姜黄根际放线菌的分离与次生代谢产物的成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
放线菌在土壤中是微生物种群的重要组成部分,也是各种环境下容易分离得到的微生物。它能够生产出许多具有不同化学结构或生物活性的次生代谢产物。目前,已有很多由放线菌生产的物质被广泛应用于人类、动物疾病的治疗和农业上病虫害的防治上。近年来,由于很多放线菌类群被重复发现,预示着用新方法、新材料、新的活性物质筛选模型等进行放线菌分离是寻找新的次生代谢产物的途径之一。
     放线菌可以通过植物根际与植物形成寄生或共生关系。通过对特定植物的根际进行放线菌分离,是寻找新的次生代谢产物的手段之一。因此,本文以四川道地中药材姜黄根际为材料进行放线菌的分离,并利用2种活性物质筛选模型,对活性物质进行了初步研究,期望从姜黄根际中筛选到能生产具有生物活性的新次生代谢产物。
     1.利用水稻纹枯病菌和稻瘟病菌筛选拮抗活性放线菌
     本实验分离到了一株对水稻纹枯病菌和稻瘟病菌都有抑制活性的放线菌菌株,并命名为Eri1 2。通过形态学观察、生理生化指标的测定以及16S rDNA系统进化树分析,发现Eri1 2菌株属于灰色链霉菌(Streptomyces griseus)。
     该菌株的菌丝粗提物对水稻纹枯病菌和稻瘟病菌都具有很强的抑制活性。而且菌丝粗提物的田间小区试验发现,经喷施粗提物处理过的水稻植株的稻瘟病感病率明显下降,对稻瘟病叶病防治率可达64.5%。
     菌株Eri12产生的活性物质不溶于水,并具有良好的酸碱稳定性和热稳定性,经强酸、强碱和高温处理30min后,菌丝粗提物的抗菌活性基本不变。利用液相分配、固相萃取和高效液相色谱(HPLC)技术进行分离纯化,得到了3种活性物质。TOF-MS的分析测定表明,活性物质的分子量分别为219.1046,233.0837和390.2801。采用三重四级杆对其中对病原菌具有较强活性的物质(分子量为219.0416)进行了分析,通过分子片段比对及数据库分析,推测该活性物质中极有可能螯合锂元素,可能是新型抗生素。
     2.利用抗氧化试验筛选产抗氧化活性物质的放线菌
     利用抗氧化试验为筛选模型,从姜黄根际中分离到了一株产抗氧化剂的放线菌菌株,命名为Eri1 1.经形态学观察、生理生化指标测定以及系统进化树的构建,鉴定菌株Eri1 1属于链霉菌属。
     采用菲林试剂法和改良的氯化铝比色法对菌株发酵液中的总酚和总黄酮分别进行了测定,结果为每克菌株发酵液的干物质中含有相当于13.59±0.17 mg没食子酸的酚类物质和含有相当于9.93±0.83 mg芦丁的黄酮类物质。
     发酵液对ABTS自由基和OH自由基均有一定的清除能力。发酵液干物质对ABTS自由基和羟自由基的清除率为50%时的浓度分别为223.81士24.50μg/mL (IC50=223.81士24.50μ/mL)和582.42士83.10μg/mL(IC50=582.42士83.10μg/mL).
     通过对菌株发酵液抗氧化活性的初探,说明菌株Eri1 1具有生产抗氧化剂的能力。
     通过不同的筛选模型,我们从姜黄根际中分离出了2株产不同生物活性物质的放线菌菌株。本文中发现其中一株能代谢产生一种可能含有锂元素的活性物质,对水稻纹枯病菌和稻瘟病菌有较强的抑制效果,推测其是一种新型的抗生素。在今后的工作中,我们将对该活性物质的结构进行鉴定分析,以及研究它对水稻稻瘟病菌和水稻纹枯病菌的作用机理。
Actinomycetes are widely distributed in a variety of natural and manmade environments, constituting a very important component of the microbial population in most soils. Actinomycetes play a significant role in the pharmaceutical industry for their capacity to produce secondary metabolites with the diverse biological activities and chemical structures. Tens of thousands of such compounds have been isolated, purified and characterized, many of which have been developed into drugs for treatment of wide range of diseases in human, veterinary and agriculture sectors. Recently, the rate of discovery of new actinomycete has decreased, whereas the rate of re-isolation of known material has increased. Therefore, many efforts have been made to select and isolate the new actinomycetes from other biotopes.
     Actinomycetes are known to form intimate associations with plants and colonize their internal tissue, and they inhabit a wide range of plants as either symbionts or parasites from the plant rhizosphere. Isolating the actinomycetes from the rhizosphere of the special plants is the one kind of methods for searching for the novel second metabolites with biological activity. Therefore, we focused on isolating the actinomycetes from the rhizosphere of Rhizoma Curcumae Longae, one kind of typical Chinese medical plants in Sichuan province, by using two kinds of different screening system. The main results are provided as follows:
     1. Isolation actinomycetes by using antibacterial system
     In the present research, we isolated one kinds of actinomycetes strain which have strong antagonism activity against rice sheath blight(Rhizoctonia solani) and rice b\ast(Magnaporthe grisea), and named as Eri12. According to the morphology, physiological and chemical tests and phylogenetic tree based on the 16S rDNA, the strain Eri12 was characterized as Streptomyces griseus.
