多元多相合金的热力学描述及其在凝固过程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学研究和工业生产实践中所用的金属材料大多数是具有复杂成分的多元多相合金,对这类材料凝固原理及其组织形成的研究有重要的实际意义。能否将凝固模型应用于生产实际,关键就取决于对多元合金凝固组织的模拟是否成熟。本论文主要结合热力学计算技术,对多元多相合金凝固过程中的溶质分凝现象及其对凝固组织和溶质偏析的影响进行了较为深入的研究。
     溶质分凝是凝固过程中的重要伴随现象,对凝固过程中的成分偏析及组织形成有着决定性的影响。在多元合金中由于存在复杂的溶质相互作用,用实验相图分析溶质分凝行为并不方便。本文首先从热力学角度出发,建立了溶质分凝因数的热力学计算模型。详细讨论了Al-Cu二元合金和Al-Si-Mg三元合金凝固过程中溶质的分凝行为。结合计算热力学技术,对溶质分凝因数的预测很好地吻合于实验结果。
     为了快速提取系统的热力学信息,减少计算时间,应用Levenberg-Marquardt算法进行了相图的计算。Levenberg-Marquardt算法采用目标函数的二阶导数,它能够实现计算精度和收敛速度的较好结合。该方法适合于求解二元以及多元合金中的相平衡问题。
     研究了工业中广泛应用的Al-Si-Mg三元合金凝固过程中的溶质分凝行为,确定了该合金凝固过程中溶质分凝因数与固相分数的定量关系。发现分凝因数随固相分数的变化而显著变化,并且远远偏离其二元系中的数值。定量预测了不同凝固条件下Al-Si-Mg合金的凝固路径及共晶分数。其结果与采用二元分凝因数的预测结果偏差较大,而与实验结果接近。
     结合溶质分凝的分析,研究了冷却速率对AI-2.06 wt%Si-1.58 wt%Mg合金凝固过程的影响。实验和理论分析均发现,在低的冷却速率下,其凝固过程为:L→L_1+Fcc_Al→L_1+Fcc_Al+Si→L_1+Fcc_Al+Si+Mg_2Si,而在较高的冷却速率下,其凝固过程为:L→L_1+Fcc_Al→L_1+Fcc_Al+Mg_2Si→L_1+Fcc_Al+Si+Mg_2Si。改变凝固速率可以使多元合金的凝固过程按照不同的路径进行,从而达到控制析出相种类的目的。
     耦合热力学计算技术,提出了多元合金凝固界面的稳定性判据。以Al-0.34
Metallic materials in engineering applications are mostly multi-component and multi-phase alloys. The application of solidification modeling to practical technology is closely linked to our ability to model the microstructure development in multi-component alloys. In this work, the solute partition behavior and its influence on the solidification process of multi-component alloys were studied in detail based on the Calphad technology.A complete thermodynamic model for the accurate calculation of the partition coefficients in solidification process was described. The model was applied to Al-Cu binary alloy and Al-Si-Mg ternary alloy, and the predicted partition coefficients were compared with some former experimental data. Good agreement between the calculation results and the experimental data demonstrates the validity of the present thermodynamic model for the prediction of the partition coefficients in solidification process.The Levenberg-Marquardt method, the best algorithm to obtain the least-square solution of non-linear equations, was applied to calculate the stable phase equilibria. It was used for the prediction of solidification of ternary Al-Si-Mg system. The calculated phase equilibria agree well with the experimental results.The variation of solute partition coefficient was studied in dendritic solidification process of Al-Si-Mg alloys. It was found that the partition coefficient changed greatly during solidification process, which should have important influence on the formation of the microsegregation and the precipitation of various phases. The solidification path and eutectic fractions were predicted by employing the binary partition coefficients and Calphad technology separately. The results showed that great errors had been introduced by assuming the partition coefficient as a constant. By coupling Calphad method with microscale solidification model, the predicted solidification path and the eutectic fraction of Al-Si-Mg alloys agree well with the experimental results.
