林分类型和立地条件对昆嵛山腮扁叶蜂种群动态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植食性昆虫与植物多样性的关系一直是森林生态系统及其功能研究的核心问题,其种群发生机制是森林保护学家最感兴趣的话题、也是有害生物可持续控制的重要理论基础。昆嵛山腮扁叶蜂寄主在昆嵛山不同林分类型间的比例呈现从0-100%的组成梯度,这种通过无重大干扰条件下所形成的森林生态系统为本研究提供了人工条件下无法达到的研究环境。
     本研究利用昆嵛山森林生态系统定位研究站设立的40块永久性标准地,以昆嵛山腮扁叶蜂-赤松体系为模板,开展了两部分研究内容:(1)昆嵛山森林生态系统的群落特征及其植物多样性特点;(2)综合分析昆嵛山林分立地因子、林分特征因子对昆嵛山腮扁叶蜂种群密度效应。本研究产出的森林自调控食叶害虫的机理,可以进一步完善和补充森林自调控病虫灾害和生态调控技术的理论,对推动我国森林保护学和生态学科发展具有一定的理论意义。主要研究结果如下:
     (1)采用主坐标分析法将样地所代表的森林群落划分为6种林分类型,即赤松林、黑松林、日本落叶松/刺杉林、针叶树-麻栎林和针叶树-杂木林和阔叶林。六种林分类型的物种多度和物种丰富度无显著差异;阔叶林的Fisherα指数(P < 0.001)、Shannon–Wiener指数(P = 0.001),Simpson指数(P = 0.034)与其他五种林分类型相比,差异到显著性水平;其他五种林分类型的Fisherα指数和Shannon–Wiener指数无显著差异,但Simpson指数在这些林分间差异显著。物种指示值分析表明每一种林分类型有其独具代表性的指示物种。Rényi多样性曲线直观显示了其他方法无法辨别群落特征间的一些差别,如排序显示针叶树-杂木林和阔叶林林下灌草层多样性位于其他五种林分类型的之上;而另外五种林分的灌草层多样性曲线相互交错。低海拔(<200m)、下坡位、缓坡(坡度0-10o)的灌草多样性明显偏低,土壤厚度>5 cm和土壤厚度在1-3cm的灌草多样性曲线处于其他3个土壤厚度梯度的下方。昆嵛山森林自然演替13a,赤松种群密度从1996年的平均超过13000株/hm2降到了2008年的平均2377株/hm2。林分径级结构呈现典型的倒“J”形,表明这些林分已进入茎干互斥阶段。赤松纯林内灌草Shannon–Wiener指数(H)和均匀度指数(JS)分别为2.50和0.79,分别低于1996年的(H)2.69和(JS)0.85。黑松林内灌草Shannon–Wiener指数(H)和均匀度指数(JS)分别为2.27和0.79,分别高于1996年的(H)1.85和(JS)0.77。赤松和黑松林下的灌草种类的整体物种周转率T达到125.9%。昆嵛山当前的这种森林结构、林分类型的形成及其生物多样性与上世纪大规模树种引进和人工造林等人为干扰密不可分;当前的森林演替处于进展演替的初期,森林结构相对稳定。
     (2)2006年-2009年昆嵛山腮扁叶蜂种群动态具有显著的短期特征,不同年份间虫口密度差异极显著;其中,2006年虫口密度处于顶峰,到2009年整体种群密度已经下降到较低的水平。2006年昆嵛山立地特征中的海拔、坡度和坡向所形成的小气候促进了腮扁叶蜂集中分布在这些地方寄主资源集中的林分中,虫口密度与寄主在林间的比例极显著的正相关关系,符合“资源集中”假说。2008年昆嵛山腮扁叶蜂种群受到典型的立地所形成的小气候的直接影响。2009年虫口密度随着林龄的增加而增加,表明平均树龄越大的林分腮扁叶蜂虫口密度越高。说明在虫口密度较低时,腮扁叶蜂选择寄主的趋向性随之发生变化。以上结果说明,在景观尺度上,食叶害虫种群的发生驱动机制远比在林分尺度上要复杂。
     (3)采用通径分析方法,将全部通径关系的402条通径链的模型进行缩减,共去除不显著的通径链381条;缩减后的模型中共有21条通径链,占总通径链的5.22%,但这些剩余通径链能解释原模型信息的33.29%。结果表明,对昆嵛山腮扁叶蜂种群暴发有直接作用的因子包括海拔、坡度、坡位、寄主在林间的比例和Shannon–Wiener指数;并且所有这些直接作用因子的作用方式均与腮扁叶蜂虫口密度成极显著的正相关关系。所有的林分指标首先受到来自立地条件的直接作用,随后这些受到影响的林分指标又影响到其他指标,如物种丰富度和物种多度以及寄主的比例,最后这些指标的综合效应才最终影响到虫口密度;虽然Shannon–Wiener指数对虫口密度有直接作用,但Shannon–Wiener指数的变化受到物种丰富度和物种多度的直接作用,而这两个指标的变化又受到来自立地条件和林分特征的深刻影响。
     (4)昆嵛山森林群落的不同林分类型所遭受的腮扁叶蜂为害没有显著差异。不同林分类型中树木群体更多地表现为对昆嵛山腮扁叶蜂的“联合易感性”;只有针叶树-麻栎林在2008年虫口密度较低时,表现出较弱的“联合抗性”,但2009年这种“联合抗性”作用在虫口密度很低时未能表现出来,证明了系统发生远的树种组合能表现对食叶害虫的抑制和调控的能力;但“联合抗性”和“联合易感性”的强度、稳定性随着时间、环境条件的改变以及林内虫口密度的改变而变化。本文首次证实,在昆嵛山那些处于低海拔、阴坡的林地内腮扁叶蜂种群持续处于低密度很可能归因于由立地调控的景观水平的“联合抗性”的作用结果。
     (5)植物多样性对昆嵛山腮扁叶蜂的发生起到重要作用,随着植物多样性增加,整体上腮扁叶蜂的虫口密度随着增加,但因寄主种类不同而有不同的表现形式。这与大多数研究所指出的植物多样性丰富抑制寡食性食叶害虫的结论相反。
     (6)当昆嵛山腮扁叶蜂连续3年为害时,显著降低了赤松枝条的生长量和枝条生长率。对比2006年到2008年赤松胸径生长量,不同虫口密度危害下,生长量没有显著差异。腮扁叶蜂发生轻微的林分内的树木平均死亡率(5.5%)显著低于发生严重的林分(13.35%),树木死亡率与腮扁叶蜂虫口密度呈显著的正相关、并与林分郁闭度显著相关,但与林分密度不相关。腮扁叶蜂严重为害的林分中大树的死亡比例高于轻度发生的林分。与发生较轻的林分相比,腮扁叶蜂为害导致树木高死亡率很可能加速这些林分密度的调整,同时也是林分径级倒“J”形结构形成的促进因素之一;但另一方面,腮扁叶蜂为害在短期内未显著降低树木生长,验证了枝条“自决定理论”所认为的叶蜂对寄主整株的碳循环动态不能产生显著的影响;分析结果部分地证明和符合许多作者所证明的结论,如食叶害虫具有改变林分结构的功能和调控植物种群数量和群落动态的功能。
     本研究结果表明昆嵛山腮扁叶蜂的发生机制受非线性过程的制约,昆嵛山立地和林分特征对昆嵛山腮扁叶蜂近4年的时间和空间动态格局的影响具有连续的效应。因此,可以划定重点地区的林分类型,缩小昆嵛山腮扁叶蜂种群监测范围,这样可以更有效的对昆嵛山腮扁叶蜂的发生做出准确的预测。
Relationships between herbivorous insect and plant diversity are a central topic in biodiversity-functioning research in forest ecosystem, and mechanism under this relationship is the most important theoretical foundation for sustainable management of forest pests. The near-natural conditions, in which the host of Kunyushan web-spinning sawfly (Cephalcia kunyushanica) ranges a proportion from 0% to 100% in Kunyushan region naturally formatted away from anthropogenic interference, have the advantages of providing a herbivorous insect-host system with a multitude of interactions that might not have developed in the same way in artificial experiments.