     The mycelia extract with 80% methanol also showed strong antagonism activity against rice sheath blight(Rhizoctonia solani) and rice blast(Magnaporthe grisea). The field test was adopted with the mycelia extract for testing the ability of preventing rice from rice blast(Magnaporthe grisea). The blast susceptibility rate of the rice plants sprayed with the mycelia extract decreased significantly, and the rice plants infectious rate of rice blast (Magnaporthe grisea) was 35.5% after treated with mycelia extract.
     The active compounds produced by the strain Eri12 is insoluble in the water. The active compounds were stable after treated with acid, alkali and 100℃, respectively. Purification of the active compounds was achieved by using extraction, solid partition extract and HPLC. After purification, there were three active compouds. The molecular weight of active compounds were 219.1046,233.0837 and 390.2801 separately, by using the LC-TOF/MS. And the compound (MW: 219.1046) showed strongest activity was submitted to Quadrupole. As a result, there could be Li element in the compound (MW: 219.1046). Therefore, the active compound (MW: 219.1046) could be a novel candidate of the antibiotics with Li element.
     2. Isolation of actinomycetes based on the antioxidant activity
     The one of actinomycete strains was isolated from the rhizosphere of-Rhizoma Curcumae Longae by using antioxidant assay system, and named as Erill. According to the morphology, physiological and chemical tests and phylogenetic tree based on the 16S rDNA, the strain Erill was strongly characterized as Streptomyces.
     The total contents of phenols and flavonoids of cultured broth were investigated by using the Folin-Ciocalteu method and AICl3 colormetric method, respectively. The total phenols contents in the cultivated broth were calculated to be 13.59±0.17 mg gallic acid equivalent/g extract. Meanwhile, by using AICI3 colormetric method, the total flavonoids contents in the cultivated broth were calculated to be 9.93±0.83 mg rutin equivalent/g extract.
     The cultured broth had radical scavenging activity with both ABTS radicals and Hydroxyl radicals. The half-inhibitory concentration (IC50) of ABTS and hydroxyl radicals scavenging activity were estimated at 223.81±24.50μg/mL and 582.42±83.10μg/mL, respectively.
     As a result, the strain Erill could metabolize some antioxidants, which suggested the strain Eril 1 could be the potential resource for the antioxidant industry.
     Using different screening system, we isolated two Streptomyces strains metabolizing different active compounds from the rhizosphere of Rhizoma Curcumae Longae. Most importantly, we purified one of the compound with strong antagonism activity against rice sheath blight (Rhizoctonia solani) and rice blast (Magnaporthe grisea). And after analyzed with instruments, the compounds is assumed to be a novel antibiotic with Li element. Because of the novelty of the compound, the thorough studies of structure identification and the mechanism of the antagonism activity against the pathogens will carry on.
引文
[1]刘志恒,姜成林主编.放线菌现代生物学与生物技术.北京市:科学出版社,2004.
    [2]Gibbens N E and Murray R G E. Proposal concerning the higher taxa of bacteria. Int J Syst Bacteriol.1978,28:1-6.
    [3]Woese C R. Bacterial evolution. Microbiol Rev.1987,51:221-271.
    [4]Woese C R, Kandler O, Wheelis M. Towards a natural system of organisms:proposal of the domains Archea, Bacteria, and Eucarya. Proc Natl Acad Sci USA.1990,87:4576-4579.
    [5]Fox G E, Stackebrandt E, Hespell R B, et al. The phylogeny of prokaryotes. Science.1980,209:457-463.;
    [6]Stackebrandt E, Woese C R. Towards a phylogeny of the actinomycetes and related oraganisms. Current Microbiology. 1981,5:197-202.; [7]Stackebrandt E, Ludwig W, Seewaldt E. Phylogeny of spore-forming members of the order Actinomycetales. Int J Syst Bacteriol.1983,33:173-180.;
    [8]Woese C R, Stackebrandt E, Macke T, et al. Idefinition of the eubacterial "division". Syst Appl Microbiol.1985,6: 143-151.
    [9]Stackebrandt E, Rainey F A, Ward-Rainey N L. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol.1997,47:479-491.
    [10]阮继生等编著.放线菌研究及应用.北京市:科学出版社,1990.
    [11]Liu Y, Balkwill D L, Aldrich H C, et al. Characterization of the anaerobic propionate-degrading syntrophs smithella propionica gen nov and syntrophobacter wolinii[J]. Int J syst Bacteriol.1999,49(2): 545-556.
    [12]Lechevalier H A, Lechevalier M P. Outline of a comparative study of criteria used in the characterization of the actmomycetes[J]. AdvAppI Microbial.1971,14:47-72.
    [13]Lechevalier M P, Lechevalier H A. Composition of whole cell hydrolysates as a criterion in the classification of aerobic actinomycetes[J]. In The Actinomycetales.1970: 311-316.
    [14]Lechevalier M P, Bievre C, Lechevalier H A. Chemotaxonomy of aerobic actinomycetes:phospholipid composition^]. Biochem Ecol Syst.1977,5:249-260.