    The effect of cooling rates on the solidification process of Al-2.06 wt% Si-1.58 wt% Mg alloy was experimentally investigated. It was found that the solidification sequences were L->Li+Fcc_Al->Li+Fcc_Al+Si-±Li+Fcc_Al+Si+Mg2Si under low cooling rate and L-+Li+Fcc_Al-*Li+Fcc_Al+Mg2Si-*Li+Fcc_AlJrSi+Mg2Si under high cooling rate, respectively.A method to predict the solid-liquid interface stability during unidirectional solidification was developed by coupling M-S model with Calphad method. The method was applied to Al-0.38wt% Zn and Al-0.34wt% Si-0.14wt% Mg alloys, and the predicted results were compared with some former experimental data. The good agreement between the calculation results and the experimental data demonstrates the superiority of the present method to the classical model based on constant partition coefficient assumptions.The conventional theory of constrained dendrite growth for binary alloys was extended to multi -component alloys based on the Calphad method with considerations of the solute interactions in each phase. The variable solute partition coefficients and liquidus slopes under different tip undercooling were calculated in detail for a series of Al-Si-Mg alloys. The influence of variable partition coefficients on the kinetics of dendrite growth was demonstrated quantitatively. The primary dendrite spacing, the most important microstructure scale, was predicted in several Al-Si-Mg alloys. By comparing the results with the experimental results of former researchers, the present method was proved to be a superior method for the prediction of primary dendrite arm spacing.By using the concept of solute diffusion layer thickness, the back diffusion flux was easily obtained without the time consuming finite difference scheme. The application of the simplified model to Al-Cu-Mg alloys was studied in detail. The good agreement between the experimental results and the calculated values shows that this simplified model is suitable for the prediction of dendrite arm coarsening during solidification of multi-component alloys.Taking into account the effect of solute interactions on both phase equilibria and diffusion behaviors in each phase, the conventional theory of constrained dendrite
    growth for binary alloys was extended to multicomponent alloys. The variable solute partition coefficients and the diffusion matrix were obtained based on the thermodynamic databases and the diffusion mobility coefficients during the dendrite growth process in multi-component alloys. The calculated data were used to evaluate the influence of multi-component diffusion on the kinetics of dendrite solidification of Cu-Sn-Zn ternary alloys.The solute redistribution during the rapid solidification of multi-component alloys was theoretically studied based on thermodynamic analyses. Transportation processes of the two solutes were taken into account to determine the compositions on the both sides of the growth interface. The analysis of the interface diffusion process reveals that the solute partition at the growth interface depends on the diffusion coefficient, growth rate, the solute partition ratios in the two binary sub-systems. After the analysis of the diffusion processes in the bulk liquid and solid, the solute distribution profiles in the directionally solidified samples were obtained. From the results, the path for the interface composition variation was calculated. It was found that the path was dependent on the diffusion coefficients of the solutes in the liquid.
