可重构数控系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可重构数控系统是实现可重构制造系统的关键技术。可重构技术可以增强数控系统的柔性,合理配置数控系统资源,快速地响应加工需要。本文对实现可重构数控系统的一些理论和应用问题进行了研究。
     在分析数控系统功能特点的基础上,提出了可重构数控系统的数控流水线架构。该架构由数控主控流水线线程、驱动程序和数控微代码实时执行单元构成,定义了数控规范指令和数控微代码接口,保证模块的互换性,实现了流水线的可重构。数控流水线线程封装了从指令译码到生成数控微代码的主要控制功能,具备高度的可移植性。微代码是用于数控功能实时执行的精简化操作指令,由一个实时执行单元执行。实验表明,数控流水线架构可以高效实现可重构的数控系统。
     速度规划是数控系统的重要模块,对加工效率,运行平稳性等方面都有影响。而前瞻速度规划是提高加工效率的有效方法。本文对一类加减速算法进行数学抽象,提出了对这类加减速算法的可重构的通用前瞻速度规划算法,在理论上证明了通用前瞻速度规划算法对进给速度的优化性质。同时,推导了线性加减速、改进的指数加减速和S型加减速在通用前瞻速度规划下的完整规划算法,验证了该算法的有效性。
     微线段的加工是复杂型面加工中常见的程序类型。本文提出了基于伺服系统轮廓误差的直线段转角速度限制算法和连续转弯微线段进给速度修正方法。这两种方法以轮廓误差为依据,能够根据加工路径特征对进给速度进行智能控制。二者与S型加减速算法在通用前瞻规划器架构下可重构成为微线段程序的柔性速度规划模块。
     重采样插补可以实现粗插补的非实时批量运行,能够提高数控系统性能并为设计带来便利。本文提出了线性重采样插补方法和基于曲线细分技术的重采样插补方法。分析表明,曲线细分重采样插补能够得到比线性重采样插补更平滑的插补结果。根据重采样算法原理设计了重采样的可重构硬件逻辑,加速算法的执行,并以螺纹车削和电子凸轮为例说明了硬件重采样的应用方法。
     在可重构数控系统的实施方法上提出了软、硬件在不同粒度下的重构方案。采用数控流水线架构设计了三种可重构数控系统原型机。实验和应用都证明,数控流水线架构是一种能适应各类平台的开放式可重构数控系统高效实施方案。
The reconfigrable Computer Numerical Controller (CNC) is a key technology in reconfigurable manufacturing systems. The reconfigurable technology could help improving the flexibility and the resource configuration in CNC to rapidly meet the machining process requirement. In this dissertation, servral theory and application problems in the reconfigurable CNC controller are studied.
     A reconfigurable Numerical Control (NC) pipeline architechture is proposed based on the analysis of the functions in CNC controllers. The pipeline is consists of a NC pipeline thread, a driver and a NC Microcode Processor (NCMP). In this architecture, the NC Canonical Command (NCCC) interface and the NC Microcode (NCM) interface are defined to ensure the interchangeabilty of different modules and the reconfigurability of the pipeline. The primary controlling functions from code interpretation to NCM generation are encapsulated in the NC pipeline thread with high portability. NC Mircrocodes are simplified operating codes aimed for the real-time execution of CNC functions in NCMP. Experiments demonstrate that the NC pipeline architecture could realize the reconfigurable CNC controller efficiently.
     Feedrate plan is an important module in CNC controllers, which affects the efficiency, the smoothness of movements, and many other aspects in the machining process. In this dissertation, a type of Acceleration and Deceleration (ACC/DEC) algorithms is mathematically abstracted, and a Generic Look-Ahead Feedrate Plan (GLAFP) scheme is proposed for this type algorithms. The optimizing properties of GLAFP are theoretically proved. The complete algorithms for linear, modified exponential and S-curve ACC/DEC are derivated under the GLAFP scheme. The proposed scheme is verified by experiments.
     The machining of micro-lines is very common in the complex surface maching programs. The speed limit algorithm for the intersection of straight lines and feedrate modification algorithm for the continuously deviating micro-lines based on the contour error of servo systems are developed. These algorithms can intelligently control the feedrate according to the feature of the machining path. The proposed feedrate control methods along with the S-curve ACC/DEC algorithm can be reconfigured in the GLAFP architecture as a feedrate plan module for the smooth machining of micro-lines.