    [15]Minniking D E, Alshamaory L, Goodfellow M. Differentiation of Mycobacterium, Nocardia and related taxa by thin-layer chromatographic analysis of whole-organism Methanolysates[J].J. Gen. Microbiol.1975,88:200-204.
    [16]Collin M D, Jones D. Distribution of isoprenoid quinine structural types in bacterial and their taxonomal implication[J]. Microbio Rev.1981,45(2): 316-354.
    [17]姜成林.放线菌分类学研究进展.微生物学通报.1996,23(1):51-55.
    [18]Stackbrandt E, Woese C R. Theoretical aspects of numerical identification[J]. Current Microbiology.1981, 5:197-202.
    [19]Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms:Proposal for the domains archaea[J]. Bacteria and Eukarya Proc Natl Acad Sci.1990,87:4576-4579.
    [20]Shirling E B, Gottlieb D. Methods for characterization of Streptomyces species[J]. Int J Syst Bacteriol.1966,16: 313-340.
    [21]Huss V A R, Festl H, Schleifer K H. Studied on the spectrophotometric determination of DNA hybridization from renaturation rates[J]. Syst Appl Microbiol.1983,4:182-192. [22]Stackerbrandt E, Goebel B M. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol.1994,44:846-849.
    [23]Kim D, Chun J, Sahin N, et al. Analysis of thermophilic clades within the genus Streptomyces by 16S rDNA sequence comparisons[J]. Int J Syst Bacteriol.1996,46: 581-587.
    [24]Pernodet J L, Boccard M T, Al'egre J, et al. Organization and nucleotide sequence analysis of a ribosomal RNA gene cluster from Streptomyces ambofaciens. Gene.1989,79:33-46.
    [25]Colwell. Polyphasic Taxonomy of the Genus Vibrio:Numerical Taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and Related Vibrio Species. J Bacteriol.1970,104(1):410-433.
    [26]Waksman S A, Lechevalier H A. Antibiotics of actinomyces[M]. The actinomycetes Vol. III. Baltimore: Williams & Wilkins,1962.
    [27]徐丽华等主编.放线菌系统学原理、方法及实践.北京市:科学出版社,2007.
    [28]Takahashi Y, Omusa S. Isolation of new actinomycete strainsfor the screening of new bioactive compounds[J]. J Gen Appl Microbiol.2003,49(3):141.
    [29]Usama W H, Mohamed S, Khaled A S, et al..Mansouramycins A-D, Cytotoxic Isoquinolinequinones from a Marine Streptomycete[J]. Journal of Natural Products.2009,72:2120-2124.
    [30]Li F C, Maskey R P, Qin S, et al..Chinikomycins A and B:Isolation, Structure Elucidation and Biological Activity of Novel Antibiotics from a Marine Streptomyces sp. Isolate MI045[J]. Journal of Nature Products.2005,68:349-353.
    [31]Shen Y, Taechowisan T, Chuaychot N, et al. Cytoprotective activity of Chemical Constituents Isolated from Streptomyces sp[J], International Journal of Biological Chemistry.2009,3(1):11-17.
    [32]Hertweck C, Moore B S. A Plant-like Biosynthesis of Benzoyl-CoA in the Marine Bacterium Streptomyces maritimus[J]. Tetrahedron.2000,56(46):9115-9120.
    [33]Maskey R P, Helmke E, Laatsch H. Himalomycin A and B:Isolation and structure Elucidation of New Fridamycin Type Antibiotics from a Marine Streptomyces Isolate[J].Tte Journal of Antibiotics.2003,56:942-949.
    [34]周志宏,石彦林,刘志恒.弗兰克氏菌的分类研究进展.微生物学通报.1997,24(1):41-43.
    [35]洪国藩,宋鸿遇主编.固氮之光.长沙:湖南科学出版社.1997:134-169.
    [36]Callaham D, Tredici P D, Torrey J G. Isolation and cultivation in vitro of the actinomycete causing root nodulation in comptonia[J]. Science.1978,199(24): 899-902.
    [37]秦敏.共生固氮放线菌研究的进展[J].生物学杂志,1990(6):15-17.
    [38]姜怡,杨颖,陈华红等.植物内生菌资源[J].微生物学通报,2005,32(6):146-147.
    [39]张海瑜,张海予,李小红等.一株能在苜蓿上结瘤的费氏中华根瘤菌[J].微生物学报,2001,41(2):129-132.
    [40]陈启锋,李志真,黄群策.弗兰克氏菌的研究进展与前景[J].福建农业大学学报,1998,27(4):385-392.
    [41]王树风,陈益泰.非豆科植物固氮菌-Frankia的基因组研究进展[J].土壤,2005,37(4):382-387.
    [42]李阜隶.非豆科作物固氮研究进展[M].北京:中国农业出版社,1989.
    [43]程新,徐波,魏赛金等.1株产a-糖苷酶抑制剂的稀有放线菌分离与鉴定.食品与发酵工业.2008,34(9):58-60.
    [44]Riedlinger J, Reicke A, Zaehner H, et al. Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032[J]. JAntibiot,2004,57(4):271-279.