引文
[1] 周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社,北京,1998:1-10
    [2] 胡汉起.金属凝固原理[M].机械工业出版社,北京,2000:46-79
    [3] 郑来苏.铸造合金及其熔炼[M].西北工业大学出版社,西安,1994:31-74
    [4] W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz and R. Trivedi. Solidification Microstructures: Recent Developments and Future Directions, Acta Mater., 2000, 48, 43-70
    [5] 胡德林,张帆.三元合金相图[M].西北工业大学出版社,西安,1995:13-20
    [6] 刘智恩.材料科学基础[M].西北工业大学出版社,西安,2000:103-156
    [7] U. R. Kattner. The Thermodynamic Modeling of Multicomponent Phase Equilibria, JOM, 1997, 12, 14-19
    [8] M.C.M. Cornelissen. Mathematical Model for Solidification of Multicomponent Alloys, Ironmaking and Steelmaking, 1986, 13,204-212
    [9] K. Abdelwahab. Numerical Approximation to a Moving Boundary Problem for the Sphere, Computers Chem. Engng., 1997, 21,559-562
    [10] W. A. Tiller, K. A. Jackson, J. W. Rutter and B. Chalmers. The Redistribution of Solute Atoms during the Solidification of Metals, Acta Metall., 1953, 1,428-437
    [11] V. G. Smith, W. A. Tiller and J. W. Rutter. Mathematical Analysis of Solute Redistribution during Solidification, Can. J. Phys., 1955, 33,723-745
    [12] Li Yanxiang and Liu Baicheng. Initial Composition Transient during Crystal Growth, Acta Metall. Siniea, 1988, 1, 13-18
    [13] 周尧和,胡壮麒,介万奇.凝固技术[M].机械工业出版社,北京,1998:163-166
    [14] W. W. Mullins and R. F. Sekerka. Stability of a Planar Interface During Solidification of a Dilute Binary Alloy, J. Applied Physics, 1964, 35,444-451
    [15] A. Ludwig, B. Pustal and D.M. Herlach. General Concept for a Stability Analysis of a Planar Interface under Rapid Solidification Conditions in Multicomponent alloy systems, Materials Science and Engineering A, 2001, V304-306, 277-280
    [16] W. D. Huang, Y. K. Inatomi and K. Kuribayashi. Initial Transient Solute Redistribution During Directional Solidification with Liquid Flow, Journal of Crystal Growth, 1997, 182, 212-218
    [17] J. A. Warren and J. S. Langer. Prediction of Dendritic Spacing in a Directional Solidification Experiment, Phys. Rev. E, 1993, 47, 2702-2712
    [18] S. R. Coriell, G. B. McFadden and P. W. Voorhees. Stability of a Planar Interface During Solidification of a Multicomponent System, J. Crys. Growth, 1987, 82, 295-302
    [19] G. P. Ivantsov. Temperature Field Around a Spherical, Cylindrical and Acicular Crystal Growth in a Supercooled Melt, Dokl. Akad. Nauk. SSSR, 1947, 58, 567-569
    [20] V. Pines, A. Chait, M. Zlatkowski and C. Beckermann. Equiaxed Dendritic Solidification in Supercooled Melts, Journal of Crystal Growth, 1999, 197, 355-363
    [21] V. Laxmanan. The Tip Temperature of a Freely Growing Dendrite: The Influence of Various Modifications to the Ivantsov Solution, Mater. Research Bulletin, 1998, 33, 1377-1386
    [22] R. Trivedi. Growth of Dendritic Needles from a Supercooled Melt, Acta Metall., 1970, 18, 287-296
    [23] J.S. Langer and Muller-Krumbhaar. Theory of Dendritic Growth I: Elements of a Stability Analysis, Acta Metall., 1978,26, 1681-1687
    [24] J.S. Langer and Muller-Krumbhaar. Theory of Dendritic Growth II: Instabilities in the Limit of Vanishing Surface Tension, Acta Metall., 1978,26, 1689-1665
    [25] J.S. Langer and Muller-Krumbhaar. Theory of Dendritic Growth III: Effects of Surface Tension, Acta Metall., 1978,26, 1681-1687
    [26] W. Kurz, B. Giovanola and R. Trivedi. Theory of Microstructural Development During Rapid Solidification, Acta Metall., 1986, 34, 823-830