     The resampling interpolation enables the coarse interpolation running in a batch and non-real-time pattern. This could not only enhance the performance but also benefits the design of CNC controllers. The linear resampling interpolation and the curve-subdivision-based resampling interpolation are proposed. The analysis shows that the subdivision algorithm can generate more smooth result than the linear algorithm. The reconfigurable logic is designed for accelerate the execution of resampling algorithms. The applications of resampling interpolation in the threading and electronic cam functions are illustrated as examples.
     For the implementaionn of reconfigurable CNC controller, several reconfigurable schemes for the hardware and software with different granularities are proposed. Three prototype reconfigurable controllers based on the NC pipeline architechture are developed. The experiments and the applications prove that the NC pipeline architechture is a platform independent, open, reconfigurable and efficient solution for the CNC controller design.
引文
[1]周延佑,迅速占领市场是机床数控产业的紧迫任务,中国机械工程,1998,9(5):5~7
    [2]陈循介,世界数控机床的生产、需求和发展动向,精密制造与自动化,2004,3:14~15
    [3]贾超,我国数控技术现状及发展对策,中小企业管理与科技,2007,8:90
    [4]中国机床工具工业协会数控系统分会,第十一届中国国际机床展览会(CIMT2009)国产数控系统展品综述,制造技术与机床,2009,8:34~39
    [5]中华人民共和国国民经济和社会发展第十一个五年规划纲要,中华人民共和国全国人民代表大会常务委员会公报,2006,3:178~221
    [6]丁锦宏,高速数控机床概述,中国制造业信息化,2006,35(11):36~41
    [7]卢小平,现代制造技术,北京:清华大学出版社,2003.63
    [8]吴大中,王宇晗,冯景春等,五坐标数控加工的非线性运动误差分析与控制,上海交通大学学报,2007,41(10):1608~1612
    [9]王攀峰,相贯线切割机器人作业单元关键技术研究:[博士学位论文],天津:天津大学,2008
    [10]马雄波,基于PC机的开放式多轴软数控系统关键技术研究与实现,哈尔滨:哈尔滨工业大学,2007
    [11] Onwubolu G C, Aborhey S, SinghR, et al. Development of a PC-based computer numerical control drilling machine. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2002, 216(11): 0954-4054
    [12] Zhang C, Wang H, Wang J. An USB-based software CNC system. Journal of Materials Processing Technology, 2003, 139: 286-290
    [13]朱志红,陈蔡涛,基于ARM的嵌入式数控系统方案研究与应用,制造业自动化,2005,27(11):40~43
    [14]何恩懋,娄琳,王太勇等,基于MC68K和FPGA的嵌入式可重构数控系统的研究,制造业自动化,2006,28(6):43~46
    [15]王立松,苏宝库,董申等,可编程多轴控制器的开放式数控系统,计算机集成制造系统,2002,8(1):69~72
    [16]陈宗雨,郭伟,王立峰,基于Windows NT与实时扩展的开放式数控系统的研究,计算机集成制造系统,2006,12(4):568~572,640
    [17]胡朝斌,王治森,董伯麟,基于Windows CE的数控系统中断控制,中国机械工程,2005,16(5):761~764
    [18] Bucher R, Balemi S. Rapid controller prototyping with Matlab/Simulink and Linux. Control Engineering Practice, 2006, 14: 185~192
    [19]王太勇,李波,万淑敏,基于现场总线的可重构数控系统的研究,计算机集成制造系统,2006,12(10):1662~1667
    [20] Wei G, Chen Z, Li C. Investigation on full distribution CNC system based on SERCOS bus. Journal of Systems Engineering and Electronics, 2008, 19(1): 52~57
    [21]程涛,吴波,杨叔子等,支持分布式网络化制造的智能数控系统的研究,中国机械工程,2004,15(8):688~693
    [22]张洁,罗欣,杜润生等,智能化数控加工单元的远程操作与控制系统,中国机械工程,2000,11(7):753~756
    [23]申桂香,王桂萍,贾亚洲,面向网络的数控装备可靠性分析技术,中国机械工程,2005,16(1):33~41
    [24]周祖德,龙毅宏,刘泉,嵌入式网络数控技术与系统,机械工程学报,2007,43(5):1~7
    [25] Alvares A J, Ferreira J C E. WebTurning: Teleoperation of a CNC turning center through the Internet. Journal of Materials Processing Technology, 2006, 179: 251-259
    [26] Y Liu, X Guo, W Li, et al. An intelligent NC program processor for CNC system of machine tool. Robotics and Computer-Integrated Manufacturing, 2006, 23(2): 160~169