    [45]陈义光,姜怡,李文均等.青海盐碱环境中具抗肿瘤活性放线菌的筛选和多样性研究.微生物学报.2007,47(5):757-762.
    [46]姜成林.滇东南地区土壤放线菌区系及资源考察[J].微生物学通报.1985,13:213-215.
    [47]闫建芳,刘秋,刘志恒等.瓜类枯萎病菌拮抗放线菌分离方法的研究[J]. 河南农业科学.2006,4:81-83.
    [48]母连军,胡永松,王忠彦.放线菌分离方法的进展[J].四川食品工业科技.1996,3:4-6.
    [49]杨宇,吴元华,郑亚楠.瓜类枯萎病拮抗放线菌的筛选[J].北方园艺.2006,4:177-179.
    [50]Nonomura H. Actionmycetologica[M].1989,3:45-54.
    [51]郑雅楠,杨字,吕国忠等.土壤放线菌分离方法研究[J].安徽农业科学.2006,34(6):1167-1168,1170.
    [52]司美茹,薛泉宏,来航线.放线菌分离培养基筛选及杂菌抑制方法研究[J].微生物学通报.2004,31(2):61-65.
    [53]Nonomura H. Actionmycetologica[M].1989,3:45-54.
    [54]来航线,盛敏,杨保伟等.盐碱土中放线菌分离方法研究[J].西北农林科技大学学报:自然科学版.2006,34:113-117.
    [55]史学群,宋海超,刘柱.海南省土壤拮抗放线菌分离方法初探[J].中国农学通报.2006,22(10):431-435.
    [56]Ou S H. Rice disease[M]. Farnham Royal, UK: Common wealth agricultural Bureaux,1985,125:539-582.
    [57]Baker B, Zambryski P, Staskawicz B. Dinesh-Kumar S P. Signaling in plant-microbe interactions[J]. Science,1997, 276: 726-733.
    [58]Sha Y, Li S, Pei Z, et al. Generation and flanking sequence analysis of a rice T-DNA tagged population[J]. Theoretical and Applied Genetics,2004,108(2):306-314.
    [59]刘占领,雷财林,程治军,李伟,王久林,时克.水稻稻瘟病抗性基因定位与克隆研究进展[J].作物学报,2007(3):16-19.
    [60]Sasaki R. Existence of strains in rice blast. Journal of Plant Protection,1922,9:633-644.
    [61]山崎义人:高坂淖尔编著.凌忠专,孙昌其译,林世成校.稻瘟病与抗病育种.北京:农业出版社,1990:353.
    [62]凌忠专,雷财林,王久林等.稻瘟病生理小种研究的回顾与展望[J].中国农业科学,2004,37(12):1849-1859.
    [63]Hoch H C, Staples R C, Whitehead B, et al. Signaling for growth orientation and cell differentiation by surface topology in Uromyces[J]. Science,1987,235:1659-1662.
    [64]Correa A, Hoch H C. Identification of thigmoresponsive loci for cell differentiation in Uromyces germLings [J]. Protoplasma,1995,186:34-40.
    [65]Hamer J E, Valent B, ChumLey F G. Mutantions at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus[J]. Genetics,1989,122:351-361.
    [66]Howard R J, Valent B. Breaking and entering:Host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annual Review of Microbiology,1996,50:491-512.
    [67]Bourett T M, Howard R J. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea [J]. Can J Bot,1990,68:329-342.
    [68]杨民和.水稻—稻瘟菌相互作用的细胞生物学研究[D].浙江大学博士论文,2002.
    [69]Unchiyama T, Ogasawara N, Nanba Y, Ito H. Conidial germination and appressorial formation of the plant pathogenic fungion the coverglass or cellophane coated with various lipid components of plant leaf waxes[J]. Agricultural and Biological Chemistry.1979,43(2):383-384.
    [70]Rodrigues F A, Benhamou N, Datnoff L E. Ultrastrcutral and cytochemical aspects of silicon-mediated rice blast resistance[J]. Phytopathology,2003,93:535-546.
    [71]张德水,陈受宜.植物抗病性的分子生物学研究进展[J].植物病理学报,1997,27(2):97-103.
    [72]李成云.稻瘟病菌三个杂交组合后代菌株的致病性分离[J].植物保护学报,1997,24(3):27-34.
    [73]曾千春,叶华智,朱祯等.稻瘟病分子生物学研究进展[J].生物技术通报,2000(3):127.
    [74]方仲达.植病研究法(第三版)[M].北京:中国农业出版社,1998.
    [75]Kiyosawa. Pathogenic variations of Pyricularia oryzae and their use in genetic and breeding studies[J]. Sabrao,1976, 8:53-57
    [76]Yamasaki Y, Niizeki H. Studies on variation of the rice blast fungus Pyricularia oryzae Cav. I. Karyological and genetical studies on variation[J]. Bull Natl Inst Agric. Sci,1965,13:231-274.
    [77]Zeigler R S, Cuoc L X, Scott R P, Bernardo A. The relationship between lineage and virulence in Pyricularia grisea in the Philippines[J]. Phytopathology,1995,85(4):443-451.