    [27] R. Trivedi and W. Kurz. Dendritic Growth, Inter. Mater. Rev., 1994, 39, 49-74
    [28] M.Rappaz, S.A. David, J.M. Vitek and L.A. Boatner. Analysis of Solidification Microstructures in Fe-Ni-Cr Single Crystal Welds, Metall. Trans. A, 1990,21, 1767-1782
    [29] M. Rappaz and W. J. Boettinger. On Dendritic Solidification of Multicomponent Alloys with Unequal Liquid Diffusion Coefficients, Acta Mater., 1999, 47,3205-3219
    [30] M. Bobadilla, J. Lacaze and G. Lesoult. Influence des conditions de solidification sur le deroulement de la solidification des aciers inoxydables austenitiques, J. Crystal Growth, 1988,89,531-544
    [31] J. Miettinen. Thermodynamic Kinetic Simulation of Constrained Dendrite Growth in Steels, Metall. Trans. B, 2000,31, 365-379
    [32] Q.Y. Han and H.Q. Hu. Parameter for Evaluating Ability of Grain Refinement of Solute Elements, Acta Metallurgica Sinica, 1988, 24, 320-324
    [33] T.Z. Kattamis, J.C. Coughlin and M.C. Flemings. Influence of Coarsening on Dendrite Arm Spacing of Aluminum Copper Alloys, Trans. Metall. Society of AIME, 1967, 239, 1504-1511
    [34] J.J. Reeves and T.Z. Kattamis. A Model for Isothermal Dendritic Coarsening, Scripta Metallurgica, 1971, 5, 223-229
    [35] K.H. Chien and T.Z. Kattamis. Role of Dendritic Coarsening and Coalescence in the Establishment of Cast Microstructure, Z. Metallic., 1970, 61, 475-479
    [36] Han Qingyou, Hu Hanqi and Zhong Xueyou. Models for the Isothermal Coarsening of Secondary Dendrite Arms in Multicomponent Alloys, Metall. Trans. B, 1997, 28, 1185-1187
    [37] A. Roosz, E. Haider and H.E. Exner. Numerical Analysis of Solid and Liquid Diffusion in Microsegregation of Binary Alloys, Mater. Sci. &Tech, 1985, 1, 1057-1062
    [38] A. Roosz, E. Haider and H.E. Exner. Numerical Calculation of Microsegregation in Coarsened Dendritic Microsegregation, Mater. Sci. & Tech, 1986, 2,1149-1155
    [39] T. Kraft and H.E. Exner. Cooling Schedule Effects on the Microsegregation in Al-Mg-Si Alloys, Materials Science & Engineering A, 1993, 173, 149-153
    [40] T. Kraft. An Efficient Method for Coupling Microscopic and Macroscopic Calculation in Solidification Modeling, Modelling Simul. Mater. Sci. Eng., 1997, 5,473-480
    [41] R. Mehrabian and M.C. Flemings. Macrosegregation in Ternary Alloys, Metallurgical Transactions A, 1970,1,455-464
    [42] E. Scheil. Z. Metallkunde, 1942, 34..70-72
    [43] B. Meurer, P.J. Spencer and D. Neuschutz. Simulation of Solidification and Heat Treatment of Nickel-base Superalloy SC16, Zeitschrift fuer Metallkunde, 2003,94, 139-143
    [44] P. Suwanpinij, U. Kitkamthorn, I. Diewwanit and T. Umeda. Influence of Copper and Iron on Solidification Characteristics of 356 and 380-type Aluminum Alloys, Materials Transactions, 2003,44, 845-852
    [45] E. Balitchev, H. Meuser, D. Neuschutz and W. Bleck. Experimental Investigations and Computer Simulation of the Liquid Fraction Evolution during the Solidification of Alloys Suitable for Semi-Solid Processing, Steel Research International, 2004,75,13-19
    [46] J. Lacaze and G. Lesoult. Experimental Investigation of the Development of Microsegregation During Solidification of an Al-Cu-Mg-Si Aluminum Alloy, Materials Science & Engineering A, 1993, 173, 119-122
    [47] J. Lacaze and G. Lesoult. Modelling the Development of Microsegregation during Solidification of an Al-Cu-Mg-Si Alloy, ISIJ International, 1995, 35,658-664