    [27] Groover MP. Automation, production systems, and computer-integrated manufacturing. Prentice Hall Int. Publ, 2001
    [28] Tseng A A, Kolluri S P. A CNC machining system for education. Journal of Manufacturing Systems, 1989, 8(3): 207~214
    [29] Fortin E, Chatelain J F, Rivest L. An innovative software architecture to improve information flow from CAM to CNC. Computers & Industrial Engineering, 2004, 46(4): 655~667
    [30]陈秀生,基于STEP-NC的数控车削加工仿真关键技术研究:[博士学位论文],济南:山东大学,2007
    [31]仓公林,桂贵生,STEP-NC的可扩展标记语言实现方法研究,计算机集成制造系统,2006,23(3):470~475
    [32]刘涛,王永章,富宏亚等,STEP-NC译码器及其关键技术,计算机集成制造系统,2007,13(10):1991~1996
    [33] Shina S J, 1, , Suhb S H, Stroud I. Reincarnation of G-code based part programs into STEP-NC for turning applications. Computer-Aided Design, 2007, 39(1): 1~16
    [34] Minhata M, Vyatkinb V, Xua X, et al. A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 560~569
    [35]林小峰,宋春宁,宋绍剑等,基于IEC61131-3标准的控制系统及应用,北京:基于IEC61131-3标准的控制系统及应用,2007.
    [36] Altintas Y, Newell Y, Ito M. Modular CNC design for intelligent machining, Part 1: design of a hierarchical motion control module for CNC machine tools. Journal of Manufacturing Science and Engineering, 1996, 118(4): 506~513
    [37] Estrin G. Organization of computer systems—the fixed plus variable structure computer, Proc. Western Joint Computer Conf., Western Joint Computer Conference, New York, USA, 1960, 33~40
    [38] Mirsky E, DeHon A. A reconfigurable computing architecture with configurable instruction distribution and deployable resources. IEEE Symposium on FPGAs for Custom Computing Machines, Napa, USA, 1996, 157~166
    [39] Cronquist DC, Fisher C, Figueroa M, et al. Architecture design of reconfigurable pipelined datapaths. Proceedings of 20th Anniversary Conference on Advanced Research in VLSI, Atlanta, USA, 1999. 23~40
    [40] Ebeling C, Cronquist D C, Franklin P.RaPiD - Reconfigurable pipelined datapath. Lecture Notes in Computer Science. Berlin: Springer, 1996. 1142: 126~135
    [41] Walder H, Platzner M. Reconfigurable hardware operating systems: from design concepts to realizations. The International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las Vegas, USA, 2003. 284-287
    [42] Hauser J, Wawrzynek J. Garp: A MIPS processor with a reconfigurable coprocessor. Proc. IEEE Symp. FPGAs for Custom Computing Machines, Los Alamitos, USA, 1997, 12~21
    [43] Satyanarayana S, Tsividis Y P, Graf H P. A reconfigurable VLSI neural network. IEEE Journal of Solid-State Circuits, 2002, 27(1): 67~81
    [44] Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, 2008, 32: 229~252
    [45] Bodson R, Groszkiewicz JE. Multivariable adaptive algorithms for reconfigurable flight control. Proceedings of the 33rd IEEE Conference on Decision and Control, Lake Buena Vista, USA, 1994. 4: 3330~3335
    [46] Stewart D B. Design of dynamically reconfigurable real-time software using port-based objects. IEEE Transactions on Software Engineering, 1997, 23(12): 759~776
    [47] Jeong CS, Pang A. Reconfigurable disc trees for visualizing large hierarchicalinformation space. Proceedings of IEEE Symposium on Information Visualization, Research Triangle, USA, 1998. 19~25, 149
    [48] Coulson G, Blair G S, Clarke M, et al. The design of a configurable and reconfigurable middleware platform. Distributed Computing, 2002, 15: 109~126
