微合金化及不同冷速作用下ZA48合金的微观组织、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌铝合金具有优良的减磨耐磨性能、机械性能和显著的经济性,可取代铜合金作耐磨材料,代替青铜作低、中速中温重载轴承。所以,尽管锌铝合金问世时间不长,其相关科研技术的发展非常迅猛,应用范围也越来越广泛。随着经济发展,大件和异型件的应用增多,对合金产品性能提出了更高的要求。世界发达国家目前已经开发了一系列的高铝锌基减磨材料,供不同工况下的轴瓦、轴套、滑块等选用。而国内由于长期受传统观念的影响,绝大多数冶金企业仍使用常规牌号的ZA27合金。大量研究表明,高铝含量的偏析锌合金比共晶或共析锌合金具有更加优良的性能。因此,本文以高铝锌合金为研究对象,在不改变现有生产工艺的前提下,通过添加微合金元素、改善浇注工艺,采用不同的凝固、修复等手段,提高合金的力学性能、高温承载能力以及改善产品成型中的铸造缺陷,对提高高铝锌合金的性能,扩大其应用范围具有重要的理论及应用价值。
     本文首先研究了高铝含量的锌合金组织及性能,结果表明:随着铝含量的增高合金的抗拉强度和耐磨性均增强。分析认为,锌铝合金的微观组织主要由初生α枝晶和(α+η)共析体组成。随着铝含量的增加,组织中的初生α枝晶增多,(α+η)共析体减少;树枝状的α-Al相是铝基固溶体,面心立方晶格,属于强化相,其强度和硬度都要高于η相。
     根据测试结果,选择性能较好的ZA48合金作为本课题的主要研究对象。首先采用电解加钛、Si对合金进行强化。通过研究电解加钛、Si对合金力学性能的影响,结果表明:电解加钛有效提高了合金的力学性能,当钛含量达到0.04%时,合金的力学性能达到最大值。其细化机理是Ti在锌铝合金中形成Al66Ti25Zn9颗粒,可作为合金的异质形核核心,从而有效细化α(Al)相,强化基体。合金的力学性能随硅含量的增加而减弱,特别是当合金中出现初生硅相时,力学性能明显下降。分析认为,合金中的共晶硅相和初生硅相的尖角或棱边处易产生应力集中,削弱硅相与基体的结合力,在外加应力的作用下易形成微裂纹,降低合金的力学性能。
     系统研究了常规铸造条件下冷却速度对ZA48合金组织的影响。确立了合金的二次枝晶臂间距λ与冷却速率T之间的关系λ=47(T)-0.325。研究发现,在较快的冷却速度下,合金中的α相内析出大量细小弥散的质点。这些析出物均匀弥散地分布在α相上,有利于合金强度的提高。同时能谱分析表明,冷却速度的提高,有效避免了比重偏析,各元素的偏析程度也随着冷却速度的提高而减小。分析认为,合金在凝固过程中的溶质再分配是产生偏析的根本原因,在非平衡凝固条件下,固液界面实际溶质分配系数k*随着凝固速率的增大更加趋近于1,固液界面固相成分更加趋近于液相成分C0,因而使枝晶偏析减小。
     采用单辊甩带法制备快速凝固ZA48合金条带,根据其传热特点,结合传导理论和凝固理论,应用数学解析法推导计算了单辊甩带法制备ZA48合金薄带的冷却速度。得到单辊甩带快速凝固制备50μm厚合金薄带的冷却速度约为105K/s。同时用与时间有关的非均质形核理论说明了ZA48合金快速凝固过程中的形核特点。随着冷却速度的提高,快速凝固ZA48合金的相选择顺序是:α-Al→η-Zn相,同时铝元素的含量对合金中α-Al相的形核孕育期有较大的影响。
     系统研究了冷却速度对电解加钛ZA48合金、含硅ZA48合金组织的影响。在常规铸造条件下,随着冷却速度的加快,电解加钛ZA48合金的晶粒得到细化,并且随着Ti含量的增加,合金晶粒尺寸减小;但当冷却速度达到一定值时,晶粒尺寸不再受Ti含量的影响,冷却速度成为晶粒细化的主要原因。合金中的共晶硅相随着冷却速度的加快也得到细化,但是初生硅相的形态改变不大。当冷却速度高达105K/s,即快速凝固后,合金中的共晶硅和初生硅完全固溶于α-Al固溶体中,大的过冷度抑制了硅相的形核与生长,使硅不能析出,大量的硅和其它合金元素固溶于基体中。
     模拟使用工况,系统分析了ZA48合金的耐磨性。根据磨损表面及磨损亚表面的形貌,分析了其磨损机理。结果表明,ZA48合金的高耐磨性是α相和η相共同作用的结果,η相首先被磨去并储存在对磨表面,起到自然润滑的作用,减轻试样和对磨轮之间的摩擦;同时摩擦副上的Fe从对磨轮转到试样表面,填充被抹去的部分及磨损表面,在磨损表面形成一层耐磨层,阻止磨损的进一步发生。研究了电解加钛对ZA48合金耐磨性的影响。无论是润滑条件还是无润滑条件下,电解加钛后合金的耐磨性均提高,原因在于晶粒尺寸的减小、晶界面积增加,使试样的剪切力随着晶粒尺寸的减小而增加;因而,细的晶粒尺寸使合金具有较高的耐磨性。
     系统研究了硅对ZA48合金耐磨性的影响。无论是润滑条件还是无润滑条件下,加硅合金的耐磨性均提高,且其提高的幅度远大于电解加钛后的合金。硅颗粒的硬度高达757HV,远高于ZA48合金基体的硬度,硅颗粒的加入在合金中起到硬质点的作用,有效地提高了合金的耐磨性。同时,合金的耐磨性受硅颗粒的大小、形态的影响。组织中粗大、不均匀硅粒子处易形成裂纹,使裂纹易于沿着脆性硅相扩展,对材料的耐磨性起负面影响。弥散分布的短棒状、或颗粒状共晶硅可以提高基体的硬度,增强合金抗犁沟磨损能力,同时也可以减小基体与初生硅相之间的硬度差,从而提高两相之间的协调性,增强合金的耐磨性。
Zinc-aluminum (ZA) alloy with excellent wear resistance, mechanical properties and a significant economy, could replace copper alloy for wear-resistant materials, and instead of bronze for low-, medium-speed medium temperature overloading bearings. Despite the advent of ZA alloy is not long, their relevant scientific research and technological development is very fast and it also has a very wide range of applications. Along with economic development, large and special-shaped pieces of products are more and more widespread; a higher demand has been set to the performance alloy products. The developed countries have developed a series of high aluminum zinc-based anti-friction materials for different conditions to select. However, the majority metallurgical enterprises in domestic are still using conventional brands of ZA27 alloy due to the long-standing traditional value. A large number of studies have shown that high aluminum zinc-based alloy has a more excellent performance than of eutectic or eutectoid ZA alloy. Therefore, the high aluminum zinc alloy was chosen in this paper and the alloying, metamorphic, improving casting technique, different solidification, repair, and means to improve the mechanical properties of the alloy. It would have important theoretical and application value for improving the performance of ZA Alloy. It also expands the scope of application of ZA alloy.