    [78]Gao W, Khang C H, Park S Y, Lee Y H, Kang S. Evolution and organization of a highly dynamic, subtelomeric helicase gene family in the rice blast fungus Magnaporthe grisea[J]. Genetics,2002,162:103-112.
    [79]王艳丽,张正光,郑小波.源自江苏省的稻瘟病菌营养体亲和能力与无性重组的研究[J].中国农业科学,2003,36(6):646-650.
    [80]李成云,李家瑞,内藤秀树,林长生,藤田佳克.稻瘟病菌的菌丝融合及其与有性世代形成的关系—云南省稻瘟病菌有性世代研究之六[J].西南农业学报,1995.8(1):65-70.
    [81]全国稻瘟病菌联合试验组.我国稻瘟病菌生理小种研究[J]。植物病理学报,1980,10(2):71-81.
    [82]Valent B, ChumLey F G A virulence genes and mechanism of genetics instability in the rice blast fungus [J]. Rice Blast Disease,1994,11(3):111-134.
    [83]孟庆忠,刘志恒,王鹤影,张书绅,魏松红.水稻纹枯病研究进展[J].沈阳农业大学学报,2001,32(5):376-381.
    [84]何霭如,郭建夫.水稻纹枯病的发生及防治.安徽农业科学,2007,35:996-997.
    [85]许科友,黎祖德,黄莉.水稻纹枯病综合防治技术.植物医生,2010,23(2):9.
    [86]Lee N F, Rush M C. Rice sheath blight: A major rice disease[J]. Plant Disease,1983,67:829-832.
    [87]刘薇,杨超,邹剑锋,宋娟.水稻纹枯病生物防治研究进展[J].广西农业科学,2009,40(5):512-516.
    [88]Zhang Q F. Strategies for developing green super rice. Proceedings of the National Academy of Sciences.2007, 104(42):16402-16409.
    [89]International Rice Research Institute. Rice Breeding. Manila:IRRI,1972:203-225.
    [90]Ballini E, Morei J B, Droc G, Price A, Courtois, et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol. Plant Microbe Interact. 2008,21:859-868.
    [91]Wang Z X, M Yano, U Yamanouchi, M Iwamoto, L Monna, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leuine-rich repeat class of plant disease resistance genes. Plant J.1999,19:55-64.
    [92]Bryan G T, K S Wu, L Farrall, Y Jia, H P Hershey, et al.. A single amino acid difference distinguishes resistant and susceptible allelels of the rice blast resistance gene Pi-ta. Plant cell.2000,12:2033-2046.
    [93]Qu S, G Liu, B Zhou, M Bellizzi, L Zeng, et al.. The broad spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics.2006, 172:1901-1914.
    [94]Zhou B, S Qu, G Liu, M Dolan, H Sakai, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol. Plant Microbe Interact.2006,19:1216-1228.
    [95]Chen X, J Shang, D Chen, C Lei, Y Zou, et al.. A B-lectin receptor kinase gene conferring rice blast resistance. Plant J.2006,46:794-804.
    [96]Liu X, F Lin, L Wang, Q Pan.. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics.2007b,176:2541-2549.
    [97]Lin F, S Chen, Z Que, L Wang, X Liu, et al.. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics.2007a,177: 1871-1880.
    [98]Ashikawa I, N Hayashi, H Yamane, H Kanamori, J Wu, et al. Two adjacent nucleotide-binding-site leucine-rich-repeat class genes are required to confer pilon-specific rice blast resistance. Genetics.2008,180: 2267-2276.
    [99]Legrand M, Kauffmann S, Geoffroy P, Fritig B. Biological function of pathogenesis-related proteins:four tobacco pathogenesis-related proteins are chitinases. Proceedings of the National Academy of Sciences, U.S.A.,1987,84: 6750-6754.
    [100]Kauffmann S, Legrand M, Geoffroy P, Fritig B. Biological function of'pathogenesis-related'proteins:four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO Journal.1987,6:3209-3212.
    [101]Nishizawa Y, Nishio Z, Nakazono K, et al.. Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. TAG Theoretical and Applied Genetics.1999,99:383-390.
    [102]张景欣,杨祁云,王慧等.三系杂交水稻抗稻瘟病,白叶枯病育种研究进展.杂交水稻.2009:1-6.
    [103]孙国昌,杜新法,陶荣祥等.水稻稻瘟病防治研究进展和21世纪初研究设想[J].植物保护,2000,26(1):33-35.
    [104]张传清,周明国,朱国念.稻瘟病化学防治药剂的历史沿革与研究现状.农药学学报.2009,11(1):72-80
    [105]张巨勇.化学农药的危害及我国应采取的对策.云南环境科学.2004,23:23-26.
    [106]马成涛,胡青,杨德奎.土壤有益微生物防治植物病害的研究进展[J].山东科学,2007,20(6):61-66.
    [107]张俊华.微生物代谢产物作用于植物的研究探讨[J].生命科学研究.2007,11(4):44-47.
    [108]Handesman J, Stabb E V. Biocontrol of soil bone plant pathogens [J]. Plant Cell.1996,8:1855-1869.
