
    [118]K.P.L.Fullagar.Aero engine test experience with CMSX-4 alloy single crystal turbine blades.Transactions of the ASME,1996,118:380-388.
    [119]E.W.Ross,K.S.O'Hara.“Ren(?) N4:A first generation single crystal turbine airfoil alloy with improved oxidation resistance and low angle boundary strength,Superalloys 1996,Warrendale,1996,19-25.
    [120]M.Kamaraj,K.Serin,M.Kolbe et al.Influence of stress state on the kinetics of γ-channel widening during high temperature and low stress creep of the single crystal superalloy CMSX-4.Materials Science and Engineering A,2001,319:796-799
    [121]S.Wollmer,T.Mack,U.Glatzel et al.Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy.Materi.Sci.Eng.,A,2001,319:792-795
    [122]Q.Z.Chen,N.Jones,D.M.Knowles.The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperatures.Acta Mater.,2002,50:1095-1112
    [123]J.Don,S.Majumdar.Creep cavitation and grain boundary structure in type 304 stainless steel.Acta Metall.1986,34,961-967
    [124]F.Diologent,P.Caron.On the creep behavior at 1033K of new generation single-crystal superalloys.Mater.Sci.Eng.,A,2004,385:245-257
    [125]M.Maldini,V.Lupine.Modelling creep of single crystal CM186LC alloy under constant and variable loading.Materi.Sci.Eng.,A,2005,408:169-175
    [126]M.V.Nathal,J.O.Diaz,R.V.Miner et al.High temperature creep behavior of single crystal gamma prime and gamma alloys.MRS Symp.Proc,1989,133,269-274
    [127]S.S.K.Gunturi,D.W.MacLachlan,D.M.Knowles et al.Anisotropic creep in CMSX-4 in orientations distant from <001>,Mater.Sci.Eng.,A,2000,289:289-298
    [128]T.M.Pollock,A.S.Argon.Creep resistance of CMSX-3 nickel base superalloy single crystals Acta Metall.Mater.,1992,40:1-30
    [129]A.A.Hopgood,J.W.Martin.The creep behaviour of a nickel-based single crystal superalloy.Mater.Sci.Eng.,A,1986,82:27-33
    [130]J.Yu,J.O.Chung.Creep rupture by diffusive growth of randomly distributed cavities-I.Instantaneous cavity nucleation.Acta Metall.Mater.,1990,38:1423-1434
    [131]哈宽富.金属力学性质的微观理论.北京:科学出版社,1983:520-522[132]J.H.Zhang,Z.Q.Hu,Y.B.Xu et al.Dislocation structure in a single crystal nickel-base superalloy during low cycle fatigue.Metall.Trans.A,1992,23:1253-1258
    [133]B.H.Kear,H.G.F.Wilsdorf.Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys.Trans.Met.Soc.AIME.1962,224,382-386
    [134]F.Pyczak,B.Devrient.F.C.Neuner et al.The influence of different alloying elements on the development of the γ/γ′ microstructure of nickel-base superalloys during high-temperature annealing and deformation.Acta Mater.,2005,53:3879-3891
    [135]Z.Peng,U.Glatzel,M.Feller-Kniepmeier et al.Change of phase morpholigies during creep of CMSX-4 at 1253K.Scripta Mater.,1996,34:221-226
    [136]田素贵,周惠华,张静华等.单晶镍基合金高温蠕变期间的组织结构及演化,材料工程,1998,(3):3-6
    [137]水丽,金涛,田素贵等.预压缩形筏对镍基单晶高温合金拉伸蠕变性能的影响.金属学报,2007,43(1):47-52
    [138]田素贵,张静华,杨洪才等.一种单晶镍基合金蠕变期间γ′相的定向粗化机制.金属学报,1998,34(3):16-21
    [139]T.M.Pollock,A.S.Argon.An experimental study of the role of plasticity in the rafting kinetics of a single crystal Ni-base superalloy.Acta Metall.Mater.,1996,42:191-199
    [140]L.Muller,U.Glatzel,M.Feller-knipmeier et al.Phase composition and lattice in CMSX-11B partition coefficients in single crystal nickel base superalloys.Scripta Mater.,2001,44:731-738