     This study was conducted in the 40 permanent plots set by Kunyushan Ecosystem Station and to use Kunyushan web-spinning sawfly-host system as a model. Fisrt, forest community and plant diversity of Kunyushan ecosystem was analyzed. Based on this, the interactions between site conditions, plant community factors and larval density of C. kunyushanica were analyzed to explain factors and structures of forest community mediating C. kunyushanica population fluctuations. Furthermore, the functions of herbivory by C. kunyushanica on growth and mortality of Pinus densiflora was detected. The study could further improve and supply knowledge of forest system mediating pests and ecologically based pest management technologies. It also has important therotical significance for promoting development of forest protection and forest ecology. The main results are as follows:
     1. Principal coordinate analysis revealed that plant communities at Kunyushan Forest Reserve could be grouped into six stand types. Species indicator values (IndVals) analysis suggested the each stand type had its own unique indicators. No statistically significant difference was found among the six stand types in their abundance and species richness, while the diversity indices of Fisherα, Shannon–Wiener and Simpson were significantly different among these stand types. The highest Fisherαindex and Shannon–Wiener index were found in broadleaved stand types, whose Simpson index was the lowest. Fisherαand Shannon–Wiener indexes showed no statistically significant differences among the other stand types, i.e. P. thunbergii stands, P. densiflora stands, Larix kaempfer/Cunninghamia lanceolata stands, conifer-Quercus acutissima mixed stands and conifer-broadleaved mixture. Rényi diversity profiles were more intuitive to display some detailed differences of species diversity in communities than that which can not be distinguished by other analysis approaches. ANOVA analysis suggested that shrub and herb diversity indices under various elevations, slope positions, slope gradients and soil depths were not significantly different, except that Shannon-Winner index (F=4.665, P=0.002)and Simpson index(F=2.465, P=0.044) were significantly different in various stand types. However, Rényi diversity profiles indicated that, by having consistently higher profiles than other stand types, broadleaved stands and conifer-broadleaved mixed stands appeared to have higher species diversity, while the other five stand types could not be ordered in diversity with one another as they had corresponding diversity profiles that intersected. On the other hand, site conditions had profound effect on diversity. Plots at lower elevation, lower slope position and gradient, soil thickness > 5cm and ranging 1-3 cm, had lower species diversity. The mean tree number density decreased from 13000 trees/hm2 in 1996 to 2377 trees/hm2 in 2008, which indicated that stands in this region have entered the stem exclusion stage. Shannon diversity index (H) and evenness index (JS) of shrub and herbage plant communities under P. densiflora pure forest was 2.50 and 0.79 in 2008, lower than (H) 2.69 and (JS) 0.85 in 1996, respectively. In P. thunbergii mixed forest, Shannon diversity index (H) and evenness index (JS) of shrub and herbage plant communities was 2.27 and 0.79 in 2008, higher than (H) 1.85 and (JS) 0.77 in 1996, respectively. Species turnover rate (T) was 125.9%, which implied the change of species over 13 years in Kunyushan forest communities. The formation of diverse forest stand types mainly resulted from anthropogenic disturbance about 30 years ago, when new species were introduced and many trees were planted.
    
     2. Larval density of C. kunyushanica differed significantly among year 2006, 2008 and 2009, which it peaked in 2006 and maintained at the lowest level in 2009. In 2006, larval density was significantly positive related to elevation, slope, slope aspect, the host proportions, and Shannon-winner index. The significant positive relation between larval density and host proportion corresponded with“resource concentration hypothesis”. Microclimate triggered by site conditions directly affected the occurrence of C. kunyushanica in 2008. However, larval density in 2009 positively related to stand age, which suggested that the trend of host selection changed along with larval density. Thses results revealed that mechanism for herbivorous insect population outbreak is far more complex in landscape scale than in stand level.
     3. Path analysis permitted insight into the causal mechanism by making a variety of predictions about the strength of direct and indirect interactions causing web-spinning sawfly occurrences in Kunyushan region. 21 significant paths were extracted from total 402 paths, which 381 paths were not significant. The residual paths with 5.22% in proportion of total paths explained 33.29% information of original model. The results indicated that direct interaction to affect web-spinning sawfly outbreak in 2006 included elevation, slope, slope position, host proportion, and Shannon-Winner index. All these factors had a significant positive effect on sawfly population outbreak. All stand features were directly affected by site conditions, and these stands features further affect other factors and all these combining factors together affected sawfly population. Shannon-Winner index had a direct effect on sawfly population, while it was affected by both site conditions and stand features.
     4. The study indicated that no difference of herbivory to host trees was found among different forest types. Almost all forest types performed strong“associational susceptibility”to Kunyushan web-spinning sawfly, except that weak“associational resistance”was observed in conifer-Quercus acutissima mixed stands in 2008, while this resistance only existed other than in 2008. The result confirmed that taxonomically dissimilar plants may be more likely to interact in ways that lead to“associational resistance”, while the strength, consistency, and relative impact of“associational susceptibility”or“associational resistance”on plant fitness also are likely to vary temporally and spatially as environmental conditions and herbivore and plant abundance change. Further, this was probably the first study to prove that site conditions might be contributors for landscape level“associational resistance”which led to continious low larval density in sites at low elevation and shady slope.
     5. Plant diversity played a main role for Kunyushan web-spinning sawfly occurrence. Sawfly larval density increased positively with increasing of plant diversity index values, which the diversity performance differed with the change of forest types. This conclusion is in contrast to many studies reporting a decrease in herbivory or herbivorous insect abundance with increasing plant diversity both in forests and in other systems.
     6. Current year shoot length under different feeding modes was significantly different (F1,7=2.422,p=0.02) and so did the growth rate (F1,7=2.439,p=0.019). Growth of current year shoot was not affected by current year feeding while was affected by last year’s feeding. Current year shoot suffered significant length reduction when it had previously experienced high intensities of two successive herbivore attacks last year and the year before. However, increment of DBH in various stands under different sawfly severities showed no significant difference. This indicated that infestations of sawfly may have obvious impact on shoot growth while it might have little affection on persistence of whole pine stands. We found a significant higher mortality rate (average 13.35%) in severely infested stands whose sawfly larval density was > 25 larvae/tree than that in slightly infested stands (p=0.003). Meanwhile, a positive correlation was found between tree’s mortality and sawfly larval density and canopy cover. Growth of diameter at breast height (DBH) of severely infested stands was slightly higher than that of slightly infested stands while there was no significant difference between them. Sawfly disturbance was most likely the promoter for reverse“J”shape of diameter distribution of stands. This indicated that higher tree mortality caused by sawfly attack could accelerate adjustment of stand density in severely infested stands compared to the same course by population self-thinning in slightly infested stands, however, the attack of sawfly did not inhibited tree growth promisingly.
     C. kunyushanica population dynamics is governed by nonlinear processes, while the impact of site and stand features on its population has a continious effect. The results suggested that future monitoring of sawfly population could be limited in key sites and forest types, which would be effective for accurate prediction of future sawfly occurrence. Keywords: Kunyushan Forest Ecosystem Station, forest ecosystem, Cephalcia kunyushanica,
引文
[1] Hooper DU, Chapin Iii FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 2005, 75(1):3-35.
    [2] Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 2006, 9(10):1146-1156.
    [3] Hector A , Bagchi R. Biodiversity and ecosystem multifunctionality. Nature, 2007, 448(7150):188-190.
    [4] Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 2006, 443(7114):989-992.
    [5] Bailey JK, Wooley SC, Lindroth RL, Whitham TG. Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecology Letters, 2006, 9(1):78-85.
    [6] Andow DA. Vegetational diversity and arthropod population response. Annual Review of Entomology, 1991, 36(1):561-586.
    [7] Tonhasca A , Byrne DN. The effects of crop diversification on herbivorous insects: a meta-analysis approach. Ecological Entomology, 1994, 19(3):239-244.
    [8] Scherber C, Mwangi PN, Temperton VM, Roscher C, Schumacher J, Schmid B, Weisser WW. Effects of plant diversity on invertebrate herbivory in experimental grassland. Oecologia, 2006, 147(3):489-500.
    [9] Unsicker SB, Oswald A, K hler G, Weisser WW. Complementarity effects through dietary mixing enhance the performance of a generalist insect herbivore. Oecologia, 2008, 156(2):313-324.
    [10] Hamb?ck PA, Beckerman AP. Herbivory and plant resource competition: a review of two interacting interactions. Oikos, 2003, 101(1):26-37.
    [11] Hamb?ck PA, Gren J, Ericson L. Associational resistance: insect damage to purple loosestrife reduced in thickets of sweet gale. Ecology, 2000, 81(7):1784-1794.
    [12] Unsicker SB, Baer N, Kahmen A, Wagner M, Buchmann N, Weisser WW. Invertebrate herbivory along a gradient of plant species diversity in extensively managed grasslands. Oecologia, 2006, 150(2):233-246.
    [13] Root RB. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs 43(1), 1973:95-124.
    [14] Mulder K, Huss-Danell H. Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters, 1999, 2(4):237-246.
    [15] Otway SJ, Hector A, Lawton JH. Resource dilution effects on specialist insect herbivores in a grassland biodiversity experiment. Journal of Animal Ecology, 2005, 74(2):234-240.
    [16] Schuldt A, Baruffol M, B hnke M, Bruelheide H, H rdtle W, Lang AC, Nadrowski K, Von Oheimb G, Voigt W, Zhou H. Tree diversity promotes insect herbivory in subtropical forests of south‐east China. Journal of Ecology, 2010, 98(4):917-926.
    [17] Scherer-Lorenzen M, Schulze ED, Don A, Schumacher J, Weller E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspectives in Plant Ecology, Evolution and Systematics, 2007, 9(2):53-70.
    [18] Scherer-Lorenzen M, K?rner, C. & Schulze, E.D. The functional significance of forest diversity: a synthesis. Forest Diversity and Function: Temperate and Boreal Systems. (eds M. Scherer-Lorenzen, C. Ko¨rner & E.D.Schulze), 2005, pp. 377–389. Springer, Berlin, Heidelberg.
    [19] Jactel H, Brockerhoff EG. Tree diversity reduces herbivory by forest insects. Ecology Letters, 2007, 10(9):835-848.
    [20] Vehvil?inen H, Koricheva J, Ruohom?ki K. Tree species diversity influences herbivore abundance and damage: meta-analysis of long-term forest experiments. Oecologia, 2007, 152(2):287-298.