    [49] Purtilo JM. The Polylith software bus. ACM Transactions on Programming Languages and Systems, 1994, 16(1): 151~174
    [50] Haas ZJ. A new routing protocol for the reconfigurable wireless networks. IEEE 6th International Conference on Universal Personal Communications, San Diego, USA, 1997. 2: 562~566
    [51] Wittie L D, Tilborg A M V. MICROS, a distributed operating system for MICRONET, a reconfigurable network computer. IEEE Transactions on Computers, 1980, C29(12): 1133~1144
    [52] Mehta M, Drew N, Vardoulias G. Reconfigurable terminals: an overview of architectural solutions. IEEE Communications Magazine, 2001, 39(8): 82~89
    [53] Murata S, Kurokawa H, Yoshida E. A 3-D self-reconfigurable structure. Proceedings of IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998. 1: 432~439
    [54] Fukuda T, Nakagawa S. Dynamically reconfigurable robotic system. Proceedings of IEEE International Conference on Robotics and Automation, Philadelphia, USA, 1988. 3: 1581~1586
    [55] Shen WM, Salemi B, Will P. Hormone-inspired adaptive communication and distributed control for CONRO self-reconfigurable robots. IEEE Transactions on Robotics and Automation, 2002, 18(5): 700~712
    [56] Yim M, Duff DG, Roufas KD. PolyBot: a modular reconfigurable robot. Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, 2000. 1: 514~520
    [57] Mihailovich RE, Kim M, Hacker JB, et al. MEM relay for reconfigurable RF circuits. IEEE Microwave and Wireless Components Letters, 2001, 11(2): 53~55
    [58] Weedon W H, Payne W J, Rebeiz G M. MEMS-switched reconfigurable antennas. IEEE Antennas and Propagation Society International Symposium, Boston, USA, 2001. 3: 654~657
    [59] Vreeburg C G M,Uitterdijk T, Oei Y S, et al. First InP-based reconfigurable integrated add-drop multiplexer. IEEE Photonics Technology Letters, 1997, 9(2): 188~190
    [60] Collier C P, Mattersteig G, Wong EW, et al. A catenane-based solid state electronically reconfigurable switch. Science, 2000, 289(5482): 1172~1175
    [61] Yang R, Gotz D, Hensley J, et al. Pixelflex: A reconfigurable multi-projector display system. Proceedings of the conference on Visualization, San Diego, USA, 2001. 167~174, 554
    [62] Koren Y, Heisei U, Jovane F, et al. Reconfigurable manufacturing systems. Annals of the CIRP, 1999, 48(2): 527~540
    [63] Menrabi M G, Ulsoy A G, Koren Y. Reconfigurable manufacturing systems: key to future manufacturing. Journal of Intelligent Manufacturing, 2000, 11:403~419
    [64]许虹,唐任仲,程耀东,新一代机床——可重构机床,组合机床与自动化加工技术,2002,2:1~4, 60
    [65]罗振璧,朱耀祥,现代制造系统,北京:机械工业出版社,2000
    [66] Liles D H, Huff B L. A computer based production scheduling architecture suitable for driving a reconfigurable manufacturing system. Computers & Industrial Engineering, 1990,19(1-4): 1~5
    [67] Delamer I M, Lastr J L M. Information security for reconfigurable manufacturing systems using networked embedded controllers. Information Control Problems in Manufacturing 2006, 2006. 129~134
    [68] Xing Bo, Eganza J, Bright G. Reconfigurable manufacturing system for agile manufacturing. Information Control Problems in Manufacturing 2006, 2006. 487~492
    [69] Asl F M, Ulsoy A G. Stochastic optimal capacity management in reconfigurable manufacturing systems. CIRP Annals - Manufacturing Technology, 2003, 51(1): 371~374