     The influence of different high aluminum content on the microstructure, tensile and wear properties of zinc-based alloy was studied firstly in this paper. The test results show that the tensile strength and abrasion resistance are increased with increasing aluminum content. Zn-Al alloys basically comprise a mixture of primary phase a and eutectoid (α+η).The increase of aluminum content in the alloys conducted the increase of quantity of primary phase a and the decrease of eutectoid (α+η).Theα-Al rich solid solution has a face-centred cubic structure and acts as a strengthening and toughening phase. Its strength and hardness were higher than of theηphase.
     According to test results, ZA48 alloy with a better performance was chosen as the main object of study. Si and Ti elements were used to strengthen. The effect of different Ti, Si contents on the mechanical properties of ZA48 alloy was studied and the following results were gotten. Titanium improved the mechanical properties effectively, and when the titanium content reaches 0.04%, the mechanical properties achieve maximum value. The refinement mechanism of Ti is the form of Al66Ti25Zn9 particles in ZA alloy and it can be used as heterogeneous nuclei. Then the primary phase a gets refined effectively and the matrix is strengthened. Mechanical properties of ZA48 alloy decreases with the increase of silicon content, especially as the primary silicon phase appears in alloy. The sharp points or cutting edge of eutectic Si and primary Si phase are prone to produce stress concentration and weaken the combination between silica and matrix. The micro-cracks are formed under the effect of applied stress, reducing the alloy mechanical properties.
     Effect of cooling rate on the microstructure of conventional casting ZA48 Alloy has been systematic studied. The relationship between the dendrite arm spacing and cooling rate was established. The study found that a large number of small particle dispersion precipitated from a phase at higher cooling rate. The precipitate uniform mass distribution in the a phase, then the strength is improved effectively. The spectrum analysis showed that the proportion of segregation was avoided effectively with the increase of the cooling rate. The microsegregation of various elements was also reduced as the cooling rate increased to a certain degree. It believes that the solute redistribution is the root to generate segregation during solidification. Under the non-equilibrium solidification conditions, the actual solute partition coefficient k* of the solid-liquid interface more tends to 1 with the increase of solidification rate. The solid-phase composition of the solid-liquid interface is more close to the liquid phase composition Co, and thus reduces the dendrite segregation.