    [21] Sobek S, Scherber C, Steffan-Dewenter I, Tscharntke T. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany’s largest connected deciduous forest. Oecologia, 2009, 160(2):279-288.
    [22] Jactel H, Brockerhoff E, Duelli P. A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In: Scherer-Lorenzen M, K?rner Ch, Schulze E-D (eds) Forest diversity and function. Temperate and boreal systems. Ecological Studies, 2005, 176:Springer, Berlin, pp 235–262.
    [23] Sobek S, Spatiotemporal patterns of insect diversity and multitrophic interactions across a tree diversity gradient. 2008, Nieders chsische Staats-und Universit tsbibliothek G ttingen. http:// webdoc. sub. gwdg. de/diss/2008/sobek/.
    [24] Graham SA. Control of insects through silvicultural practices. Journal of Forestry, 1959, 57:281-283.
    [25] Vasechko GI. An ecological approach to forest protection. Forest Ecology and Management (Netherlands), 1983.
    [26] Koricheva J, Vehvil inen H, Riihim ki J, Ruohom ki K, Kaitaniemi P, Ranta H. Diversification of tree stands as a means to manage pests and diseases in boreal forests: myth or reality? Canadian Journal of Forest Research, 2006, 36(2):324-336.
    [27] L?hde E, Laiho O, Norokorpi Y. Diversity-oriented silviculture in the boreal zone of Europe. Forest Ecology and Management, 1999, 118(1-3):223-243.
    [28] Johansson T. Mixed stands in Nordic countries—a challenge for the future. Biomass and Bioenergy, 2003, 24(4-5):365-372.
    [29] Mielik?inen K , Hynynen J. Silvicultural management in maintaining biodiversity and resistance of forests in Europe–boreal zone: case Finland. Journal of environmental management, 2003, 67(1):47-54.
    [30] Peterson G, Allen CR, Holling CS. Ecological resilience, biodiversity, and scale. Ecosystems, 1998, 1(1):6-18.
    [31] Drever CR, Peterson G, Messier C, Bergeron Y, Flannigan M. Can forest management based on natural disturbances maintain ecological resilience? Canadian Journal of Forest Research, 2006, 36(9):2285-2299.
    [32] Franklin JF, Lindenmayer D, MacMahon JA, McKee A, Magnuson J, Perry DA, Waide R, Foster D. Threads of continuity. Conservation Biology in Practice, 2000, 1(1):8-16.
    [33] Mayer AL, Kauppi PE, Angelstam PK, Zhang Y, Tikka PM. ECOLOGY: Enhanced: Importing Timber, Exporting Ecological Impact. Science, 2005, 308(5720):359.
    [34] North M, Keeton W. Emulating natural disturbance regimes: an emerging approach for sustainable forest management. Patterns and processes in forest landscape: multiple use and sustainable management. New York: Springer-Verlag Inc, 2008:341–372.
    [35] Miller A, Rusnock P. The rise and fall of the silvicultural hypothesis in spruce budworm(Choristoneura fumiferana) management in eastern Canada. Forest Ecology and Management, 1993, 61(1):171-189.
    [36] Muzika RM and Liebhold AM. A critique of silvicultural approaches to managing defoliating insects in North America. Agricultural and Forest Entomology, 2000, 2(2):97-105.
    [37]胡锦涛.高举中国特色社会主义伟大旗帜为夺取全面建设小康社会新胜利而奋斗.今日浙江,2007:6-18.
    [38]江泽慧.中国可持续发展林业战略研究调研报告(下). 2002,北京:中国林业出版社.
    [39]张星耀,骆有庆.中国森林重大生物灾害. 2003,北京:中国林业出版社.
    [40]张星耀,骆有庆,叶建仁,孙江华,梁军.国家林业新时期的森林生物灾害研究.中国森林病虫, 2004, 23(6):8-12.
    [41]叶建仁.中国森林病虫害防治现状与展望.南京林业大学学报, 2000, 24(6):1-5.
    [42]刘世荣,唐守正.我国天然林保护与可持续经营.中国农业科技导报, 2000, 2(1):42-46.
    [43]曾菊平,戈峰,苏建伟,何忠.我国林业重大害虫松毛虫的灾害研究进展.昆虫知识, 2010, 47(3):451-459.
    [44]朱云贵,温小遂,罗俊根,施明清.马尾松毛虫可持续控制的策略和方法.江西林业科技, 2004, 4.
    [45]骆有庆.我国西北地区森林生物灾害的控制策略.中国林业教育, 2007(5):30-31.
    [46]骆有庆,张星耀.面向21世纪的森林防灾减灾.中国农业科技导报, 2000, 2(1):67-72.
    [47]黄烈健,苏晓华.我国杨树溃疡病研究进展.世界林业研究, 2003, 16(4):49-53.
    [48]刘会香,贾秀贞,吕全,梁军.中国杨树溃疡病的发生与防治.世界林业研究, 2005, 18(4):60-63.
    [49]徐梅卿,周旭东,朴春根.中国不同栽培区杨树品系及其病害种类.林业科学研究, 2009, 22(5):705-714.
    [50]程瑞梅,肖文发.三峡库区主要针叶林多样性研究初报.应用生态学报, 2005, 16(9):1791-1794.
    [51] Worrall JJ, Egeland L, Eager T, Mask RA, Johnson EW, Kemp PA, Shepperd WD. Rapid mortality of Populus tremuloides in southwestern Colorado, USA. Forest Ecology and Management, 2008, 255(3-4):686-696.
    [52] Guarín A , Taylor AH. Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. Forest Ecology and Management, 2005, 218(1-3):229-244.
    [53] Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH. Widespread increase of tree mortality rates in the western United States. Science, 2009, 323(5913):521.
    [54]萧刚柔.中国扁叶蜂订正名录(膜翅目:扁叶蜂科).森林病虫通讯, 2000, 19(6):3-5.
    [55] Battisti A, Rodeghiero M. Monitoring spruce web-spinning sawflies Cephalcia spp.: the correlation between trap catches and soil sampling. Entomologia experimentalis et applicata, 1998, 88(3):211-217.
    [56] Jachym M. Web-spinning sawflies of the genus Cephalcia Panzer (Hymenoptera, Pamphiliidae) in thePicea abies forests of the Beskidy Mountains (Poland). . Journal of Forest Science, 2007, (Special Issue):63–68.
    [57]罗正均,张力,杨德敏,陈松,游林,申菲菲,杜戈.马尾松腮扁叶蜂幼虫的生物学习性及防治技术研究.林业科学研究, 2008, 21(5):686-692.
    [58]萧刚柔,黄孝运,周淑芷,吴坚,张培义.中国经济叶蜂志.陕西杨陵, 1991,天则出版社.
    [59]赵秉义,仝英.我国松叶蜂的发生与治理对策.森林病虫通讯, 1998(3):39-41.
    [60]萧刚柔,曾垂惠.危害马尾松的一种新叶蜂:膜翅目:扁叶蜂科.林业科学研究, 1998, 11(5):488-490.
    [61] Eichhorn O. Untersuchungenüber die Fichtengespinstblattwespen Cephalcia spp. Panz.(Hym., Pamphiliidae). Journal of Applied Entomology, 1990, 110(1-5):321-345.
    [62] Wagner MR, Raffa KF. Systematics, Life History and Distribution. Sawfly Life History Adaptations to Woody Plants. 1993, Academic press, San Diego, USA.
    [63] Krause SC, Raffa KF, Wagner MR. Tree response to stress: a role in sawfly outbreaks. Sawfly life history adaptations to woody plants. Academic Press, New York, New York, USA, 1993:211–227.
    [64] Battisti A, Cescatti A. Temperature-Dependent Growth Model for Eggs and Larvae of Cephalcia arvensis (Hymenoptera: Pamphiliidae). Environmental entomology, 1994, 23(4):805-811.
    [65] Eichhorn VO. Studies on the spruce web-spinning sawflies of the genus Cephalcia spp. Panz.(Hym. Pamphiliidae). III. Factors influencing the populations dynamics of C. abietis L. and an attempt for synthesis. Journal of Applied Entomology, 1990, 110(4):321-345.
    [66] Eichhorn O, Bogenschutz H. Untersuchungen uber die Fichtengespinstblattwespen Cephalcia spp. Panz.(Hym., Pamphiliidae) IV. Massenwechsel von Cephalcia abietis L. im oberschwabischen Forstrevier Erolzheim (Fbz. Ochsenhausen). Journal of Applied Entomology, 124, 2000, 3(4):121-139.
    [67] Rodeghiero M, Battisti A. Inter-tree distribution of the spruce web-spinning sawfly, Cephalcia abietis, at endemic density. Agricultural and Forest Entomology, 2000, 2(4):291-296.
    [68] Jensen TS. Phenology and spatial distribution of Cephalcia(Hym., Pamphiliidae) imagines in a Danish spruce forest. Journal of Applied Entomology, 1988, 106(4):402-407.
    [69] Battisti A, Boato A, Masutti L. Influence of silvicultural practices and population genetics on management of the spruce sawy, Cephalcia arvensis. Forest Ecology and Management, 2000, 128:159-166.