    [70] Deif A M, ElMaraghy W H. A control approach to explore the dynamics of capacity scalability in reconfigurable manufacturing systems. Journal of Manufacturing Systems, 2006, 25(1): 12~24
    [71]罗振壁,盛伯浩,赵晓波等,快速重组制造系统,中国机械工程,2000,11(3):300~303
    [72]王成恩,制造系统的可重构性,计算机集成制造系统,2000,6(4):1~5
    [73]孟凡力,谈大龙,黄雪梅,可重构装配系统中智能体的开发,计算机集成制造系统,2006,12(12):2033~2038
    [74]窦建平,戴先中,孟正大,基于混合层次分析法的可重构制造系统重构方案选择,计算机集成制造系统,2007,13(7):1360~1366
    [75]梁福军,宁汝新,可重构制造系统理论研究,机械工程学报,2003,39(6):36~43
    [76]王国新,宁汝新,王爱民等,可重构制造系统集成设计框架研究,计算机集成制造系统,2007,13(8):1481~1489,1510
    [77] Schulz H. Neuer vorstass in den volemenmarkt. Werkstatt und Betrieb, 1999,132(12): 22~23
    [78] Dhupia J, Powalka B, Katz R. Dynamics of the arch-type reconfigurable machine tool. International Journal of Machine Tools and Manufacture, 2007, 47(2): 326~334
    [79] Walczyk D F, Lakshmikanthan J, Kirk D R. Development of a reconfigurable tool for forming aircraft body panels. Journal of Manufacturing Systems, 1998, 17(4): 287~296
    [80] Kumar S G, Nagarajan T, Srinivasa Y G. Characterization of reconfigurable Stewart platform for contour generation. Robotics and Computer-Integrated Manufacturing, 2009, 25(4-5): 721~731
    [81] Asada H, By A B. Kinematic analysis of workpart fixturing for flexible assembly with automatically reconfigurable fixtures. IEEE Journal of Robotics and Automation, 1985, 1(2): 86~94
    [82] Abdi M R. Fuzzy multi-criteria decision model for evaluating reconfigurable machines. International Journal of Production Economics, 2009, 117(1): 1~15
    [83] Lorenzer T, Weikert S, Bossoni S, et al. Modeling and evaluation tool for supporting decisions on the design of reconfigurable machine tools. Journal of Manufacturing Systems, 2008, 26(3-4): 167~177
    [84]李朦,可重构混联机械手模块TriViariant的设计理论与方法:[博士学位论文],天津:天津大学,2005
    [85]游有鹏,张晓峰,王珉等,可重构机床的模块化设计,机械科学与技术,2001,20(6):815~818
    [86]蔡宗琰,杨旭东,严新民,可重构模块化机床的集成设计,机床与液压,2002,5:132~136
    [87]张广鹏,雷小强,肖亚平,一种可重构机床设计方法研究,制造技术与机床,2006,4:52~55
    [88] Pritschow G, Altinas Y, Jovane F, et al. Open controller architecture - past, present and future. Annals of the CIRP, 2001, 50 (2): 463–470
    [89]徐志明,基于PC开放式数控系统及高性能插补算法的研究:[博士学位论文],上海:上海交通大学,2003
    [90] Sperling W, Lutz P. Enabling open control systems– an introduction to the OSACA system platform. Robotics and Manufacturing, 1996, 6:613~620
    [91] Sawada C, Akira O. Open controller architecture OSEC-II: Architecture overview and prototype systems. Proceedings of 6th International Conference on Emerging Technologies and Factory Automations, Los Angeles, USA, 1997. 543~550
    [92] Michaloski J, Birla S, Yen CJ, et al. An open system framework for component-based CNC machines. ACM Computing Surveys, 2000, 32(23): 50~55
    [93] Nacsa J. Comparison of three different open architecture controllers. Proceedings of IFAC MIM, Prague, 2001. 134–138
    [94]武洪恩,基于Windows的开放结构控制平台及应用研究:[博士学位论文],济南:山东大学,2007
    [95]李斌,基于构架/构件复用的开放式数控系统研究:[博士学位论文],武汉:华中科技大学,2004
    [96]戴晓华,王文,王威,开放式数控系统研究综述,组合机床与自动化加工技术,2000,11:5~7
    [97]孙颖,赵东标,可重构数控系统模块化设计的研制与开发,工业控制计算机,2004,14(12):11~13
    [98] Mekida S, Pruschekb P, Hernandezc J. Beyond intelligent manufacturing: A new generation of flexible intelligent NC machines. Mechanism and Machine Theory, 2009, 44(2): 466~476