    [48] J. Lacaze, G. Lesoult and I. Ansara. Rosettes in Al-Cu-Mg-Si Aluminium Alloys, Materials Science Forum, 1996, V217-222, 171-176
    [49] H.D. Brody and M.C. Flemings. Trans. Metall. Soc. AIME, 1966, 236, 615-624
    [50] W.J. Boettinge, U.R. Kattner, S.R.Coriell, Y.A. Chang and B.A. Mueller. Development of Multicomponent Solidification Micromodels Using a Thermodynamic Phase Diagram Data Base, Proc. 1995 Conf. Model. Casting Welding Adv. Solid. Process, 1995, 649-656
    [51] A.J.W. Ogilvy and D.H. Kirkwood. Model for the Numerical Computation of Microsegregation in Alloys. Applied Scientific Research, 1987,44,43-49
    [52] S. Kobayashi, S. Ishimura, M. Yoshihara and Y. Sugitani. Factors Affecting Equiaxed Zone Generation in Electromagnetic Stirring, Transactions of the Iron and Steel Institute of Japan, 1988, 28,939-944
    [53] A. Roosz and H.E. Exner. Numerical Modelling of Dendritic Solidification in Aluminium Rich Al-Cu-Mg Alloys, Acta Metall. Mater., 1990,38,375-380
    [54] K. Ohsasa. Numerical Simulation of Solidification for Aluminum Base Multicomponent Alloy, Journal of Phase Equilibria, 2001, 22,498-503
    [55] C.H.P. Lupis. Chemical Thermodynamics of Materials[M], North-Holland, Oxford, 263-294
    [56] J.O. Andersson, T. Helander, L. Hoglund, Pingfang Shi and B. Sundman. Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad., 2002, 26, 273-312
    [57] Bertrand Cheynet, Pierre-Yves Chevalier and Evelyne Fischer. Thermosuite, Calphad, 2002, 26, 167-174
    [58] R.H. Davies, A.T. Dinsdale, J.A. Gisby, J.A.J. Robinson and S.M. Martin. MTDATA-Thermodynamic and Phase Equilibrium Software from the National Physical Laboratory, 2002, 26,229-271
    [59] C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. B. Mahfoud, J. Melancon, A.D. Pelton and S. Petersen. FactSage Thermochemical Software and Databases, Calphad., 2002,26,189-228
    [60] S.L. Chen, S.Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer and W.A. Oates. The PANDAT Software Package and Its Applications, Calphad, 2002,26,175-188
    [61] A. Dinsdale. SGTE Data for Pure Elements, Calphad, 1991, 15,317-425
    [62] K. Hack. The SGTE Casebook: Thermodynamics at Work[M], The Institute of Materials, London, 227
    [63] J. Miettinen. Thermodynamic Description of Solution Phases of Systems Fe-Cr-Si and Fe-Ni-Si with Low Silicon Contents and with Application to Stainless Steels, Calphad, 1999,23,249-262
    [64] N. Saunders. Phase Diagram Calculations for Commercial Al-alloys, Materials Science Forum, V217-222, 667-672
    [65] N. Dupin and B.Sundman. A Thermodynamic Database for Ni-base Superalloys, Scandinavian Journal of Metallurgy, 2001, 30, 184-192
    [66] C.J. Butle, D.G. McCartney, C.J. Small, F.J. Horrocks and N. Saunders. Solidification Microstructures and Calculated Phase Equilibria in the Ti-Al-Mn System, Acta Materialia, 1997,45,2931-2947
    [67] T.C. Yu and R.F. Brebrick. The Hg-Cd-Zn-Te Phase Diagram, Journal of Phase Equilibria, 1992,13,476-496
    [68] T.C. Yu and R.F. Brebrick. Supplement: The Hg-Cd-Zn-Te Phase Diagram, Journal of Phase Equilibria, 1993, 14,271-272
    [69] I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart and T. Anderson. A Binary Database for 1II-V Compound Semiconductor Systems, Calphad, 1994, 18, 177-222
    [70] I. Ansara. Comparison of Methods for Thermodynamic Calculation of Phase Diagrams, International Metals Reviews, 1979, 1, 20-51
    [71] N. Saunders and A.P. Miodownik. Calphad: A Comprehensive Guide[M]. Oxford, Pergamon, 1998,299-402