    [70] Ozaki K, Fukuyama K, Isono M, Takao G. Simultaneous outbreaks of three species of larch web-spinning sawflies: influences of weather and stand structure. Forest Ecology and Management, 2004, 187(1):75-84.
    [71] Nemer N, Kawar NS, Kfoury L, Frerot B. Evidence of sexual attraction by pheromone in the cedar web-spinning sawfly. The Canadian Entomologist, 2007, 139(5):713-721.
    [72] Kaitaniemi P, Riihim?ki J, Koricheva J, Vehvil?inen H. Experimental evidence for associational resistance against the European pine sawfly in mixed tree stands. Silva Fennica, 2007, 41(2):259-268.
    [73] Geri C. The pine sawfly in central France. In: Dynamics of forest insect populations: patterns, causes, implications. Berryman, A.A. (ed.).- New York (USA): Plenum Press. 1988.
    [74] Marchisio C, Cescatti A, and Battisti A. Climate, soils and Cephalcia arvensis outbreaks on Picea abies in the Italian Alps. Forest Ecology and Management, 1994, 68(2-3):375-384.
    [75] Cescatti A , Battisti A. Distribution and ecology of Lymantria monacha L. and Cephalcia spp. in non-outbreak areas of Trentino (N-Italy). Journal of Pest Science, 1992, 65(5):92-99.
    [76] De Somviele B, Lyytik Inen-Saarenmaa P, Niemel P. Sawfly (Hym., Diprionidae) outbreaks on Scots pine: effect of stand structure, site quality and relative tree position on defoliation intensity. Forest Ecology and Management, 2004, 194(1-3):305-317.
    [77]郝虎,陈国文,吕海元,刘兴明,冯巨文.祁连山区丹巴腮扁叶蜂生物学特性及风险控制.植物检疫, 2008, 22(1):34-36.
    [78]蔡珺,张晓平,董莺.丹巴腮扁叶蜂检疫.中国林业教育, 2009(17):45-45.
    [79]张军生,王志英,温震.落叶松腮扁叶蜂预测预报技术研究.内蒙古林业调查设计, 2006, 29(4):53-56.
    [80]萧刚柔.中国叶蜂四新种(膜翅目,广腰亚目:扁叶蜂科,叶蜂科).林业科学研究, 1990, 3(6):548-552.
    [81]萧刚柔,中国扁叶蜂:膜翅目:扁叶蜂科. 2002:中国林业出版社.
    [82]杨隽,李凯运.昆嵛山腮扁叶蜂生物学特性及防治技术研究.山东林业科技, 2001(3):41-44.
    [83]王传珍,王京刚.昆俞山腮扁叶蜂生物学特性研究.森林病虫通讯, 2000, 19(4):20-22.
    [84]于翠芳.昆嵛山腮扁叶蜂生物学特性及防治技术研究.山东林业科技, 2001(3).
    [85]杜宁,王琦,郭卫华,王仁卿.昆嵛山典型植物群落生态学特性.生态学杂志, 2007, 26(2):151-158.
    [86]王玉涛,郭卫华,刘建,王淑军,王琦,王仁卿.昆嵛山自然保护区生态系统服务功能价值评估.生态学报, 2009, 29(1):523-531.
    [87] Leuschner C, Jungkunst HF, Fleck S. Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic and Applied Ecology, 2009, 10(1):1-9.
    [88] Hansen EM, Goheen EM. Phellinus weirii and other native root pathogens as determinants of forest 16. 17. structure and process in western North America. Annu. Rev. Phytopathol, 2000, 38:515-539.
    [89] Peri T, Korhonen K, Sairanen A. Occurrence of Heterobasidion annosum in pure and mixed spruce stands in southern Finland. Scandinavian Journal of Forest Research, 1990, 5(1):113-125.
    [90] Hansson P. Gremmeniella abietina in Northern Sweden. Silvicultural aspects of disease development in the introduced Pinus contorta and in Pinus sylvestris. Acta Universitatis Agriculturae Sueciae. Silvestria (Sweden), 1996.
    [91] Vehvil?inen H, Koricheva J, Ruohom?ki K, Johansson T, Valkonen S. Effects of tree stand species composition on insect herbivory of silver birch in boreal forests. Basic and Applied Ecology, 2006, 7(1):1-11.
    [92] Romme WH, Knight DH, Yavitt JB. Mountain pine beetle outbreaks in the Rocky Mountains: regulators of primary productivity? American Naturalist, 1986:484-494.
    [93] Kaitaniemi P. Sources of variability in plant resistance against insects: free caterpillars show strongest effects. Oikos, 2001, 95(3):461-470.
    [94] Barbosa P, Hines J, Kaplan I, Martinson H, Szczepaniec A, Szendrei Z. Associational resistance and associational susceptibility: having right or wrong neighbors. Annual Review of Ecology, Evolution, and Systematics, 2009, 40:1-20.
    [95] Bj?rkman C, Larsson S, Bommarco R. Oviposition preferences in pine sawflies: a trade-off between larval growth and defence against natural enemies. Oikos, 1997, 79(1):45-52.
    [96] Larsson S, Ekbom B, Bj?rkman C. Influence of plant quality on pine sawfly population dynamics. Oikos, 2000, 89(3):440-450.
    [97] Olofsson E. Mortality factors in a population of Neodiprion sertifer (Hymenoptera: Diprionidae). Oikos, 1987, 48(3):297-303.
    [98] Bj?rkman C, Bylund H, Klapwijk MJ, Kollberg I, Schroeder M. Insect pests in future forests: More severe problems? Forests, 2011, 2(2):474-485.
    [99] Gruys P. Hits and misses. The ecological approach to pest control in orchards. Entomologia experimentalis et applicata, 1982, 31(1):70-87.
    [100]孙志强,文瑞君,傅建敏.我国森林食叶害虫种群生态控制可行性分析.生态学杂志, 2001, 20(2):77-80.
    [101] Vacher C, Bourguet D, Rousset F, Chevillon C, Hochberg ME. Modelling the spatial configuration of refuges for a sustainable control of pests: a case study of Bt cotton. Journal of evolutionary biology, 2003, 16(3):378.
    [102]梁军,张星耀.森林有害生物的生态控制技术与措施.中国森林病虫, 2004, 23(6):1-8.
    [103] Holdenrieder O, Pautasso M, Weisberg PJ, Lonsdale D. Tree diseases and landscape processes: the challenge of landscape pathology. Trends in Ecology & Evolution, 2004, 19(8):446-452.
    [104]孙志强,张星耀,肖文法,梁军,张兆欣.景观病理学:森林保护学领域的新视角.林业科学, 2010, 46(3):139-145.
    [105] Elton CS. The ecology of invasions by animals and plants, 2000 edn. 1958, University of Chicago Press, Chicago, IL.
    [106] Goodman D. The theory of diversity-stability relationships in ecology. Quarterly Review of Biology, 1975:237-266.
    [107] Tahvanainen JO, Root RB. The influence of vegetational diversity on the population ecology of a specialized herbivore, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Oecologia, 1972, 10(4):321-346.
    [108] Price PW. The plant vigor hypothesis and herbivore attack. Oikos, 1991:244-251.
    [109] Joern A, Mole S. The plant stress hypothesis and variable responses by blue grama grass (Bouteloua gracilis) to water, mineral nitrogen, insect herbivory. Journal of chemical ecology, 2005, 31(9):2069-2090.
    [110] Kitching RL. Food webs in phytotelmata: Bottom-Up”and Top-Down”explanations for community structure. Annual Review of Entomology, 2001, 46:729-760.
    [111] Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD. Ecological meltdown in predator-free forest fragments. Science, 2001, 294(5548):1923.
    [112] Walker M, Jones TH. Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant-insect herbivore-natural enemy systems. Oikos, 2001, 93(2):177.
    [113] Prokopy RJ. Two decades of bottom-up, ecologically based pest management in a small commercial apple orchard in Massachusetts. Agriculture, Ecosystems and Environment, 2003, 94(3):299-309.
    [114] Gripenberg S, Roslin T. Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology. Oikos, 2007, 116(2):181.
    [115] Elton. CS. The ecology of invasions by animals and plants. Methuen, London .1958.
    [116]Pimentel D. Species diversity and insect population outbreaks. Annals of the Entomological Society of America, 1961, 54(1):76-86.
    [117]McCann KS. The diversity–stability debate. Nature, 2000, 405(6783):228-233.
    [118]Thébault E, Loreau M. Trophic interactions and the relationship between species diversity and ecosystem stability. The American Naturalist, 2005, 166(4):95-114.
    [119]Larsen JB. Ecological stability of forests and sustainable silviculture. Forest Ecology and Management, 1995, 73(1-3):85-96.
    [120]Bengtsson J, Nilsson SG, Franc A, Menozzi P. Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecology and Management, 2000, 132(1):39-50.
    [121]Hartley MJ. Rationale and methods for conserving biodiversity in plantation forests. Forest Ecology and Management, 2002, 155(1-3):81-95.
    [122]Karban R. Associational resistance for mule’s ears with sagebrush neighbors. Plant Ecology, 2007, 191(2):295-303.
    [123]Sholes ODV. Effects of associational resistance and host density on woodland insect herbivores. Journal of Animal Ecology, 2008, 77(1):16-23.