    [99] Bellini P, Buonopane M, Nesi P. Assessment of a flexible architecture for distributed control. Programming and Computer Software, 2003, 29(3): 147~160
    [100] Mun J, Ryu K, Jung M. Self-reconfigurable software architecture: Design and implementation. Computers & Industrial Engineering, 2006, 51(1): 163~173
    [101] Minhat M, Vyatkin V, Xu X, et al. A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks. Robotics and Computer-Integrated Manufacturing, 2009, 25(3): 560~569
    [102] Yamazakia K, Hanakib Y, Mori M, et al. Autonomously proficient CNC controller for high-performance machine tools based on an open architecture concept. CIRP Annals - Manufacturing Technology, 1997, 46(1): 275~278
    [103] Park S, Kim S H, Cho H. Kernel software for efficiently building, re-configuring, and distributing an open CNC controller. International Journal of Advanced Manufacturing Technology, 2007, 20(2): 13~16
    [104] Hassane A, Baron L,Boukas, E K. Novel open architecture for high speed CNC. Annual Meeting of the Pulp and Paper Technical Association of Canada, 2006, A: 341~344
    [105]梁樑,可重构嵌入式系统快速原型方法及任务调度算法研究:[博士学位论文],上海:复旦大学
    [106]王文斌,嵌入式可重构数控系统及其关键技术研究:[博士学位论文],上海:上海大学,2007
    [107]刘勇,嵌入式可重构计算系统及其任务调度机制的研究:[博士学位论文],上海:中国科学院研究生院,2006
    [108]王文,王威,戴晓华等,基于COM标准的可重构数控系统研究,计算机辅助设计与图形学学报,2001,13(8):718~723
    [109]齐继阳,竺长安,王欢,基于USB和组件技术的可重构数控系统的研制,制造技术与机床,2007,12:17~20
    [110]孙颖,赵东标,可重构数控系统模块化设计的研制与开发,工业控制计算机,2001,14(12):11~13
    [111] Liu Y, Guo X, Li W. An intelligent NC program processor for CNC system of machine tool. Robotics and Computer-Integrated Manufacturing, 2007, 23(2): 160~169
    [112] Pu J, Harrison R, Weston R H. Software design of distributed single-axis motion controllers for industrial applications. Microprocessing and Microprogramming, 1989, 27(1-5): 53-60
    [113] Jimeno A, Sanchez JL, Mora H, et al. FPGA-based tool path computation: An application for shoe last machining on CNC lathes. Computers in Industry, 2006, 57(2): 103-111
    [114] Wang L, Orban P, Cunningham A. remote real-time CNC machining for web-based manufacturing. Robotics and Computer-Integrated Manufacturing. 2004, 20(6): 563~571
    [115] Erol N A, Altintas Y, Ito M. Modular tools for motion control and process control system design. Proceedings of SPIE, Boston, USA, 1997, 13~23
    [116]朱明超,基于局部信息的可重构模块机器人动力学控制方法研究:[博士学位论文],长春:吉林大学,2009
    [117]吴钦木,交流伺服系统可重构和网络化控制技术研究:[博士学位论文],武汉:华中科技大学,2007
    [118]赵庆志,基于可重构理论的慢走丝线切割机床控制系统研究与设计:[博士学位论文],南京:南京航空航天大学
    [119]齐继阳,可重构制造系统若干使能技术的研究:[博士学位论文],合肥:中国科学技术大学
    [120]孙恺,王田苗,魏洪兴,基于ARM的嵌入式可重构数控系统的设计与实现,机床与液压,2003,6:116~117,285王文,王威,戴晓华等,基于COM标准的可重构数控系统研究,计算机辅助设计与图形学学报,2001,13(8):718~723
    [121]秦兴,王文,李为建,基于FPGA的硬件可重构数控系统的研制,仪器仪表学报,2002,23(3):407~409
    [122]何恩懋,娄琳,王太勇等,基于MC68K和FPGA的嵌入式可重构数控系统的研究,制造业自动化,2006,28(6):43~46
    [123]梁宏斌,王永章,李霞,开放式数控系统与标准化,计算机集成制造系统,2004,10(9):1134~1138
    [124] Barabanov M. A Linux-based real-time operating system[Doctoral Thesis]. New Mexico, USA: New Mexico Institute of Mining and Technology, 1997.
    [125]刘鹏飞,韩九强,段延礼等,基于开放式控制器的机器人视觉伺服系统研究,计算机集成制造系统,2006,12(6):955~960
    [126] Delta Tau Data Systems, Inc. PMAC user manual, Chatsworth, Cal., USA: Delta Tau Data System Inc., 1998.