     The rapid solidification ZA48 ribbon was prepared by single-roller spinning. According to the heat transfer characteristics, combined with conduction theory and solidification theory, the mathematical analysis method was applied to calculate the cooling rate of ZA48 ribbon. The cooling rate of a 50μm thick ZA alloy ribbon prepared by single-roller spinning is about 105K/s. The time-related non-homogeneous nucleation theory describes the nucleation characteristics of rapidly solidified ZA48 ribbon. With the increasing cooling rate, the phase selection sequence of rapidly solidified ZA48 ribbon isα-Al→η-Zn phase, aluminum element content also has great effect on the nucleation incubation period of the a-Al phase.
     Effect of cooling rate on the microstructure of ZA48-Ti alloy and ZA48-Si alloy has been systematic studied. Under the conventional casting conditions, the grains of ZA48-Ti alloy get refined with increasing cooling rate and Ti content. When the cooling rate increased to a certain value, Ti elements had no effect on the grain size and the cooling rate as the main reason for grain refinement. The eutectic silicon phase gets refined and the primary silicon phase morphology has no much changed with the increasing cooling rate. After rapid solidification, Ti and 5% Si completely dissolved intoα-Al solution. The large undercooling suppressed the nucleation and growth of silicon phase, the silicon phase does not precipitate and a large number of silicon and other alloy elements solid solution in the matrix.
     Simulated working conditions, the wear resistance of ZA48 alloy was analyzed systematically. According to the worn surface and wear sub-surface morphology, its wear mechanism was analyzed. The results show the improving wear resistance is the combined action of a andηphase. The softηphase prior to theαphase was removed and the hard a phases were protruded from matrix and acted as a loading phase. Extensive zinc transfer occurred and helped to act as a natural lubricant in sliding wear situations wherein the smearing behavior is facilitated and a lubricating film on mating surfaces is formed. Meanwhile, the iron transfer from the steel ring to block and forced to recess continuously during sliding wear, which forms a thin film at the contact surface between the composite and the counter face. It is equivalent to a number of reinforced particulates added to ZA48 alloy, and its load bearing capability would be improved. The influence of Ti elements on the wear resistance of ZA48 alloy was also studied. The results showed that whether the lubrication conditions or non-lubricated conditions, the adding Ti by electrolysis improved the wear resistance of ZA48 alloy. The reason can be attributed to the decrease of grain size and the increasing of grain boundary area, which induced the shearing force increased with the decrease of grain sizes.
     Whether lubrication or no lubrication conditions, Si can improve the wear resistance of ZA48 alloys significantly and the extent of the increase is far greater than that of Ti. The hardness of silicon particles of up to 757HV, far higher than that of ZA48 alloy, silicon particles are added to play a role of hard particles, then the wear resistance is improved effectively. The size and shape of silicon particle also have great effect on the wear resistance of alloy. Thick and uniform silica particles are prone to form cracks, and cracks easily along the brittle silicon phase expansion. It has a negative impact on the wear resistance of the material. Diffuse distribution of short rod-like or granular eutectic silicon can increase the hardness of the matrix and enhance furrow abrasion resistance. It also reduced the hardness difference between substrate and primary phase silicon. Thereby improving the coordination of the two phases, enhance the wear resistance of alloys.
引文
[1]贾利晓,兰晔峰,朱正锋.铸造有色合金的发展趋势[J].铸造设备研究,2004,(5):45-47.
    [2]刘永红,张忠明,刘宏昭等.锌铝合金的研究现状及应用概况[J].铸造技术,2001,(1):42-44
    [3]安继儒.中外常用金属材料手册[M].西安:西安交通大学出版社,1990
    [4]杨留栓,王洪敏,陈全得等.高铝锌合金[M].西安:西北工业大学出版社,1997
    [5]弓金霞,梅英,商全义.ZA27合金替代锡青铜制造纺锭锭底的研究[J].郑州纺织工学院学报,1998,(4):5-8
    [6]刘良凯.ZA系列合金在工程机械中的应用[J].工程机械,1994,(4):34-36
    [7]闫承俊,王吉岱.锌铝合金的研究现状及应用[J].中国铸造装备与技术,2005,(4):4-7
    [8]王国庆,刘宏昭,何长安.锌基阻尼合金在含间隙机构振动控制中的应用[J].中国机械工程,2005,16(11):993-996
    [9]刘秀忠,杜红燕,刘丽.新型模具ZA合金TIG焊缝显微组织及相结构分析[J].焊接学报,2002,23(2):59-63
    [10]李勇,吕壮志,兰广林.锌铝基轴承合金轴瓦的应用[J].水泥技术,2004,(1):41-43
    [11]魏云鹤,于萍,郭晓玉等.高速公路护栏热镀55Al-Zn的质量控制及耐蚀性能[J].材料保护,2004,37(1):53-56
    [12]主沉浮,魏云鹤,于萍等.高速公路护栏钢基表面热镀SSAI-Zn合金生产中的关键技术研究[J].中国表面工程,2003,(5):43-45
    [13]冯建情,曾建民,顾红等.高铝锌基合金(30%-50%Al)摩擦磨损性能研究[J].热加工工艺,2005,(4):15-17
    [14]冯建情,曾建民,邹勇志等.高铝锌基合金的力学性能与显微组织研究[J].机械工程材料,2004,28(11):41-43,48.