    [124]Zhang QH. Olfactory recognition and behavioural avoidance of angiosperm non-host volatiles by conifer bark beetles. Ph.D. thesis, Swedish University of Agricultural Sciences, Agraria 263, Alnarp, Sweden. 2001.
    [125]Zhang QH , Schlyter F. Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 2004, 6(1):1-20.
    [126]Baier P, Führer E, Kirisits T, Rosner S. Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. Forest Ecology and Management, 2002, 159(1-2):73-86.
    [127]White JA, Whitham TG. Associational susceptibility of cottonwood to a box elder herbivore. Ecology,2000, 81(7):1795-1803.
    [128]Brown BJ, Ewel JJ. Herbivory in complex and simple tropical successional ecosystems. Ecology, 1987:108-116.
    [129]Futuyma DJ, Wasserman SS. Resource concentration and herbivory in oak forests. Science, 1980, 210(4472):920-922.
    [130]Fritz RS, Crabb BA, Hochwender CG. Preference and performance of a gall‐inducing sawfly: a test of the plant vigor hypothesis. Oikos, 2000, 89(3):555-563.
    [131]Power ME. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology, 1992, 73(3):733-746.
    [132]Hairston NG, Smith FE, Slobodkin LB. Community structure, population control, and competition. American Naturalist, 1960, 94(879):421-425.
    [133]White TCR. Weather, food and plagues of locusts. Oecologia, 1976, 22(2):119-134.
    [134]李景文.森林生态学.北京:林业出版社.1994.
    [135]MacArthur R. Fluctuations of animal populations and a measure of community stability. Ecology, 1955:533-536.
    [136]Pimm SL. The complexity and stability of ecosystems. Nature, 1984, 307: 321-326. 1984.
    [137]Orians GH. Diversity, stability and maturity in natural ecosystems. Unifying concepts in ecology: report of the plenary sessions of the First international congress of ecology, The Hague, the Netherlands,September 8-14,1975
    [138]马世骏,现代生态学透视. 1990:科学出版社.
    [139]钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社, 1994.
    [140]王国宏.再论生物多样性与生态系统的稳定性.生物多样性, 2002, 10(1):126-134.
    [141]Botkin DB, Discordant harmonies: a new ecology for the twenty-first century. 1992: Oxford University Press, USA.
    [142]Oliver CD, Larson BC. Forest stand dynamics. John Wiley & Sons, New York, 1996.
    [143]Levin SA. Pattern formation in ecological communities. Spatial pattern in plankton communities, 1987:434-465.
    [144]郑汉业,夏乃斌.森林昆虫生态学.北京:中国林业出版杜, 1995.
    [145]Coll M and Bottrell DG. Effects of Nonhost Plant on an Insect Herbivore in Diverse Habitats. Ecology,1994, 75(3):723-731.
    [146]Holmes DM, Barrett GW. Japanese beetle (Popillia japonica) dispersal behavior in intercropped vs. monoculture soybean agroecosystems. American Midland Naturalist, 1997, 137(2):312-319.
    [147]Cook SM, Khan ZR, Pickett JA. The use of push-pull strategies in integrated pest management. Annual Review of Entomology, 2006, 52(1):375.
    [148]Tillman P. Sorghum as a trap crop for Nezara viridula L.(Heteroptera: Pentatomidae) in cotton in the southern United States. Environmental entomology, 2006, 35(3):771-783.
    [149]Wada N, Murakami M, Yoshida K. Effects of herbivore-bearing adult trees of the oak Quercus crispula on the survival of their seedlings. Ecological Research, 2000, 15(2):219-227.
    [150]Harmon J, Ives A, Losey J, Olson A, Rauwald K. Coleomegilla maculata (Coleoptera: Coccinellidae) predation on pea aphids promoted by proximity to dandelions. Oecologia, 2000, 125(4):543-548.
    [151]Hanley ME. Seedling herbivory and the influence of plant species richness in seedling neighbourhoods. Plant Ecology, 2004, 170(1):35-41.
    [152]Barone JA. Host-specificity of folivorous insects in a moist tropical forest. Journal of Animal Ecology, 1998:400-409.
    [153]Botero-Garcés N, Isaacs R. Influence of uncultivated habitats and native host plants on cluster infestation by grape berry moth, Endopiza viteana Clemens (Lepidoptera: Tortricidae), in Michigan vineyards. Environmental entomology, 2004, 33(2):310-319.
    [154]Bhar R and Fahrig L. Local vs. landscape effects of woody field borders as barriers to crop pest movement. Conservation Ecology [online], 1998, 2(2):3.
    [155]van Ruijven J, Berendse F. Diversity–productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3):695.
    [156]Frost CJ, Hunter MD. Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia, 2007, 151(1):42-53.
    [157]Redman AM, Scriber JM. Competition between the gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis: interactions mediated by host plant chemistry, pathogens, and parasitoids. Oecologia, 2000, 125(2):218-228.
    [158]Stiling P, Rossi AM, Cattell MV. Associational resistance mediated by natural enemies. EcologicalEntomology, 2003, 28(5):587-592.
    [159]Stenberg JA, Heijari J, Holopainen JK, Ericson L. Presence of Lythrum salicaria enhances the bodyguard effects of the parasitoid Asecodes mento for Filipendula ulmaria. Oikos, 2007, 116(3):482-490.
    [160]Barbosa P, Caldas A. Seasonal patterns of parasitism and differential susceptibility among species in macrolepidopteran assemblages on Salix nigra (Marsh) and Acer negundo L. Ecological Entomology, 2007, 32(2):181-187.
    [161]Shiojiri K, Takabayashi J, Yano S, Takafuji A. Infochemically mediated tritrophic interaction webs on cabbage plants. Population Ecology, 2001, 43(1):23-29.
    [162]Heimpel GE, Neuhauser C, Hoogendoorn M. Effects of parasitoid fecundity and host resistance on indirect interactions among hosts sharing a parasitoid. Ecology Letters, 2003, 6(6):556-566.
    [163]Kunin WE. Patterns of herbivore incidence on experimental arrays and field populations of ragwort, Senecio jacobaea. Oikos, 1999, 84(3):515-525.
    [164]Bach CE. Effects of plant density and diversity on the population dynamics of a specialist herbivore, the striped cucumber beetle, Acalymma vittata (Fab). Ecology, 1980:1515-1530.
    [165]Long ZT, Mohler CL, Carson WP. Extending the resource concentration hypothesis to plant communities: effects of litter and herbivores. Ecology, 2003, 84(3):652-665.
    [166]Rhainds M, English‐Loeb G. Testing the resource concentration hypothesis with tarnished plant bug on strawberry: density of hosts and patch size influence the interaction between abundance of nymphs and incidence of damage. Ecological Entomology, 2003, 28(3):348-358.
    [167]Joshi J, Otway SJ, Koricheva J, Pfisterer AB, Alphei J, Roy BA, Scherer-Lorenzen M, Schmid B, Spehn, E.M, Hector A. Bottom-up effects and feedbacks in simple and diverse experimental plant communities. Insects and Ecosystem Function (eds W.W.Weisser & E.Seimann). Springer Verlag, Berlin, 2004.
    [168]Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecology Letters, 1999, 2(5):286-293.
    [169]Koricheva J, Mulder CPH, Schmid B, Joshi J, Huss-Danell K. Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia, 2000,125(2):271-282.
    [170]Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH. Contrasting effects of plant richness and composition on insect communities: a field experiment. American Naturalist, 2001, 158(1):17-35.
    [171]Yamamura K. Biodiversity and stability of herbivore populations: influences of the spatial sparseness of food plants. Population Ecology, 2002, 44(1):33-40.
    [172]Kareiva P. Influence of vegetation texture on herbivore populations: resource concentration and herbivore movement. Variable plants and herbivores in natural and managed systems. Academic Press, New York, 1983:259–289.
    [173]戴小华,朱朝东,徐家生,刘仁林,王学雄.寄主植物叶片物理性状对潜叶昆虫的影响.生态学报, 2011, 31(5):1440-1449.
    [174]Brennan EB, Weinbaum SA. Stylet penetration and survival of three psyllid species on adult leaves and'waxy'and'de-waxed'juvenile leaves of Eucalyptus globulus. Entomologia Experimentalis et Applicata, 2001, 100(3):355-363.
    [175]Cornell HV, Hawkins BA. Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. American Naturalist, 2003, 161(4):507-522.
    [176]Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids. Journal of Experimental Biology, 2004, 207(1):47-53.
    [177]Roslin T, Gripenberg S, Salminen JP, Karonen M, B O'Hara R, Pihlaja K, Pulkkinen P. Seeing the trees for the leaves–oaks as mosaics for a host‐specific moth. Oikos, 2006, 113(1):106-120.
    [178]Castells E, Berhow MA, Vaughn SF, Berenbaum MR. Geographic variation in alkaloid production in Conium maculatum populations experiencing differential herbivory by Agonopterix alstroemeriana. Journal of chemical ecology, 2005, 31(8):1693-1709.
    [179]Brewer AM, Gaston KJ. The geographical range structure of the holly leaf‐miner. II. Demographic rates. Journal of Animal Ecology, 2003, 72(1):82-93.
    [180]Denno RF, Gratton C, Peterson MA, Langellotto GA, Finke DL, Huberty AF. Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology, 2002, 83(5):1443-1458.