    [109]邱德文.我国植物病害生物防治的现状及发展策略.植物保护.2010,36(4):15-18.
    [1]0]王光华,Jos M. Raaijmakers.生防细菌产生的拮抗物质及其在生物防治中的作用[J].应用生态学报,2004,15(6):1100-1104.
    [111]黄曦,许兰兰,黄荣韶等.枯草芽孢杆菌在抑制植物病原菌中的研究进展[J].生物技术通报,2010,(1):6.
    [112]Shoda M. Bacterial control of plant diseases. Journal of Bioscience and Bioengineering.2000,89:515-521.
    [113]The Bacillus subtilis Story[EB/OL]. [2005-06-12]. http://www.upwardquest.com/web-site-positioning.htmL.
    [114]Obagwu J, Korsten L. Integrated control of citrus and blue molds using Bacillus subtilis in combination, with sodium bicarbonate or hot water. Postharvest Biology and Technology,2003,281:87-194.
    [115]Elizabeth A B, Emmert H J. Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol letters, 1999,171:1-9.
    [116]杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用.四川林业科技,2001(9):41-43.
    [117]曹春娜,石延霞,李宝聚.枯草芽抱杆菌可湿性粉剂防治黄瓜灰霉病药效试验.中国蔬菜.2009,14:53-56.
    [118]陈莉,檀根甲,丁克坚.枯草芽抱杆菌对几种灰霉病菌的抑制效果研究.菌物研究.2004,2(4):44-47.
    [119]Charles W. Bacon, Ida E. Yates, Dorothy M. Hinton, et al. Biological Control of Fusarium moniliforme in Maize[J]. Environmental Health Perspectives,2001,109 (S2):325-332.
    [120]Yang D J, Wang B, Wang J, et al.. Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control.2009.
    [121]何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究.中国水稻科学,2002,16(4):361-365.
    [122]穆常青,刘雪,潘玮等.枯草芽孢杆菌B-332菌株对稻瘟病的防治效果及定殖作用研究.第四届全国绿色环保农药新技术、新产品交流会暨第三届生物农药研讨会.2006:206-212.
    [123]王雅平,刘伊强,潘乃等.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究[J].生物防治通报,1992,8(2):54-57.
    [124]陈志谊,陆凡,刘永锋,杨新宁,刘邮洲.防治水稻病害微生物农药纹曲宁的研制及产业化.江苏农业报,2003,19(2):108.
    [125]孙光忠,彭超美.微生物杀菌剂百抗防治水稻纹枯病田间效果.2002:364-365.
    [126]Yoshida S, Hiradate S T, Sukamoto T, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves [J]. Phytopathology,2001,91(2):181-187.
    [127]朱桂梅,杨敬辉,潘以楼,陈宏州.短短小芽抱杆菌TW-2菌株对水稻穗颈瘟的防治效果.安徽农业科学,2007,35(31):9520-9523.
    [128]游春平,肖爱萍,傅志岸,甄俊杰.稻瘟病生防菌对四种作物土传病害病原菌的抑制作用.江西农业大学学报,2006,28(6):860-863.
    [129]Kong Q, Shan S H, Liu Q Z, et al.. Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology.2010.
    [130]韩艳霞,胡斌杰,王宫南.蜡样芽孢杆菌JK14对小麦全蚀病的防治及其抑病机理.农业科学与技术(英文版).2008.
    [131]高芬,马利平,乔雄梧等.蜡质芽孢杆菌BC98-I发酵液与抑菌粗提物对黄瓜枯萎病菌的抑菌特性研究.中国生态农业学报.2006,14.
    [132]谭周进,肖启明.假单胞菌产生的抗生素.世界科技研究与发展.2003,25:54-57.
    [133]张伟琼,聂明,肖明.荧光假单胞菌生防机理的研究进展.生物学杂志.2007,24:9-11.
    [134]Nagarajkumar M, Bhaskaran R, Velazhahan R. Involvement of secondary metabolites and extracelluar lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiological Research.2004,159:73-81.
    [135]任小平,谢关林,王笑.铜绿假单胞菌ZJ1999对水稻纹枯病的防治及其在水稻上的定殖.中国生物防治.2006,22:54-57.
    [136]郑爱萍,李平,王世全等.水稻纹枯病菌拮抗菌B34分离鉴定及杀菌蛋白的获得.中国水稻科学(Chinese J Rice Sci).2002,6:356-360.
    [137]Kumar L P, Niranjana S R, Prakash H S, et al.. Effect of Pesudomonas fluorescens formulation against Pyricularia grisea in rice[J]. Crop Improvement,2000,27(2):159-166.
    [138]Weller D M. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology, 1983,73:1548-1553.
    [139]许煜泉,高虹,童耕雷,祝新德.假单胞菌株JKD-2分泌铁载体抑制稻瘟病菌.微生物学通报,1999,26(3):180-183.
    [140]许煜泉,张彦,俞吉安,唐玮宁,骆佩琪.一株拮抗稻瘟病菌的产荧光假单胞杆菌.上海交通大学学报,1998,32(3):111-115.
    [141]Kuo T M, Kim H, Hou C T. Production of a novel compound,7,10,12-trihydroxy 8(E)-Octadecenoic acid from ricinoleic acid by Pseudomonas aeruginosa PR3. Current Microbiology,2001,43(3):198-203.