    [127] Erol N A, Altintas Y, Ito M R. Open system architecture modular tool kit for motion and machining process control. IEEE/ASME Transactions on Mechatronics, 2000, 5(3): 281~291
    [128] Shackleford W P, Proctor F M. Use of open source distribution for a machine tool controller. http://www.isd.mel.nist.gov/documents/shackleford/4191_05.pdf, 2008-05-24.
    [129] Koker K, Membarth R, German R. Performance analyses of embedded real-time operating systems using high-precision counters. Proceedings of The 3rd International Conference on Autonomous Robots and Agents(IRACA). Palmerston North, New Zealand: Massey University, 2006. 485~490
    [130]何丽,周利华,基于MCX314控制器的数控机床运动控制系统,计算机测量与控制,2003,11(5):351~353
    [131]王太勇,王涛,杨洁等,基于嵌入式技术的数控系统开发设计,天津大学学报,2006,39(12):1509~1515
    [132]陈友东,王田苗,魏洪兴等,数控系统的直线和S形加减速研究,中国机械工程,2006,17(15):1600-1604
    [133] Rubini A, Corbet J. Linux devices drivers. 3rd ed. Sebastopol, Cal., USA: O’Reilly Media Inc., 2005: 19~20.
    [134] Kramer T R, Proctor F M, Messina E. The NIST RS274NGC interpreter– version 3. http://www.isd.mel.nist.gov/personnel/kramer/pubs/RS274NGC_3.web/RS274NGC_3TOC.html, 2000-08-17.
    [135] IEEE. IEEE Std 1003.1-2001. Standard for information technology - Portable Operating System Interface (POSIX) base definitions, Issue 6. New York, NY, USA: IEEE, 2001.
    [136] Marwedel P. Embedded system design. Boston, USA: Kluwer Academic Publishers, 2003: 59~75
    [137]李晓辉,数控系统柔性加减速控制方法研究及软件开发:[硕士学位论文],杭州:浙江大学,2007
    [138]钟庆,李季,黄树槐,快速成型中的微线段连续高速高精度插补,华中理工大学学报,2000,28(3):39~41
    [139]赵巍,王太勇,万淑敏,基于NURBS曲线的加减速控制方法研究,中国机械工程,2006,17(1):1~3
    [140]曹宇男,王田苗,陈友东等,插补前S加减速在CNC前瞻中的应用,北京航空航天大学学报,2007,33(5):594~599
    [141] Hu J, Xiao L, Wang Y, et al. An optimal feedrate model and solution algorithm for a high-speed machine of small line blocks with look-ahead. The International Journal of Advanced Manufacturing Technology, 2006, 28(9-10): 930~935
    [142]董景新,吴秋平,现代控制理论与方法概论,北京:清华大学出版社,2007.209~216
    [143]徐志明,冯正进,汪永生等,连续微小路径段的高速自适应前瞻插补算法,制造技术与机床,2003,12:20~23
    [144]关美华,数控技术——原理及现代数控系统,成都:西南交通大学出版社,2004.96~98
    [145]李因鹏,王孙安,指数加减速的改进算法,机床与液压,2006,1:39~40
    [146] Han G C, Kim D II, Kim H G. A high speed machining algorithm for CNC machine tools. Proceedings of The 25th Annual Conference of the IEEE Industrial Electronics Society, San Jose, USA, 1999. 3: 1493~1497
    [147]叶佩青,赵慎良,微小直线段的连续插补控制算法研究,中国机械工程,2004,15(15):1354~1356
    [148]熊俊良,数控铣微直线加工的算法,兵工自动化,2004,23(6):25~26
    [149]曹荃,韩明,肖跃加等,快速原型制造系统中自适应轨迹特征的插补算法,中国机械工程,1997,8(5):56~57
    [150] Koren Y, Lo CC. Advanced controllers for feed drivers. Annals of the CIRP, 1992, 41(2): 689~69
    [151]陶涛,高速高精度运动控制器的研究:[博士学位论文],西安:西安交通大学,2005
    [152]朱年军,王文,季国顺,数控伺服系统跟踪及轮廓误差分析,机床与液压,2006,10:20~21
    [153] Xi X C, Poo A N, Hong G S. Improving contouring accuracy by tuning gains for a bi-axial CNC machine. International Journal of Machine Tools and Manufacture, 2009, 49(5): 396-406
    [154] Jim Ledin,嵌入式控制系统及其C/C++实现——面向使用MATLAB的软件开发者,北京:北京航空航天大学出版社,2005. 50~52
    [155]孙建仁,胡赤兵,黄建龙,CNC机床伺服系统特性对轮廓误差的影响机理,机床与液压,2009,37(3):31~33
    [156]黄艳,李家霁,于东等,CNC系统S型曲线加减速算法的设计与实现,制造技术与机床,2005,3:55~59
    [157] Nguyen KD, Chen IM, Ng TC. Planning algorithms for s-curve trajectories. IEEE/ASME International Conference on Advanced intelligent mechatronics, ETH Zurich, Switzerland, 2007, 1~6
    [158]石川,赵彤,叶佩青等,数控系统S曲线加减速规划研究,中国机械工程,2007,18(12):1421~1425
    [159] Chan Y F, Moallem M, Wang W. Efficient implementation of PID control algorithm using FPGA technology. 43rd IEEE Conference on Decision and Control, 2004, 4885-4890.