    [181]Murdoch WW. "Community structure, population control, and competition"-A Critique. American Naturalist, 1966, 100(912):219-226.
    [182]Lawton JH, McNeill S. Between the devil and the deep blue sea: on the problem of being a herbivore.Population dynamics, 1979, (ed. by RM Anderson, BD Turner and LR Taylor):223–244.
    [183]Denno RF, Lewis D, Gratton C. Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations. Annales Zoologici Fennici, 2005.
    [184]Ferrenberg SM, Denno RF. Competition as a factor underlying the abundance of an uncommon phytophagous insect, the salt‐marsh planthopper Delphacodes penedetecta. Ecological Entomology, 2003, 28(1):58-66.
    [185]Roslin T, Roland J. Competitive effects of the forest tent caterpillar on the gallers and leaf-miners of trembling aspen. Ecoscience, 2005, 12(2):172-182.
    [186]DeBach P. The role of weather and entomophagous species in the natural control of insect populations. J. Econ. Entomol, 1958, 51:474–484.
    [187]Irwin JT, Lee Jr RE. Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, Eurosta solidaginis. Oikos, 2003, 100(1):71-78.
    [188]Roy DB, Thomas JA. Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia, 2003, 134(3):439-444.
    [189]Henriksson J, Haukioja E, Ossipov V, Ossipova S, Sillanp S, Kapari L, Pihlaja K. Effects of host shading on consumption and growth of the geometrid Epirrita autumnata: interactive roles of water, primary and secondary compounds. Oikos, 2003, 103(1):3-16.
    [190]Tuda M, Matsumoto T, Itioka T, Ishida N, Takanashi M, Ashihara W, Kohyama M, Takagi M. Climatic and intertrophic effects detected in 10-year population dynamics of biological control of the arrowhead scale by two parasitoids in southwestern Japan. Population Ecology, 2006, 48(1):59-70.
    [191]Bj?rnstad ON, Grenfell BT. Noisy clockwork: time series analysis of population fluctuations in animals. Science, 2001, 293(5530):638.
    [192]Bj?rnstad ON, Peltonen M, Liebhold AM, Baltensweiler W. Waves of larch budmoth outbreaks in the European Alps. Science, 2002, 298(5595):1020.
    [193]Lovett GM, Christenson LM, Groffman PM, Jones CG, Hart JE, Mitchell MJ. Insect defoliation and nitrogen cycling in forests. Bioscience, 2002, 52(4):335-341.
    [194]Berryman AA. What causes population cycles of forest Lepidoptera? Trends in Ecology & Evolution, 1996, 11(1):28-32.
    [195]Hunter MD, Varley GC, Gradwell GR. Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(17):9176.
    [196]Hanski I, Henttonen H, Korpim ki E, Oksanen L, Turchin P. Small-rodent dynamics and predation. Ecology, 2001, 82(6):1505-1520.
    [197]Haukioja E. Induction of defenses in trees. Annual Review of Entomology, 1991, 36(1):25-42.
    [198] Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F. Ecological responses to recent climate change. Nature, 2002, 416(6879):389-395.
    [199]Ims RA, Fuglei E. Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience, 2005, 55(4):311-322.
    [200]Volney WJA , Fleming RA. Climate change and impacts of boreal forest insects. Agriculture, Ecosystems & Environment, 2000, 82(1-3):283-294.
    [201]Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 2002, 8(1):1-16.
    [202]Coley PD. Possible effects of climate change on plant/herbivore interactions in moist tropical forests. Climatic Change, 1998, 39(2):455-472.
    [203]Hogg EH, Brandt JP, Kochtubajda B. Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Canadian Journal of Forest Research, 2002, 32(5):823-832.
    [204]Logan JA, Régnière J, Powell JA. Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 2003, 1(3):130-137.
    [205]Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irland LC, Lugo AE, Peterson CJ. Climate change and forest disturbances. Bioscience, 2001, 51(9):723-734.
    [206]Spiller DA , Schoener TW. Long-term variation in the effect of lizards on spider density is linked to rainfall. Oecologia, 1995, 103(2):133-139.
    [207]Bertness MD, Ewanchuk PJ. Latitudinal and climate-driven variation in the strength and nature of biological interactions in New England salt marshes. Oecologia, 2002, 132(3):392-401.
    [208]Bezemer TM, Jones TH, Knight KJ. Long-term effects of elevated CO 2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae.Oecologia, 1998, 116(1):128-135.
    [209]Hastings A. Transients: the key to long-term ecological understanding? Trends in Ecology & Evolution, 2004, 19(1):39-45.
    [210]Henson SM, Cushing JM, Costantino RF, Dennis B, Desharnais RA. Phase switching in population cycles. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1998, 265(1411):2229.
    [211]Yamamura K, Yokozawa M, Nishimori M, Ueda Y, Yokosuka T. How to analyze long-term insect population dynamics under climate change: 50-year data of three insect pests in paddy fields. Population Ecology, 2006, 48(1):31-48.
    [212]Fraver S, Seymour RS, Speer JH, White AS. Dendrochronological reconstruction of spruce budworm outbreaks in northern Maine, USA. Canadian Journal of Forest Research, 2007, 37(3):523-529.
    [213]Sutton A, Tardif JC. Dendrochronological reconstruction of forest tent caterpillar outbreaks in time and space, western Manitoba, Canada. Canadian Journal of Forest Research, 2007, 37(9):1643-1657.
    [214]Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A. 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1610):671.
    [215]Haukioja E. Plant defenses and population fluctuations of forest defoliators: mechanism-based scenarios. Annual Zoology Fennici, 2005, 42:313-325.
    [216]Fan J, Kang L, Sun J. Role of host volatiles in mate location by the Japanese pine sawyer, Monochamus alternatus Hope (Coleoptera: Cerambycidae). Environmental entomology, 2007, 36(1):58-63.
    [217]Lu M, Miller DR, Sun JH, Hector A. Cross-Attraction between an exotic and a native pine bark beetle: a novel invasion mechanism. PloS one, 2007, 2(12):689-710.
    [218]峰戈,苏建伟. 21世纪害虫管理的一些特征展望.昆虫知识, 2002, 39(4):241-247.
    [219]宋晓东,刘桂荣,陈江燕,吴景云,徐贵军,李淑华,吴锈刚.樟子松枯死原因与防治技术研究.北华大学学报:自然科学版, 2003, 4(2):166-169.
    [220]Liang J, Sun ZQ, Qu Z, Zhang Y, Lu Q, Zhang XY. Long-term effect of an ectomycorrhizal inoculum and other treatments on survival and growth of Populus hopeiensis Hu et Chow. Forest Ecology and Management, 2010, 259:2223-2232.
    [221]章家恩主编.生态学常用实验研究方法与技术.北京:化学工业出版社, 2006.
    [222]王仁卿,周光裕.山东半岛赤松林的天然更新及其发展前途的研究.生态学杂志, 1989,8(2):18-22.
    [223]刘灿然,马克平.多样性排序:方法与实例.植物生态学报, 2002, 26(增刊):63-67.
    [224]王仁卿,吕以璞.昆嵛山天然赤松种群的数量特征及更新动态.生态学杂志, 2000, 19(3):61-65.
    [225]宋葆华,李法曾.山东昆嵛山植物区系研究.武汉植物学研究, 1999, 17(3):220-226.
    [226]张宪强,张治国,张淑萍,王仁卿.山东昆嵛山植物区系初步研究.植物研究, 2003, 23(4):492-499.
    [227]任延刚,王娜,韩晓弟.山东昆嵛山国家森林公园野生豆科植物资源调查及其经济利用.中国林副特产, 2008(6):66-68.
    [228]Ugland KI, Gray JS, Ellingsen KE. The species–accumulation curve and estimation of species richness. Journal of Animal Ecology, 2003, 72(5):888-897.
    [229]Moreno CE, Halffter G. On the measure of sampling effort used in species accumulation curves. Journal of Applied Ecology, 2001, 38(2):487-490.
    [230]Colwell RK, Mao CX, Chang J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology, 2004, 85(10):2717-2727.
    [231]Mao CX, Colwell RK, Chang J. Estimating the species accumulation curve using mixtures. Biometrics, 2005, 61(2):433-441.
    [232]李巧,陈又清,徐正会.蚂蚁群落研究方法.生态学杂志, 2009, 28(9):1862r1870.
    [233]Robert DW. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.3-1. [CP/OL]. [2009– 11– 5]. http://ecology.msu.montana.edu/labdsv/R., 2007.
    [234]TEAM RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [CP/OL]. [2009– 11– 2]. http://www.R-project.org., 2009.
    [235]Oksanen J, Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M.H.H. & Wagner, H. vegan: community ecology package. R package version 1.15-4. http://CRAN.R-project.org/package=vegan. 2009.
    [236]Roberts DW, labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.3-1. 2007.
    [237]李巧,陈又清,陈彦林,陈祯.紫胶林-农田复合生态系统蝗虫群落多样性.应用生态学报, 2009, 20(003):729-735.
    [238]Tóthmérész B. Comparison of different methods for diversity ordering. Journal of Vegetation Science, 1995, 6(2):283-290.
    [239]Kindt R, Damme P, Simons A. Tree diversity in western Kenya: using profiles to characterise richness and evenness. Forest Diversity and Management, 2006:193-210.