    [15]李逸泰,庞兴志,曾建民.高铝锌基合金的耐腐蚀性研究[J].特种铸造及有色合金,2006,26(7):403-406
    [16]冯建情,曾建明,邹勇志等.含Al量对锌基合金力学性能的影响[J].热加工工艺,2004,(5):8-9,58.
    [17]查燕青,傅明喜,黄兴民等.Zn-25%wtAl定向凝固截面变化区的组织演化分析[J].热加工工艺,2005,(5):8-11
    [18]邹勇志,曾建民,冯建情.高铝锌基合金组织与性能的研究[J].铸造技术,2004,25(3):203-205
    [19]水嘉鹏,陈秀梅Zn-Al共析合金的黏滞流变行为[J].物理学报,1997,46(9):1782-1787
    [20]罗兵辉,柏振海,谢佑卿.微量Sc和Zr对锌铝共析合金微观结构和阻尼性能的影响[J].中国有色金属学报,2002,12(4):725-728
    [21]Geng Haoran,Tian Xianfa, Cui Hongwei, Li Chengdong, Zhao Peng. Antifriction and wear behaviour of ZAS35 zinc alloy:influence of heat treatment and melting technique[J]. Mater. Sci. Eng. A,2001,316 (1-2):109-114.
    [22]Temel Savaskan, Yasin Alemdag. Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy:A comparative study with SAE 65 bronze[J]. Mater.Sci.Eng A,2008,496(1-2):517-523.
    [23]Temel Savaskan, Zeki Azakl(?). An investigation of lubricated friction and wear properties of Zn-40Al-2Cu-2Si alloy in comparison with SAE 65 bearing bronze[J]. Wear,2008,264 (11-12):920-928.
    [24]耿浩然,张硕,马家骥.锑对高铝锌基合金性能的影响[J].机械工程材料,1991,(3):10-13
    [25]于海朋,张富强,李荣德等.挤压铸造ZA27合金的锰、硅合金化[J].铸造,1997,(8):12-16
    [26]Qu D W, Yi Z L,Xiao Q Z et al. Effect of RE on Microstructure and Properties of ZA27 Magnesium Alloys[J]. Trans. Nonferrous Met, Soc, China,2000,10 (2): 236-239
    [27]李亚国,刘海林,朱奕庆等.含钇稀土的新型ZA-27锌合金[J].现代机 械,2000,(1):58-60
    [28]李亚国,刘海林,李平.含钇ZA-27系列合金相结构特征分析[J].贵州科学,1999,17(4):270-277
    [29]沈保罗,林吉曙,高升吉.两种锌铝合金在重载和润滑条件下摩擦磨损特性研究[J].铸造,1996,(7):1-4
    [30]张成华,孙少纯,严学花等.加入合金元素Si对ZA27合金耐磨性能的影响[J].中国铸造装备与技术,2001,(6):26-28
    [31]华文君,王执锐,张继荣.TiB2颗粒增强ZA-8锌合金的显微组织与疲劳裂纹扩展行为的关系[J].金属学报,1996,32(3):254-260
    [32]王香,李庆芬,马旭梁等TiCp/ZA-12复合材料磨损行为的研究.材料工程[J].2002,(9):10-13
    [33]陈美玲,葛继平,丁立英等.Ti对ZA合金铸态组织性能及时效特性的影响[J].铸造技术,1995,(3):39-44
    [34]王香,李庆芬,曾松岩TiCp/ZA-12复合材料凝固时TiCp的行为[J].宇航材料工艺,2002,(4):23-27
    [35]侯平均,倪锋,龙锐.高铝锌合金的钛和锆变质机理研究[J].铸造设备研究,2003,(1):12-15
    [36]王宁,高福宝,李世杰等.原位生成TiC颗粒对铁基合金组织及性能的影响[J].钢铁钒钛,2005,26(2):62-67