    [142]李静,冯淑杰,肖晶,陈维信,刘爱媛.小白菜内生假单胞菌XBC-PS的生防作用.中国蔬菜.2007(5):21-23.
    [143]王建锋,陆宁海.木霉菌在农业中的研究与应用前景[J].安徽农学通报,2008,14(14):41-43.
    [144]Ahamd J S, Barker R. Rhizosphere Competence of Trichoderma harzianum[J]. Phytopathology,1987,77:182-189.
    [145]Mouria A, Ouazzani T A, Douira A, et al.. Antagonism in vitro of Trichoderma species against Pyricularia oryzae[J]. Advances in Applied Microbiology,1998,96:9-17.
    [146]唐家斌,马炳田,王玲霞.用木霉、类木霉对水稻纹枯病进行生物防治的研究.中国水稻科学,2002,16(3):63-66.
    [147]林志伟,靳学慧.四种木霉菌对稻瘟病菌作用能力的比较研究.黑龙江八一农垦大学学报.2006,18:8-12.
    [148]王国平,鲁书玲,郑必强等.内生真菌紫杉木霉ZJUF0986菌株及其活性代谢产物防治水稻纹枯病的效果.中国生物防治,2009:30-34.
    [149]魏艳敏,刘大群,田世民等.放线菌(Streptomyces spp.)对几种蔬菜病原菌的拮抗作用[J].河北农业大学学报,2000,23(3):65-68.
    [150]尹萃耘.我国利用抗生素防治农作物病害的进展[J].中国生物防治的进展,1984.
    [151]Kortemaa H, Pennanen T, Smolander A, et al.. Distribution of Antagonistic Streptomyces griseoviridis in Rhizosphere and Non-rhizosphere[J]. Sand J. Phytopathology,1997,145:137-143.
    [152]张炳火,李汉全,徐阳等.链霉菌JXJ402抗稻瘟病菌的活性成分.江苏农业学报.2009,25:282-285.
    [153]汪学军,阂长莉.链霉菌HSX001对5种植物病原真菌抑菌活性的初步研究.安徽农业科学,2009,37:1163-1164.
    [154]张武岗,冯俊涛,方香玲等.放线菌19G-317菌株的鉴定及其抑菌活性研究.浙江大学学报:农业与生命科学版.2009:243-248.
    [155]冯轶男,杨润清.放线菌分离与筛选方法的研究进展.生物技术.2010,20(4):95-98.
    [156]周香兰,邱长春.水稻杀菌剂多三环可湿性粉剂的研究开发.江西化工.2003:120-121.
    [157]Iwata M. Probenazole-a plant defence activator. Pesticide Outlook.2001,12:28-31.
    [158]Iwai T, Seo S, Mitsuhara I, et al.. Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant and cell physiology.2007,48:915.
    [159]Yoshio K. Melanin biosynthesis inhibitors(MBIs) for control of rice blast. Pesticide Outlook.2001,12:32-35.
    [160]Uesugi Y. Fungal choline biosynthesis-a target for controlling rice blast. Pesticide Outlook.2001,12:26-27.
    [161]Glenn A E, Bacon C W, Price R, et al. Molecular phylogeny of Acremonium and its axonomic implications. Mycologia,1996,88: 369-383.
    [162]Philip J.生物农药的现状与发展趋势[J].农药科学与管理,2002,23(3):29-30.
    [163]Schulz B, Wanke U, Draeger S, Aust H J. Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res.1993,97: 1447-1450.
    [164]Otoguro M, Hayakawa M, Yamazaki T, Iimura Y. An integrated method for the enrichment and selective isolation of Actinokineospora spp. in soil and plant litter. JAppl Microbiol.91:118-130.
    [165]Baker D. Methods for the isolation, culture and characterization of the Frankiaceae:soil actinomycetes and symbionts of actinorhizal plants. In: Labeda D.P., Ed., Isolation of Biotechnological Organisms from Nature, McGraw-Hill Publishing Co, New York,1990, pp.213-236.
    [166]Shirling E B, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol.1966,16: 313-340.
    [167]姜怡,段淑荣,唐蜀昆等.稀有放线菌分离方法.微生物学通报.2006,33(1):181-183.
    [168]杨宇容,徐丽华,放线菌分离方法的研究(Ⅰ.抑制剂的选择).微生物学通报.1995,22:88-91.
    [169]钟志宏,李启星,唐小异等.甘油保存菌种方法的改良.实用预防医学.2005,12(3):670-671.
    [170]张素华.杀菌剂生物测定方法的研究.南开大学学报(自然科学).2000,33(4):37-40.
    [171]中国科学院微生物研究所放线菌分类组.链霉菌鉴定手册.北京:科学出版社,1975.。
    [172]孟娜,汤斌,黄晓东等.4种木霉菌对棉花黄萎病菌抑制作用的测定.生物学杂志.2007,24(4):58-61.
    [173]Goodfellow M, Cross T. Classification. In:Goodfellow M, Mordarski M, Eds, The Biology of the Actinomycetes, Academic Press, London.1984, p.7-164.。
    [174]叶明主编.微生物学实验技术.合肥市:合肥工业大学出版社,2009,09.