    [240]Kindt R, Coe R. Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. 2005: World Agroforestry Centre (ICRAF).
    [241]Venables WN, Smith DM. the R Development Core Team. 2008. An Introduction to R Notes on R: A Programming Environment for Data Analysis and Graphics. R core team, version, 2008, 2(1).
    [242]庄树宏,王克明,陈礼学.昆嵛山老杨坟阳坡与阳坡半天然植被植物群落生态学特性的初步研究.植物生态学报, 1999, 23(3):238-249.
    [243]Mueller-Schaerer H. The impact of root herbivory as a function of plant density and competition: Survival, growth and fecundity of Centaurea maculosa in field plots. Journal of Applied Ecology, 1991, 28(3):759-776.
    [244]Magnuson JJ, Benson BJ, McLain AS. Insights on species richness and turnover from long-term ecological research: fishes in north temperate lakes. Integrative and Comparative Biology, 1994, 34(3):437.
    [245]Diamond JM, May RM. Species turnover rates on islands: dependence on census interval. Science, 1977, 197(4300):266.
    [246]Kotwal PC, Omprakash MD, Gairola S, Dugaya D. Ecological indicators: Imperative to sustainable forest management. Ecological Indicators, 2008, 8(1):104-107.
    [247]吴大千,杜宁,王炜,翟雯,王玉芳,王仁卿,张治国.昆嵛山森林群落下灌草层结构与多样性研究.山东大学学报:理学版, 2007, 42(1):83-88.
    [248]方精云,王襄平,沈泽昊,唐志尧,贺金生,于丹,江源,王志恒,郑成洋,朱江玲.植物群落清查的主要内容,方法和技术规范.生物多样性, 2009, 17(6):533-548.
    [249]李巧,陈彦林,周兴银,贝荣塔,尹立红,熊忠平.退化生态系统生态恢复评价与生物多样性.西北林学院学报, 2008, 23(4):69-73.
    [250]王仁卿.山东森林植被恢复的生态学研究.山东大学.博士论文. 1-198. 2005,山东大学.
    [251]黄忠良,孔国辉,何道泉.鼎湖山植物群落多样性的研究.生态学报, 2000, 20(2):193-198.
    [252]马克平,黄建辉,于顺利.北京东灵山地区植物群落多样性的研究.生态学报, 1995, 15(3):268-277.
    [253]Noss RF. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 1990,4(4):355-364.
    [254]Lambeck RJ. Focal species: A multi‐species umbrella for nature conservation. Conservation Biology, 1997, 11(4):849-856.
    [255]Noss RF. Assessing and monitoring forest biodiversity-A suggested framework and indicators. Forest Ecology and Management, 1999, 115(2):135-146.
    [256]李晓文,张玲.指示种,伞护种与旗舰种:有关概念及其在保护生物学中的应用.生物多样性, 2002, 10(1):72-79.
    [257]Rutters KH, Law BE, Kucera RC, Gallant AL, DeVelice RL, Palmer CJ. A selection of forest condition indicators for monitoring. Environmental Monitoring and Assessment, 1992, 20(1):21-33.
    [258]Diekmann M. Species indicator values as an important tool in applied plant ecology-a review. Basic and Applied Ecology, 2003, 4(6):493-506.
    [259]周小勇,黄忠良,史军辉,欧阳学军,李炯,张池.鼎湖山针阔混交林演替过程中群落组成和结构短期动态研究.热带亚热带植物学报, 2004, 12(4):323-330.
    [260]马克平.生物群落多样性的测度方法.生物多样性, 1994, 4:231-239.
    [261]郭建英,万方浩,胡雅辉,严盈.不同作物布局方式对转基因抗虫棉田节肢动物群落结构的影响.应用生态学报, 2007, 18(9):2061-2068.
    [262]Fentahun M, Hager H. Integration of indigenous wild woody perennial edible fruit bearing species in the agricultural landscapes of Amhara region, Ethiopia. Agroforestry Systems, 2010, 78(1):79-95.
    [263]王贵霞,李传荣,许景伟,夏江宝.温带森林群落多样性的测度方法比较评述.浙江林学院学报, 2004, 21(4):486-491.
    [264]赵海军,纪力强.生物多样性评价软件BiodiversityMapping的设计与实现.生物多样性, 2004, 12(5):541-545.
    [265]Levin SA. Pattern formation in ecological communities. Spatial pattern in plankton communities, 1978, 3:467–465.
    [266]Namikawa K, Ishikawa Y, Sano J. Stand dynamics during a 12-year period in a second-growth stand in a cool temperature forest in northern Japan. Ecological Research, 1997, 12(3):277-287.
    [267]Harcombe PA, Bill CJ, Fulton M, Glitzenstein JS, Marks PL, Elsik IS. Stand dynamics over 18 years in a southern mixed hardwood forest, Texas, USA. Journal of Ecology, 2002, 90(6):947-957.
    [268]Kashian DM, Turner MG, Romme WH. Variability in leaf area and stemwood increment along a300-year lodgepole pine chronosequence. Ecosystems, 2005, 8(1):48-61.
    [269]Lei X, Lu Y, Peng C, Zhang X, Chang J, Hong L. Growth and structure development of semi-natural larch-spruce-fir (Larix olgensis–Picea jezoensis–Abies nephrolepis) forests in northeast China: 12-year results after thinning. Forest Ecology and Management, 2007, 240(1-3):165-177.
    [270]Karlsson PS, Weih M. Long-term patterns of leaf, shoot and wood production after insect herbivory in the Mountain Birch. Functional Ecology, 2003:841-850.
    [271]Wulder MA, White JC, Dymond CC, Nelson T, Boots B, Shore TL, Ouma YO, Tateishi R, Chen Z, Goddard S. Calculating the risk of mountain pine beetle attack: a comparison of distance-and density-based estimates of beetle pressure. Journal of Environmental Informatics, 2006, 8(2):58-69.
    [272]McCarthy JW, Weetman G. Self-thinning dynamics in a balsam fir (Abies balsamea (L.) Mill.) insect-mediated boreal forest chronosequence. Forest Ecology and Management, 2007, 241(1-3): 295-309.
    [273]McCarthy JW, Weetman G. Stand structure and development of an insect-mediated boreal forest landscape. Forest Ecology and Management, 2007, 241(1-3):101-114.
    [274]Goslin MN. Development of two coniferous stands impacted by multiple, partial fires in the Oregon Cascades: establishment history and the spatial patterns of colonizing tree species relative to old-growth remnant trees.Thesis. Oregon State University, Corvallis, Oregon, USA. 1997.
    [275]Schowalter TD, Withgott J. Rethinking Insects What would an ecosystem approach look like? Conservation in Practice, 2001, 2(4):10-15.
    [276]Hummel S, Agee JK. Western spruce budworm defoliation effects on forest structure and potential Fire behavior. Northwest science, 2003, 77(2):159-169.
    [277]Wootton JT. Indirect effects, prey susceptibility, habitat selection: impacts of birds on limpets and algae. Ecology, 1992, 73(3):981-991.
    [278]Wootton JT. Indirect effects and habitat use in an intertidal community: interaction chains and interaction modifications. The American Naturalist, 1993, 141(1):71-89.
    [279]Wootton JT. Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology, 1994, 75(1):151-165.
    [280]Li CC. Path analysis-a primer. 1975, Pacific Grove, California, USA: The Boxwood Press.
    [281]Smith FA, Brown JH, Valone TJ. Path analysis: a critical evaluation using long-term experimental data.The American Naturalist, 1997, 149(1):29-42.
    [282]Grace JB, Pugesek BH. On the use of path analysis and related procedures for the investigation of ecological problems. American Naturalist, 1998:151-159.
    [283]Baier P, Pennerstorfer J, Schopf A. PHENIPS--A comprehensive phenology model of Ips typographus (L.)(Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecology and Management, 2007, 249(3):171-186.
    [284]Netherer S, Nopp-Mayr U. Predisposition assessment systems (PAS) as supportive tools in forest management--rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. Forest Ecology and Management, 2005, 207(1-2):99-107.
    [285]Carroll AL, Quiring DT. Influence of feeding by Zeiraphera canadensis (Lepidoptera: Tortricidae) on growth of white spruce: larval density-damage and damage-shoot production relationships. Journal of Applied Ecology, 1993, 30(4):629-639.
    [286]Schwenke W.über die Beziehungen zwischen dem Wasserhaushalt von B umen und der Vermehrung blattfressender Insekten1. Zeitschrift für Angewandte Entomologie, 1962, 51(1-4):371-376.
    [287]Schmutzenhofer H. Site characteristics and mass outbreaks of Cephalcia abietis in Austria. Site characteristics and population dynamics of Lepidopteran and Hymenopteran forest pests. Res. Devel. Paper, Forestry Commission UK, 1985:27-35.
    [288]Eichhorn O, Bogenschütz H. Untersuchungenüber die Fichtengespinstblattwespen Cephalcia spp. Panz.(Hym., Pamphiliidae) IV. Massenwechsel von Cephalcia abietis L. im oberschw bischen Forstrevier Erolzheim (Fbz. Ochsenhausen). Journal of Applied Entomology, 2000, 124(3-4):121-139.
    [289]杨德敏,游林,陈松.马尾松腮扁叶蜂发生与环境关系的调查.重庆林业科技, 2004(2):71-72.