    [37]许广济,陆松,陈体军等.硼、钛对半固态ZA27组织演变的影响[J].甘肃工业大学学报,2000,(1):19-22
    [38]刘金生,自彦华,李晨曦.ZA合金挤压铸造凝固过程温度场、应力场数值模拟[J].沈阳工业大学学报,2004,26(5):506-509
    [39]弓金霞,商全义.ZA27合金冷挤压成型[J].热加工工艺,1999,(4):22-24
    [40]李立新,李文革.半固态锌基复合材料摩擦特性研究[J].河北冶金,2005,(2):28,33-34
    [41]高明,何冠虎,杨菲等.强脉冲电流对铸造ZA27合金性能的影响[J].材料研究学报,2002,16(1):74-76
    [42]Yamashita J, Kunii M, Ohashi T. Development of a High Strength Zinc Strength Zinc Alloy for Molding Tools Fabriated by a Sand Mold Casting Technique[J]. Meter. Trans. JIM,1997,38(5):457-463
    [43]李子全,吴炳尧,沈光俊.不同冷却条件SiCp/ZA-27复合材料界面的TEM观察.南京大学学报(自然科学)[J].2001,37(1):84-90
    [44]李荣德,孙玉霞,白彦华等.冷却速度和合金成分对ZA合金结晶潜热的影响[J].特种铸造及有色合金,2001,(2):57-60
    [45]陈光,傅恒志.非平衡凝固新型金属材料[M].北京:科学出版社,2004:96-140
    [46]胡汉起.金属凝固原理[M].第二版.北京:北京科技大学出版社,2000,11:86-210
    [47]姚书芳,毛卫民,赵爱民等.过共晶铝硅合金细化变质剂的研究[J].特种铸造及有色合金,2000,5(1):1-3.
    [48]董伟达.国家经贸委“金属自修复材料”研究项目总结报告,哈尔滨圣龙科技有限公司,2002,7
    [49]周平安.耐磨、耐热件的磨损失效机理及在冶金矿山行业中的应用,水力电力机械,2003,9
    [50]周平安、饶启昌.圆锥破碎机齿板研究总结,德兴铜矿机械公司内部资料,2002,6
    [51]周平安译.降低用户磨球消耗的自动加球系统,美国GST钢球公司内部资料,2002
    [52]清华大学摩擦学国家重点实验室.金属磨损自修复材料功效的实验室验证报告
    [53]中国石油大连润滑油研发中心.金属磨损自修复材料在135发动机台架上的试验结果报告
    [54]辽宁省丹东市节能技术服务中心.金属磨损自修复技术在海港渔船柴油机上的试用情况报告
    [55]北京公共交通第七客运分公司技术管理部.金属磨损自修复材料在北京公交汽车上试用的阶段报告
    [56]大连市光阳汽车出租有限公司.伊达牌金属磨损自修复高级润滑油在汽油内燃机轿车上的节能报告
    [57]大连长途客运公司旅顺分公司.伊达牌金属磨损自修复高级润滑油在长途客运汽车上的试用节能报告
    [58]大连市环境监测中心.监测报告4份(汽油车尾气,柴油车尾气各2份)
    [59]李鲁江等.ART金属磨损自修复轴承6205-2RS1X1寿命试验报告.国家轴承质量监督检验中心,2002,7
    [60]姬永兴,林庆善,吴祖骅.金属磨损自修复材料在轴承上的应用,铸造,2003,10
    [61]马晓苏等.DF-11型063号内燃机车柴油发动机分解测试报告.国防科工委第一计量测试研究中心,2002,2
    [62]张伍福等.金属磨损自修复材料在北京铁路分局内燃机务段内燃机车试用情况报告.北京铁路分局内燃机务段,2002,8
    [63]北京市公共交通第七客运分公司.金属磨损自修复材料在北京公交汽车上试用的阶段报告,2002,8
    [64]高俊.光谱测定的69#车金属微量元素含量及磨损监控数据.江西德兴铜矿内部资料,2003,10
    [65]高镇同,熊峻江.疲劳可靠性[M].北京:北京航空航天大学出版社,2000,12
    [66]M.T.Abou El-khair, A.Daoud, A.Ismail. Effect of different Al contents on the microstructure, tensile and wear properties of Zn-based alloy [J]. Mater. Lett.,2004, 58:1754-1760.