    [175]Shirling E B, Gottieb D. Taxonomy and application of Streptomyces. Intern J Syst Bacterial.1996,16(4): 313-340.
    [176]布坎南(Buchanan RE)等编;中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.伯杰细菌鉴定手册(第8版).北京市:科学出版社,1984.
    [177]张瑞福,曹慧,崔中利等.土壤微生物总DNA的提取和纯化.微生物学报.2003,43(2):276-282.
    [178]徐平,李文均,徐丽华,姜成林.微波法快速提取放线菌基因组DNA.微生物学通报.2003,30(4):82-84.
    [179]Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. The CLUSTAL X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.1997,25:4876-4882.。
    [180]Kumar S, Tamura K, Nei M. MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform.2004,5:150-163.
    [181]Felsenstein J. Conference limits on phylogenies: an approach using the bootstrap. Evolution.1985,39:783-789.
    [182]中华人民共和国卫生部:中华人民共和国卫生行业标准.纸片法抗菌药物敏感试验.中国:中华人民共和国卫生部:1999-12-9.Vol WS/T 125-1999.
    [183]CLSI:Performance Standards for Antimicrobial Disk Susceptibility Tests; CLSI: Approved Standard-Tenth Edition. 2009.
    [184]Performance Standards for Antimicrobial Suspetibility Testing; Informational Supplement.2010.
    [185]刘冬梅,李理,杨晓泉,梁世中.用牛津杯法测定益生菌的抑菌活力.食品研究与开发.2006,27(3):110-111.
    [186]刘志恒.现代微生物学[M].北京:科学出版社,2002.
    [187]Castillo U F, Strobel G A, Ford E J, Hess W M, et al.. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology.2002,148:2675-2685.
    [188]Singh M P, Petersen P J, Weiss W J, et al.. Mannopeptimycins, new cyclic glycopeptide antibiotics produced by Streptomyces hygroscopicus LL-AC98:antibacterial and mechanistic activities. Antimicrobial agents and chemotherapy.2003,47:62-69.
    [189]El-Shatoury S A, El-Shenawy N S, Abd El-Salam I M. Antimicrobial, antitumor and in vivo cytotoxicity of actinomycetes inhabiting marine shellfish. World J. Microbiol Biotech.2009,25:1547-1555.
    [190]Hwang B K, Ahn S J, Moon S S. Production, purification and antifungal activity of the antibiotic nucleoside, tuberecidine, produced by Streptomyces violaceonig. Can JBot.1994,72:480-5.
    [191]Watve M G, Tichoo R, Jog M M, Bhole B D. How many antibiotics are produced by the genus Streptomyces. Arch Microbiol.2001,176:386-90
    [192]Miyadoh S. Research on antibiotic screening in Japan over the last decade:A producing microorganisms approach. Actinomycetologica.1993,9:100-6.
    [193]Tanaka Y T, Mura S O. Agroactive compounds of microbial origin. Annu Rev Microbiol.1993,47:57-87. 。
    [194]Sardi P, Saracchi M, Ouaroni S, et al.. Isolation of endophytic Streptomyces from surface-sterilized roots. Appl. Environ. Microbiol.1992,58:2691-2693.
    [195]Araujo J M, Silva A C, Azevedo J L. Isolation of endophytic actinomycetes from roots and leaves of maize (Zeamays L.). Braz. Arch. Biol. Techn.2000,43:447-451.
    [196]Sardi P, Saracchi M, Ouaroni S, et al.. Isolation of endophytic Streptomyces from surface-sterilized roots. Appl. Environ. Microbiol.1992,58:2691-2693.
    [197]Okazaki T, Takahashi K, Kizuka M, Enokita R. Studies on Actinomycetes isolated from plant leaves. Annu. Rep. Sankyo Res. Lab.1995,47:97-106.
    [198]Yuan W M, Crawford D L. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol.1995,61:3119-3128.
    [199]Yang Y F, MSc M D. Chinese Herbal Medicines (Second Edition).2010,229-254.
    [200]Velioglu Y S, Mazza G, Gao L, Oomah B D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry.1998,46:4113-4117.
    [201]Ordonez A A L, Gomez J D, Vattuone M A, lsla M I. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chemistry.2006,99:452-458.
    [202]Re R, Pellegrini N, Proteggente A, Panala A, Yang M, Rice-Evans C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med.1999,26:1231-1237
    [203]李小萍,梁琪,辛秀兰,王彦辉.红树莓果中鞣花酸提取物的抗氧化性研究.食品科技.2010,35(5):182-185.
    [204]Yin H, Cao L, Xie M, et al.. Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. Syst. Appl. Microbiol.2008,31:302-311.
    [205]Torres J L, Varela B, Garcia M T, Carilla J, et al..Valorization of grape (Vitis vinifera) by-products. Antioxidant and biological properties of polyphenolic fractions differing in procyanidin composition and flavonol content. J Agric Food Chem.2002,50:7548-55
    [206]Re R, Pellegrini N, Proteggente A, et al.. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med.1999,26:1231-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700