    [160] Tao Y D, Lin H, Zhang X H, et al. Efficient implementation of CNC position controller using FPGA. The IEEE International Conference on Industrial Informatics, 2008, 1177-1182.
    [161] Zhao W, Kim B H, Larson A C, et al. FPGA implementation of closed-Loop control system for small-scale robot. 12th International Conference on Advanced Robotics, 2005, 70-77.
    [162] Wang J Z, Chen Y P, Xie J M, et al. FPGA based neural network PID controller for line-scan camera in sensorless environment. Fourth International Conference on Natural Computation, 157-161.
    [163] Su K H, Hu C K, Cheng M Y. Design and implementation of an FPGA-based motion command generation chip. IEEE International Conference on Systems, Man and Cybernetics, 2006.
    [164] Osornio-Rios R A, Romero-Troncoso R J, Herrera-Ruiz G, et al. FPGA implementation of higher degree polynomial acceleration profiles for peak jerk reduction in servomotors. Robotics and Computer-Integrated Manufacturing, 2009, 25: 379-392.
    [165] Yau H T, Lin M T, Tsai M S. Real-time NURBS interpolation using FPGA for high speed motion control. Computer-Aided Design, 2006, 38: 1123-1133.
    [166]郝丽,孔祥维,郭云彪,DCT域统计特性的图像重采样检测,信息安全与通信保密,2009,12:60~63
    [167]陆济湘,南良改,一种新的基于重采样的曲线重建算法,武汉理工大学学报,2009,31(6):861~864
    [168]毕华,梁洪力,王珏,重采样方法与机器学习,计算机学报,2009,32(5):862~877
    [169] Erkorkmaz K, Altintas Y. High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. International Journal of Machine Tools and Manufacture, 2001, 41: 1323-1325
    [170] Hoschek J, Lasser D. Fundamentals of computer-aided geometric design, A K Peters, Ltd, Wellesley, USA, 1993, 175
    [171]谢伟红,叶亮荣,曲面细分方法及其应用,电脑知识与技术,2007,3(17):1425~1427
    [172]王国瑾,汪国昭,郑建民,计算机辅助几何设计,北京:高等教育出版社,2001. 338~339
    [173] Chaikin G, An algorithm for high speed curve generation. Computer Graphics and Image Processing, 1974, 3(4): 346~349
    [174] Riesenfeld R F. On Chaikin’s algorithm. IEEE Computer Graphics and Application, 1975, 4(3): 304~310
    [175] Dyn N, Levin D, Gregory J A. A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design, 1987, 4:257~268
    [176] Weissman A. A 6-point interpolatory subdivision scheme for curve design[Master Thesis]. Tel-Aviv, Israel: Tel-Aviv University, 1989.
    [177] Dyn N, Levin D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control. ACM transactions on Graphics, 1990, 9(2): 160~169
    [178] Vijayaraghavana A, Sodemannb A, Hoovera A, et al. Trajectory generation in high-speed, high-precision micromilling using subdivision curves. International Journal of Machine Tools and Manufacture (In press).
    [179] Catmull E, Clark J, Recursively generated b-spline surface on arbitrary topological meshes, Computer-Aided Design, 1978, 10(6): 350–355
    [180]北京发那科公司, FANUC 0i-TC操作说明书,北京, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700