    [72] G. Eriksson and K. Hack. ChemSage. A Computer Program for the Calculation of Complex Chemical Equilibria, Metallurgical Transactions B, 1990, 21, 1013-1023
    [73] B. Sundman, B. Jansson and J.O. Andersson. The Thermo-Calc Databank System, Calphad, 1985,9, 153-190
    [74] T. Kraft and Y.A. Chang. Predicting Microstructure and Microsegregation in Multicompo- nent Alloys, Journal of Metals, 1997,12, 20-28
    [75] N. Saunders. The Application of Calculated Phase Equilibria to Multicomponent Aluminum Alloys, Journal of Japan Institute of Light Metals, 2001, 51,141-150
    [76] W. Yamada, T. Matsumiya. Computational Thermodynamics and Its Application to Analysis of Steelmaking Process, Nippon Steel Technical Report, 1992, 52, 31-36
    [77] R. Gallagher and P.J. Spencer. Calculation of Precipitation Behavior in an Alloy Steel Using a Thermochemical Data Bank and the Program 'SOLGASMIX', Calphad, 1983, 7, 157-163
    [78] S.L. Chen, W. Oldfield, Y.A. Chang and M.K. Thomas. Modeling Solidification of Turbine Blades Using Theoretical Phase Relationships, Metallurgical and Materials Transactions A, 1994,25, 1525-1533
    [79] U.R. Kattner, W.J. Boettinger, S.R. Coriell. Application of Lukas' Phase Diagram Programs to Solidification Calculations of Multicomponent Alloys, Zeitschrift fuer Metallkunde, 1996, 87, 522-528
    [80] J. Miettinen. Calculation of Solidification-related Thermophysical Properties for Steels, Metallurgical and Materials Transactions B, 1997, 28,281-297
    [81] J. Miettinen. Simple Semiempirical Model for Prediction of Austenite Decomposition and Related Heat Release During Cooling of Low Alloyed Steels, Ironmaking and Steelmaking, 1996,23,346-356
    [82] B. Dutta and M. Rettenmayr. Effect of Cooling Rate on the Solidification Behaviour of Al-Fe-Si Alloys, Materials Science and Engineering A, 2000,283, 218-224 .
    [83] X.Y. Yan, Y.A. Chang, F.Y. Xie, S.L. Chen, F. Zhang and S. Daniel. Calculated Phase Diagrams of Aluminum Alloys from Binary Al-Cu to Multicomponent Commercial Alloys, Journal of Alloys and Compounds, 2001,320, 151-160
    [84] S.W. Chen and Y.A. Chang. Application of Thermodynamic Models to the Calculation of Solidification Paths of Al-rich Al-Li Alloys, Metall. Trans. A, 1991,22, 267-271
    [85] T. Kraft, M. Rettenmayr and H.E. Exner. An Extended Numerical Procedure for Predicting Microstructure and Microsegregation of Multicomponent Alloys, Modelling Simul. Mater. Sci. Eng., 1996,4, 161-177
    [86] J. Miettinen. Thermodynamic-kinetic Simulation of Solidification in Binary Fcc Cu Alloys with Calculation of Thermophysical Properties, Comp. Mater. Sci., 2001, 22,240-260
    [87] W.J. Boettinger. Thermodynamic Constraints on Non-equilibrium Solidification of Ordered Intermetallic Compounds, Materials Science & Engineering A, 1991, 133,438-442
    [88] H. Kobayashi, M. Ode, S.G. Kim, W.T. Kim and T. Suzuki. Phase-field Model for Solidification of Ternary Alloys Coupled with Thermodynamic Database, Scripta Materialia, 2003, 48,689-694
    [89] H. Fredriksson and T. Emi. Effect of Vacancies and Alloying Ordering on the Thermodynamics During Solidification Processing, Materials Transactions, JIM, 1998, 39, 292-301
    [90] A.L. Dons, E. K. Jensen and Y. Langsrud. The Alstruc Microstructure Solidification Model for Industrial Aluminum Alloys, Metallurgical and Materials Transactions A, 1999, 30, 2135-2146