    [67]Yaohua ZHU. Bearing Wear Resistance of Monotectoid Zn-Al Based Alloy (ZA-35)[J].J.Mater.Sci.Technol,1995,11,109-113
    [68]LIU Xiu-zhong, DONG Bo-ling, ZHAO Dong-jian etc.Microstructures and properties of tungsten inert gas welding joint of super-eutectic ZA alloy[J].Trans. Nonferrous Met.Soc.China,2001,11(3),387-390
    [69]Marjorie Harmsen, Emanuel Laufer. Si-modified ZA alloy for journal bearing applications[J]. Wear,1996,192(1-2):128-133
    [70]Zhongliang SHI, Mingyuan Gu, Renjie Wu. Structure control of in-situsilicon particle reinforced Zn-27A1 composite materials J]. Journal of Materials Processing Technology,1997,63:417-420
    [71]C.van den Bos. Influence of alloying elements on the corrosion resistance of rolled zinc sheet [J].Corrosion Science,2006,48:1483-1499
    [72]Zhang Z M, Wang J C, Xu D H et al. Influence of RE Content on Damping Capacity of ZA27 Alloy[J]. Rare Earths,1999,17(2):122-125
    [73]Qu D W, Yi Z L,Xiao Q Z et al. Effect of RE on Microstructure and Properties of ZA27 Magnesium Alloys[J]. Trans. Nonferrous Met, Soc, China,2000,10(2):236-239
    [74]B.K.Prasad, A.K.Patwardhan, A.H.Yegneswaran. Microstructural modifications through compositional alterations and their influence on the mechanical and sliding wear properties of zinc-based alloys[J]. Scripta Materialia,1997,37(3):323-328.
    [75]M.D.Hanna, J.T.Carter, M.S.Rashid. Sliding wear and friction characteristics of six Zn-based die-casting alloys [J]. Wear,1997,203-204:11-21.
    [76]S.Can Kurnaz. Production of saffil fibre reinforced Zn-Al (ZA 12) based metal matrix composites using infiltration technique and study of their properties [J]. Mater.Sci.Eng A,2003,346(1-2):108-115.
    [77]T.J.Chen,Y.Hao,J.Sun,Y.D.Li.Phenomenological observations on thixoformability of a zinc alloy ZA27 and the resulting microstructures[J]. Mater. Sci. Eng A,2005, 396(1-2):213-222.
    [78]O.P.Modi, S.Rathod, B.K.Prasad, A.K.Jha, GDixit. The influence of alumina particle dispersion and test parameters on dry sliding wear behaviour of zinc-based alloy[J]. Tribol Int,2007,40(7):1137-1146
    [79]T.Sava(?)kan, M.S. Turhal. Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn-Al-Cu alloys[J]. Mater Charact, 2003,51(4):259-270.
    [80]B.K.Prasad. Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions[J]. Wear,2007, 262(3-4):262-273.
    [81]B.K.Prasad, O.P.Modi, A.H.Yegneswaran. Wear behaviour of zinc-based alloys as influenced by alloy composition, nature of the slurry and traversal distance[J]. Wear,2008,264(11-12):990-1001.
    [82]Gencaga Purcek. Improvement of mechanical properties for Zn-Al alloys using equal-channel angular pressing[J]. J Mater Process Tech,2005,169(2):242-248.
    [83]T.Sava(?)kan, G Purcek, S.Murphy. Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions[J]. Wear,2002,252(9-10):639-703.
    [84]Geng Haoran, Tian Xianfa, Cui Hongwei, Li Chengdong, Zhao Peng. Antifriction and wear behaviour of ZAS35 zinc alloy:influence of heat treatment and melting technique[J]. Mater. Sci. Eng. A,2001,316 (1-2):109-114.
    [85]Temel Savaskan, Yasin Alemdag. Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy:A comparative study with SAE 65 bronze[J]. Mater.Sci.Eng A,2008,496 (1-2):517-523.
    [86]Temel Savaskan, Zeki Azakl(?). An investigation of lubricated friction and wear properties of Zn-40Al-2Cu-2Si alloy in comparison with SAE 65 bearing bronze[J]. Wear,2008,264 (11-12):920-928.
    [87]佚名.铸造锌铝系合金底缩现象探讨[OL].http://www.ugcn.Cn/mold/view_794. html,2006,10-23.
    [88]Yijie Zhang, Haowei Wang, Naiheng Ma, Xianfeng Li. Effect of Fe on grain refining of pure aluminum refined by Al5TiB master alloy[J]. Mater.Lett.2005,59: 3398-3401.
    [89]Yijie Zhang, Naiheng Ma, Haowei Wang, Yongkang Le, Songchun Li. Effect of Ti and Mg on the damping behavior of in situ aluminum composites[J]. Mater.Lett. 2005,59:3775-3778.
    [90]A.K.Prasada Rao, K.Das, B.S.Murty. Microstructural features of as-cast A356 alloy inoculated with Sr, Sb modifiers and Al-Ti-C grain refiner simultaneously[J]. Mater.Lett.,2008,62:273-275.
    [91]M.X.Wang, S.J.Wang, Zhiyong Liu. Effect of B/Ti mass ratio on grain refining of low-titanium aluminum produced by electrolysis [J]. Mater. Sci. Eng. A.,2006, 416:312-316.