    [141]侯增寿,卢光熙.金属学原理.上海:上海科技技术出版社,1995.88-90
    [142]S.G.Tian,H.H.Zhou,J.H.Zhang et al.Directional coarsening of the γ′ phase for a single crystal nickel base superalloy.Materials Science and Technology,2000,16:451-458
    [143]S.G.Tian,C.R.Chen,J.H.Zhang et al.Evolution and analysis of γ′ rafting during creep of single crystal nickel-base superalloy.Mater.Sci.Tech..,2001,17:736-744
    [144]田素贵,陈昌荣,杨洪才等.单晶Ni基合金高温蠕变期间γ′定向粗化驱动力的有限元分析.金属学报,2000,36(5):465-471
    [145]田素贵,张静华,徐永波等.单晶镍基合金拉伸蠕变期间γ′相定向粗化的特征及影响因素.航空材料学报,2000,20(2):1-7
    [146]于兴福,田素贵,王明罡等.Ni-Al-Re/Ru合金的层错能.材料研究学报,2008,22(5):515-520
    [147]于兴福,田素贵,卢旭冬等.单晶镍基合金蠕变期间元素的定向扩散及影响因素,投稿到稀有金属材料与工程。
    [148]T.Miyazaki,H.L.Mamura,T.Kozakai et al.The formation of γ' precipitate doublets in Ni-Al alloys and their energetic stability.Mater.Sci.Eng.A,1982,54:9-15
    [149]戎咏华,孟庆平,徐祖耀等.Fe-Mn合金层错能的嵌入原子法计算,上海交通大学学报,2003,37(2):171-174
    [150]D.M.Knowles,Q.Z.Chen,Superlattice stacking fault formation and twinning during creep in γ/γ' single crystal superalloy CMSX-4.Mater.Sci.Eng.,A,2003,340:88-102
    [151]M.Legros,N.Clement,P.Caron et al.In-situ observation of deformation micromechanisms in a rafted γ/γ' superalloy at 850℃,Mater.Sci.Eng.,A,2002,337:160-169
    [152]S.Gourdet,F.Montheillet.Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals,Acta Mater.,2002,50:2801-2812
    [153]H.P.Karnthaler,E.Muehlbacher,C.Rentenberger et al.The influence of the fault energies on the anomalous mechanical behaviour of Ni3Al alloys,Acta Mater.,1996,44:547-560
    [154]张建民,吴喜军,黄育红等.FCC金属层错能的EAM法计算.物理学报,2006,55(1):393-397
    [155]何刚,许二冬,戎咏华等.X射线衍射法测定Fe-Mn-Si形状记忆合金层错几率的研究.功能材料,1999,30(2):155-157
    [156]何刚,赵恒北,戎咏华等.层错几率峰位移测定法及在Fe-Mn-Si合金中的应用.上海交通大学学报,1999,33(7):765-768
    [157]万见峰,陈世朴,徐祖耀等.Fe-30Mn-6Si-xN形状记忆合金层错能的热力学计算.金属学报,2000,36:679-683
    [158]Wander Kan,U.Glatzel.Chemical composition measurements of nickel-base superalloy by atom probe field microscopy Mater.Sci.Eng.A,1995,203:69-74.
    [159]Kuo Chin Chou,Wen Chao Li,Fushen Li.Formalism of new ternary model expressed in terms of binary regular-solution type parameters.CALPHAD,1996,20(4):395-405
    [160]中国航空材料手册编辑委员会,中国航空材料手册,第二卷,北京:中国标准出版社出版,2002,792
    [161]Tian Sugui,Zhang Jinghua,Zhou Huihua et al.Aspects of primary creep of a single crystal nickel-base superalloy.Mater.Sci.Eng.,A,1999,262:271-278
    [162]G.L.Drew,R.C.Reed,K.Kakehi et al.Single crystal superalloys:The transition from primary to secondary creep.Superalloys 2004,Metal Park:TMS,2004:127-136
    [163]W.Schneider,J.Hammer,H.Mughrabi et al.Creep deformation and rupture behaviour of the monocrystalline superalloy CMSX-4 comparison with the alloy SRR99.Superalloys 1992,Metal Park:TMS,1992:589-596
    [164]U.Tetzlaff,H.Mughrabi.Enhancement of the high temperature tensile creep strength of monocrystalline nickel base superalloys by pre-rafting in compression.Superalloys 2000,Metal Park:TMS,2000:273-286
    [165]S.G.Tian,J.H.Zhang,Y.B.Xu et al.Stress-Induced prepitation of fine γ′-phase and thermo-dynamics analysis.J.Mater.Sci.Tech.,2001,17:257-259
    [166]郝士明.材料热力学.北京:化学工业出版社,2004:121-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700