    [91] A.L. Dons. Simulation of Solidification - A Short Cut to a Better Phase Diagram for Al-Mg-Fe-Si Alloys, Zeitschrift fuer Metallkunde, 1991, 82,684-688
    [92] N.A. Belov, A.Y. Gusew and D.G Eskin. Evaluation of Five-component Phase Diagrams for the Analysis of Phase Composition in Al-Si Based Alloys, Zeitschrift fuer Metallkunde, 1998,89,618-622
    [93] F.Y. Xie, T. Kraft, Y. Zuo, C.H. Moon and Y. A. Chang. Microstructure and Microsegregation in Al-Rich Al-Cu-Mg alloys. Acta Materialia. 1999,47, 489-500
    [94] A.R. Cooper. Model for Multicomponent Diffusion, Physics and Chemistry of Glasses, 1965,6,55-61
    [95] Y. Liang, F. M. Richter and E.B. Watson. Diffusion in Silicate melts: II. Multicomponent Diffusion in Cao-Al2O3-SiO2 at 1500 ℃ and 1 GPa, Geochimica et Cosmochimica Acta, 1996,60,5021-5035
    [96] S. Chakraborty. Relationships between Thermodynamic Mixing and Diffusive Transport in Multicomponent Solutions: Some Constrains and Potential Applications, J. Phys. Chem., 1994,98,4923-4926
    [97] D.J. Young and J.S. Kirkaldy. Isothermal Diffusion in Multicomponent Ionic Solids, J. Phys. Chem. Solids, 1984,45,781-788
    [98] D.A. Okongwu, W.K. Lu, A.E. Hamielec and J.S. Kirkaldy. Diffusion Interactions in Glasses Arising from Discontinuities in Anion Concentration, Journal of Chemical Physics, 1973, 58, 777-787
    [99] S. Chakraborty, D.B. Dingwell and D. Rubie. Multicomponent Diffusion in Ternary Silicate Melts in the System K2O-A12O3-SiO2: II. Mechanisms, Systematics, and Geological Appilications, Geochimica et Cosmochimica Acta, 1995, 59,265-277
    [100] C.E. Campbell, W.J. Boettinger and U.R. Kattner. Development of a Diffusion Mobility Database for Ni Based Superalloys, Acta Mater., 2002, 50, 775-792
    [101] M.Z. John and S. Alsoy. Onsager Consistency Checks for Multicomponent Diffusion Models, Journal of Polymer Science, 2001,39, 1496-1504
    [102] J.O. Andersson and J. Agren. Models for Numerical Treatment of Multicomponent Diffusion in Simple Phase, J. Appl. Phys., 1992, 72, 1350-1355
    [103] H.E. Lippard, C.E. Campbell, T. Bjorklind, U. Borggren, P. Kellgren, V.P. Dravid and G.B. Olson. Microsegregation Behavior during Solidification and Homogenization of AerMet100 Steel, Metall. Trans. B, 1998, 205-210
    [104] J.E. Morral and H. Chen. On the Composition Difference at Boundaries Between a and α+β Regions in Multicomponent Diffusion Couples, Scripta Mater., 2000, 43,699-703
    [105] E. B. Nauman and J. Savoca. An Engineering Approach to an Unsolved Problem in Multicomponent Diffusion, AIChE Journal, 2001,47, 1016-1020
    [106] S. Ganesan and D.R. Poirier. Solute Redistribution in Dendritic Solidification with Diffusion in the Solid, Journal of Crystal Growth, 1989, 97, 851-859
    [107] D.E. Coates, S.V. Subramanian and GR. Purdy. Solid Liquid Interface Stability During Solidification of Dilute Ternary Alloys, Trans. Metall. Society of AIME, 1968, 242, 800-809
    [108] O. Hunziker .Theory of Plane Front and Dendritic Growth in Multicomponent Alloys, Acta Mater., 2001,49,4191-4203
    [109] U. Grafe, B. Bottger, J. Tiaden and S.G. Fries. Simulation of the Initial Transient during Directional Solidification of Multicomponent Alloys using the Phase Field Method, Modelling Simul. Mater. Sci. Eng., 2000, 8, 871-879
    [110] A. Borgenstam, A. Engstrom, L. Hoglund and J. Agren. Dictra, a Tool for Simulation of Diffusional Transformations in Alloys, J. Phase Equilibria, 2000, 21, 269-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700