    [92]Peijie Li, E.G. Kandalova, V.I. Nikitin. Grain refining performance of Al-Ti master alloys with different microstructures[J]. Mater.Lett.,2005,59:723-727.
    [93]S.C.Sharma, B.M.Girish, D.R.Somashekar. Mechanical properties and fractography of zircon-particle-reinforced ZA-27 alloy composite materials[J]. Compos. Sci. Technol.,1999,59:1805-1812.
    [94]王明星,刘志勇,宋天福等.电解生产低钛铝合金工业试验及产品中钛分布的均匀性分析[J].轻金属,2003,4:41-44
    [95]刘忠侠,宋天福,谢敬佩等.低钛铝合金的电解生产与晶粒细化[J].中国有色金属学报,2003,5(13):1257-1261.
    [96]Prasad, B. K., Patwardhan, A. K., Yegneswaran, A. H. Dry sliding wear characteristics of some zinc-aluminium alloys:a comparative study with a conventional bearing bronze at a slow speed[J]. Wear,1996,199(1),142-151.
    [97]Prasad, B.K. Sliding wear response of a zinc-based alloy and its composite and comparison with a gray cast iron:influence of external lubrication and microstructural features[J]. Mater. Sci. Eng. A.,2005,392:427-439.
    [98]Zhuo ZHANG, Kang-hua CHEN, Hua-chan FANG, Xiong-wei QI, and Gang LIU, Effect of Yb addition on strength and fracture toughness of Al-Zn-Mg-Cu-Zr aluminum alloy[J]. T Nonferr Metal Soc,2008,18 (5):1037-1042
    [99]D.P. Mondal, S. Das, and V. Rajput, Effect of zinc concentration and experimental parameters on high stress abrasive wear behaviour of Al-Zn alloys:A factorial design approach [J]. Mater.Sci.EngA,2005,406 (1-2):24-33
    [100]Temel Savaskan and Yasin Alemdag, Effects of pressure and sliding speed on the friction and wear properties of Al-40Zn-3Cu-2Si alloy:A comparative study with SAE 65 bronze[J]. Mater.Sci.Eng A,2008,496 (1-2):517-523
    [101]韩富银,杨巧莲,赵浩峰等.振动对Zn-27A1-Si合金组织性能的影响[J].太原理工大学学报,2004,3(35):324-327.
    [102]K Hildal, N Sekido, J H Perepezko. Critical cooling rate for Fe48Cr15Mo14Y2C15B6 bulk metallic glass formation[J]. Intermetallics,2006,14: 898-902
    [103]J Zhang, Z Fan, Y Q Wang, et al. Effect of cooling rate on the microstructure of hypereutectic Al-Mg2Si alloys[J]. J Mater. Sci. Lett,2000,19:1825-1828
    [104]N H Pryds, X Huang. The effect of cooling rate on the microstructures formed during solidification of ferritic steel[J]. Metall. Mater. Trans. A,2000,31:2000-3155
    [105]刘忠元,李建国,傅恒志.凝固速率对定向凝固合金DZ22枝晶臂间距和枝晶 偏析的影响[J].金属学报,1995,7(31):329-333.
    [106]李晨希,郭太明,李荣德等.二次枝晶臂间距的研究.铸造[J],2004,12(53):1011-1014.
    [107]M.J. Aziz, W.J. Boettinger. On the transition from short-range diffusion-limited to collision-limited growth in alloy solidification[J]. Acta Metallurgica et Materialia, 1994,42(2):527-537
    [108]W. Kurz, B. Giovanola, R. Trivedi. Theory of microstructural development during rapid solidification[J]. Acta Metallurgica,1986,34(5):823-830
    [109]J.A.Sareal, G.J.Abbaschian. The Effect of Solidification Rate on Microsegregation[J]. Merallurgical Transactions,1986,17A:2063-2073
    [110]杜炜,魏朋义,李建国等.中速生长条件下单晶高温合金组织及偏析研究[J].金属学报,1998,4(34):356-361
    [111]沈军,谢壮德,董寅生等.快速凝固过共晶铝硅合金的性能、应用与研究发展[J].粉末冶金技术,2000,18(3):208-213.
    [112]胡锐,勾宏图,郑来苏等.细晶硅粒子对快速凝固高硅铝合金性能的影响[J].机械科学与技术,2002,21(5):813-819.
    [113]S.P. Nikanorov, M.P. Volkov, V.N. Gurina. Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt[J]. Materials Science and Engineering A,2005,390:63-69.