    [290]Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, L ngstr m B, Moreira F, Netherer S, Orazio C, Piou D. The influences of forest stand management on biotic and abiotic risks of damage. Annals of Forest Science, 2009, 66(7):701-701.
    [291]Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecology Letters, 2008, 11(12):1351-1363.
    [292]Garibaldi LA, Kitzberger T, Chaneton EJ. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia, 2011:1-13.
    [293]Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 2008, 105(18):6668.
    [294]Wilf P. Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist, 2008, 178(3):486-502.
    [295]Dhubhain AN, Walshe J, Bulfin M, Keane M, Mills P. The initial development of a windthrow risk model for Sitka spruce in Ireland. Forestry, 2001, 74(2):161.
    [296]Wilbur HM , Fauth JE. Experimental aquatic food webs: interactions between two predators and two prey. The American Naturalist, 1990, 135(2):176-204.
    [297]Bommarco R, Banks JE. Scale as modifier in vegetation diversity experiments: effects on herbivores and predators. Oikos, 2003, 102(2):440.
    [298]Ruggiero A, Sackmann P, Farji-Brener AG, Kun M. Beetle abundance-environment relationships at the Subantarctic-Patagonian transition zone. Insect Conservation and Diversity, 2009, 2(2):81-92.
    [299]Kaspari M, Alonso L. Three energy variables predict ant abundance at a geographical scale. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2000, 267(1442):485.
    [300]Hawkins BA, Field R, Cornell HV, Currie DJ, Gu¨|gan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 2003, 84(12):3105-3117.
    [301]Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O'Brien E. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 2004, 7(12):1121-1134.
    [302]Newer N, Demolin G, Kawar N, Kfoury L, Zakhour E. Monitoring of the new cedar web-spinning sawfly, Cephalcia tannourinensis n. sp., in cedar forests of Lebanon. Entomological research in Mediterranean forest ecosystems, 2005:247.
    [303] Carson WP, Root RB. Top-down effects of insect herbivores during early succession: influence on biomass and plant dominance. Oecologia, 1999, 121(2):260-272.
    [304] Wratten S. Population regulation in insect herbivores-top-down or bottom-up? New Zealand journal of ecology, 1992, 16:145-145.
    [305] Karban R, Agrawal AA, Mangel M. The benefits of induced defenses against herbivores. Ecology,1997, 78(5):1351-1355.
    [306]孙志强,张星耀,林琳,梁军,张英军,于善栋,杨晓燕.赤松纯林林分特征对昆嵛山鳃扁叶蜂发生量的影响.生态学报, 2010, 30(4):857-866.
    [307] Jakkila J, Pohtila E. Effect of cleaning on development of sapling stands in Lapland. Folia Forestalia, 1978, 360:27.
    [308] Miller FD, Stephen FM. Effects of competing vegetation on Nantucket pine tip moth (Lepidoptera: Tortricidae) infestation pine plantations in east Texas. Environ. Entomol, 1983, 21:534-541.
    [309] Lanner RM. Patterns of shoot development in Pinus and their relationship to growth potential. Academic Press, 1976:223-243.
    [310] Jiang IBJ, Jonsson A, Eriksson G. Within-and between-population variation in growth of Pinus contorta var. latifolia: A combined study of growth-chamber and field-trial experiments. Silvae Genetica, 1989, 38:5-6.
    [311] Lascoux M, Lundkvist K. Growth of 24 full-sib families of Pinus sylvestris at six relative nutrient addition rates. Scandinavian Journal of Forest Research, 1992, 7(1):473-484.
    [312] Piene H, Little CHA. Spruce budworm defoliation and growth loss in young balsam fir: artificial defoliation of potted trees. Canadian Journal of Forest Research, 1990, 20(7):902-909.
    [313]Little CHA, Lavigne MB, Ostaff DP. Impact of old foliage removal, simulating defoliation by the balsam fir sawfly, on balsam fir tree growth and photosynthesis of current-year shoots. Forest Ecology and Management, 2003, 186(1-3):261-269.
    [314]Kulman HM. Effects of artificial defoliation of pine on subsequent shoot and needle growth. Forest Science, 1965, 11(1):90-98.
    [315]Thomas LP, Watson MA. Leaf removal and the apparent effects of architectural constraints on development in Capsicum annuum. American journal of botany, 1988, 75(6):840-843.
    [316]Sprugel D, Hinckley T. Carbon autonomy in Abies amabilis branches growth vs. survival. Bulletin of the Ecological Society of America, 1990, 71:333-334.
    [317]Jéremo J, Tuomi J, Nilsson P, Lennartsson T. Plant adaptations to herbivory: mutualistic versus antagonistic coevolution. Oikos, 1999, 84(2):313-320.
    [318]Trumble JT, Kolodny-Hirsch DM, Ting IP. Plant compensation for arthropod herbivory. Annual Review of Entomology, 1993, 38(1):93-119.
    [319]Baskerville GL. Spruce budworm: the answer is forest management. Or is it. Forestry Chronicle, 1975, 51:157-160.
    [320]Prittinen K, Pusenius J, Koivunoro K, Rousi M, Roininen H. Mortality in seedling populations of silver birch: genotypic variation and herbivore effects. Functional Ecology, 2003:658-663.
    [321]Wolf A, Kozlov MV, Callaghan TV. Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Climatic Change, 2008, 87(1):91-106.
    [322]Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, Hammond PM, Hodda M, Holt RD, Larsen TB, Mawdsley NA. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 1998, 391:72-75.
    [323]Canterbury GE, Martin TE, Petit DR, Petit LJ, Bradford DF. Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conservation Biology, 2000, 14(2):544-558.
    [324]Harig AL, Bain MB. Defining and restoring biological integrity in wilderness lakes. Ecological Applications, 1998, 8(1):71-87.
    [325]P?rt T, S?derstr?m B. Conservation value of semi-natural pastures in Sweden: contrasting botanical and avian measures. Conservation Biology, 1999, 13(4):755-765.
    [326]Brooks RP, O'Connell TJ, Wardrop DH, Jackson LE. Towards a regional index of biological integrity: the example of forested riparian ecosystems. Environmental Monitoring and Assessment, 1998, 51(1):131-143.
    [327]梁军,孙志强,朱彦鹏,张星耀,于善栋,张英军,杨晓燕,唐晓娟.昆嵛山天然林13年演替动态-生物多样性变化、物种周转与食叶害虫的短期干扰.中南林业科技大学学报:自然科学版, 2011, 31(1):9-17.
    [328]Rantala MJ, Kortet R, Kotiaho JS, Vainikka A, Suhonen J. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Functional Ecology, 2003, 17(4):534-540.
    [329]Beckage N, Reynolds S. Evolution and physiological functions of insect polydnaviruses: introduction. Journal of Insect Physiology, 2003, 49(5):395-396.
    [330]Moreau GT, Eveleigh ES, Lucarotti CJ, Quiring DT. Stage-specific responses to ecosystem alteration in an eruptive herbivorous insect. Journal of Applied Ecology, 2006, 43(1):28-34.
    [331]张伟,赵善伦.山东赤松种群的数量动态.植物资源与环境学报, 2000, 9(3):41-45.
    [332]王仁卿,周光裕.山东半岛赤松林的天然更新及其发展前途的研究.生态学杂志, 1989, 8(2):18-22.
    [333]武武.中国生态系统研究网络(CERN)中国科学院鼎湖山森林生态系统定位研究站鼎湖山森林生态系统国家野外研究站.地球科学进展, 2005, 20(5).
    [334]王兵,崔向慧,杨锋伟.中国森林生态系统定位研究网络的建设与发展.生态学杂志, 2004, 23(4): 84-91.
    [335]陆燕.江苏下蜀城市森林冠层水文特征及数据管理系统研究. 2004,南京林业大学.
    [336]Hagar JC. Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: A review. Forest Ecology and Management, 2007, 246(1):108-122.
    [337]Pitt D, Lanteigne L. Long-term outcome of precommercial thinning in northwestern New Brunswick: growth and yield of balsam fir and red spruce. Canadian Journal of Forest Research, 2008, 38(3):592-610.
    [338]赵平,彭少麟,张经炜.恢复生态学-退化生态系统生物多样性恢复的有效途径.生态学杂志, 2000, 19(1):53-58.
    [339]兰国玉.世界热带森林生态系统大样地定位研究进展.西北植物学报, 2007, 27(10):2140-2145.
    [340]Tóthmérész B. Diversity characterizations in R. DIAS Report, 2005, 15:333-344.
    [341]Wargo PM. Disturbance in forest ecosystems caused by pathogens and insects. In: Forest health through silviculture. Proceedings of the 1995 Silviculture Workshop, Eskew, L.G. (comp.). USDA Forest Service Gen. Tech. Rep. RM-GTR-267. 246 p. 1995.
    [342]Hagle S, Schwandt J, Johnson T, Kegley S, Randall CB, Taylor J, Lockman IB, Sturdevant N, Marsden M. Successional functions of pathogens and insects; Ecoregion sections M332a and M333d in northern Idaho and western Montana. Volume, 2000, 1:00-10.
    [343]Simberloff D. Management of boreal forest biodiversity-A view from the outside. Scandinavian Journal of Forest Research, 2001, 16:105-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700