    [114]M. Gupta, S. Ling. Microstructure and mechanical properties of hypo/ hyper-eutectic Al-Si alloys synthesized using a near-net shape forming technique[J]. Journal of Alloys and Compounds,1999,287:284-294.[115]邱以清.电磁离心复合力场作用下双相不锈钢及过共晶铝硅合金凝固组织特征与力学性能的研究[D].博士学位论文,沈阳,东北大学:98-110
    [116]X.J.Wang,X.D.Chen,T.D.Xia etc. Influencing factors and estimation of the cooling rate within an amorphous ribbon[J]. Intermetallics,2004, (12):1233-1237.
    [117]王晓军,陈学定,俞伟元等.估算单辊甩带法制备镁基非晶薄带的冷却速度[J].兰州理工大学学报,2004,3(30):11-13
    [118]Bjorn Jonsson. Modelling of crystal growth during rapid solidification[J]. Metall. Trans.A,1991,22:2475-2486.
    [119]G.X.Wang, V.Prasad, S.Sampath. An Integrated Model for Dendritic and Planar Interface Growth and Morphological Transition in Rapid Solidificaton[J]. Metallurgical and Materials transactions A,2000,31A:735-746.
    [120]W.KURZ, R.TRIVEDI. Eutectic Growth under Rapid Solidification Conditions[J]. METALLURGICAL TRANSACTIONS A,1991,22A:3051-3057.
    [121]J. Fukai, T. Ando. Microstructure development in alloy splats during rapid solidification[J]. Materials Science and Engineering A,2004,383:175-183.
    [122]张梅.凝固条件对Mg-Zn-Y合金显微组织及形核动力学过程的影响[D].硕士学位论文,郑州,郑州大学:46-49.
    [123]B. GIOVANOLA, W. KURZ. Modeling of Microsegregation under Rapid Solidification Conditions[J]. Metallurgical transactions A,1990,21A:260-263.
    [124]ARVIND PRASAD, HANI HENEIN, KELLY CONLON. Quantification of Microsegregation during Rapid Solidification of Al-Cu Powders[J]. Metallurgical and materials transactions,2006,37A:1589-1596.
    [125]A. MATSUDA, C.C. WAN, J.-M. YANG, W.H. KAO. Rapid Solidification Processing of a Mg-Li-Si-Ag Alloy[J]. Metallurgical and materials transactions A, 1996,27A:1363-1370.
    [126]P.J. MESCHTER, J.E. O'NEAL. Rapid Solidification Processing of Magnesium-Lithium Alloys[J]. Metallurgical transactions A,1984,15A:237-240.
    [127]G.-X. Wang, V. Prasad, E.F. Matthys. Solute distribution during rapid solidification into an undercooled melt [J]. Journal of Crystal Growth,1997, (174):35-40.
    [128]Massimo Conti, Umberto Marini Bettolo Marconi. Interfacial dynamics in rapid solidification processes[J]. Physica A,2000,280:148-154.
    [129]Andrew M. Mullis, Daniel J., Walker, Sharon E. etc. Deformation of dendrites by fluid flow during rapid solidification[J]. Materials Science and Engineering A, 2001,304-306:245-249.
    [130]P.K. Galenko, D.A. Danilov. Selection of the dynamically stable regime of rapid solidification front motion in an isothermal binary alloy[J]. Journal of Crystal Growth,2000, (216):512-526.
    [131]邵国胜,沈宁福Al-Si-Ti-Ce合金的快速凝固过程及微观组织.材料科学进展[J].1992,6(5):395-399.
    [132]Z. Rivlin, H.G. Jiang, M.A. Gibson.etc. Evaluation of the contact angle in rapid solidification by melt spinning[J]. Materials Science and Engineering A,1996, (211): 82-86.
    [133]W.J. BOETTINGER, D. SHECHTMAN, R.J. SCHAEFER.etc. The Effect of Rapid Solidification Velocity on the Microstructure of Ag-Cu Alloys[J]. Metallurgical transactions A,1984,15A:55-66.
    [134]XU JinFeng, DAI FuPing, WEI BingBo. Heat and mass transfer characteristics during rapid solidification of Fe-Cu peritectic alloys[J]. Sci China Ser G-Phys Mech Astron,2008,(51):459-469.
    [135]CAO Biao, CHEN Zhenhua. Multiple steady states in rapid solidification and the glass transition[J]. Science in China,1998, (41):247-254.
    [136]Yibin Zhang. Enthalpy estimation of the nonequilibrium state in as-melt spun Al-Si and Al-Mn alloys and crystal growth as a nonequilibrium crystallization during rapid unidirectional solidification[J]. Thermochimica Acta,1996, (286):139-159.
    [137]刘家浚,郭凤炜.一种摩擦表面自修复技术的应用效果及分析[J].中国表面工程,2004,3:42-46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700