基于广域信息的继电保护及其相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能电网是当今世界电力系统发展变革的最新动向,被认为是2l世纪电力系统的重大科技创新和发展趋势。智能电网的最终目标是实现电网的数字化、信息化、自动化和互动化,使电网达到智能、坚固、高效和可靠。作为智能电网重点研究对象之一的广域保护系统是解决现有保护存在的独立、片面工作问题,确保大型互联电网的安全性和稳定性的不可或缺的组成部分。本文对智能电网中的广域保护及其相关问题进行研究。
     提出了基于广域信息的防连锁过载跳闸保护。以重要母线为单元,利用正常运行时存贮在广域网调度中心的节点阻抗矩阵中的相关元素,估算各支路的过载电流系数以分析过载支路开断后有无引起连锁跳闸的可能,及时告知调度中心采取防连锁跳闸的措施,以防大面积停电。该保护原理简单、计算速度快,对保证电网的安全稳定运行具有重要意义。
     提出了基于多Agent技术的防连锁过载跳闸保护方案。阐述了Agent的基本思想,分析了多Agent防连锁过载跳闸保护的框架结构及其内部各模块的功能与配合,提出了基于Agent技术的防连锁过载跳闸保护方案,故障时可以有效地缩短后备保护动作时间,过载时通过对过载电流系数的实时判断,防止连锁过载跳闸情况的发生。
     对电网广域测量系统及数字化变电站中多采样率转换的问题进行了研究。数字化变电站中的电子式互感器及广域相量测量单元(PMU)中用到的各测量点的互感器并非同一型号,其采样频率不完全相同,因而需要将多采样频率信号转换为同一采样频率。通过对不同采样频率信号内插、抽取和凯赛窗低通滤波三者的级联,实现了任意分数倍采样频率的转换。在此基础上,提出了基于全波傅氏的数字窄带滤波算法,在频率转换的同时对有用信号进行滤波,实现对采样信号不失真的频率归一化。所提方法简单、快速、有效,可用于电力系统安全稳定的分析、控制和广域保护。
     对基于广域信息的六线输电系统的选相及测距进行了研究。将广域测量系统得到的输电线路两端电气量进行六序分解,利用六序分量中同正序故障分量(同杆双回线)或反正序故障分量(六相输电)的传输线长线方程测得故障距离。之后利用两端电气量和故障距离再借助长线方程求得故障点的各相电流,依据故障点相电流的幅值特征判断故障相。该方法测距精度高,又能实现故障选相,且选相原理清晰、逻辑简单可靠,不受故障点过渡电阻和线路分布电容电流的影响,随着系统运行方式的变化可自适应调整选相判据的定值,为六线输电系统的距离保护提供了有效的选相逻辑。
Smart grid is present situation of the development and changes in power systems, and it is considered as the most important technology innovation and development trend in power systems during 21st century. The final goal of smart grid is realizing the digitalization, informatization, automatization and alternation so that the smart gird would be established intelligently, strong, efficiently and reliably. As one of the most important investigated subjects for Smart grid, wide area protection system can resolve the unilateral and independent problem of the protection at present. Wide area protection system can also keep the large-scale power grid secure and steady, and it is indispensable. In this paper, wide-area protection of Smart grid and related issues has been discussed.
     A principle of preventing chain over-load trip based on wide-area information is proposed. Taking the important buses as units, the over-load current coefficient of each branch is calculated using relevant elements of the node impedance matrix in the normal operation conditions stored in the wide-area scheduling centre. The possibility of chain over-load trip caused by over-load branches is then estimated based on these coefficients, to help control centers take timely measures to prevent chain over-load trip and large-scale blackouts. The protection has simple principle, fast algorithm. It is also of great significance to the power grid safe and stable operation.
     A new method of wide-area protection against chain over-load trip (PACOLT) based on multi-Agent technology (MAT) is discussed in this paper. After expounding the Agent technology, and analyzing the structure of wide-area PACOLT based on MAT and the function and cooperation of all the inside modules, a new theory of wide-area PACOLT is proposed to prevent the Chain over-load trip and insure the reliability and continuity of power supply.
     In this paper, Wide area measurement system (WAMS) and Multi-sample-rate for Digital substation are studied. Because current (voltage) transformers and Phasor Measurement Unit (PMU) of Wide area measurement system in digital substation are different in type and sampling rates, it is necessary to convert them to the same rate. In this paper, sampling rate conversion in a rational factor is realized through cascade connection of extraction, interpolation and low-pass filter. A digital narrow band-pass filter algorithm based on full cycle Fourier algorithm is proposed. This algorithm can not only obtain the useful frequency component fast and effectively, but also realize the normalization of signals’sampling rate without distortion. The method Proposed is simple, fast, effective and can be used for security and stability of power system analysis, control and wide-area protection.
     Phase selection and fault location of Six-line transmission system based on Wide area measurement system are studied in the paper. This paper introduces the six sequence variables method to analysis the electrical signals gained from the end of transmission lines, and uses the same positive sequence (the parallel transmission lines system) or the opposite positive sequence (six phase transmission system) signal’s long line equation to locate fault point. With the help of long line equation, the fault currents can be calculated form the location of fault and electrical signals gained from the end of transmission lines. The method proposed has high fault location accuracy and can select the right fault phase. The theory of the phase selection is clear and the logical of the protection is simple and reliable. It is also free from transition resistance and distributed capacitance current influence. This method can adjust the criterion of fault phase selection when operation mode is changed. It can provide effective phase selection logic for six-line transmission systems.
引文
[1]余贻鑫,栾文鹏,智能电网,电网技术,2009,25(1):1-5
    [2]余贻鑫,面向21世纪的智能配电网,南方电网技术研究,2006,2(6):13-16
    [3] Christian Sasse,未来的电力网,华东电力,2007,35(C00):1-16
    [4] Nair Nirmal-Kumar C,Zhang Lixi,SmartGrid:Future networks for New Zealand power systems incorporating distributed generation,Energy Policy,37(9):3418-3427
    [5] Saint Bob,Rural distribution system planning using smart grid technologies,2009 Rural Electric Power Conference,2009 IEEE Rural Electric Power Conference,Piscataway:IEEE,2009,B31-B38
    [6] Research Reports Internationa1,Understanding the Smart Grid,Research Reports International,Aug. 2007
    [7] Potter Cameron W,Archambault,AllisonWestrick Kenneth,Building a smarter smart grid through better renewable energy information,2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009,Seattle,2009
    [8] McDaniel Patrick,McLaughlin Stephen,Security and privacy challenges in the smart grid,IEEE Security and Privacy,2009,7(3):75-77
    [9] Yeo, Sang-Soo,Kang, Dong-Joo,Park, Jong Hyuk,Intelligent decision-making system with green pervasive computing for renewable energy business in electricity markets on smart grid,Eurasip Journal on Wireless Communications and Networking,2009
    [10] Rasweiler J,Implementing smart grid solutions,Control Engineering,2008,55(4):E11-E12
    [11] Jun Wang, Huang A, Woongje Sung,Smart grid technologies,IEEE Industrial Electronics Magazine,2009,3(2):16-23
    [12] Massoud Amin S,Wollenberg B F, Toward a smart grid: power delivery for the 21st century,IEEE Power & Energy Magazine,2005,3(5):34-41
    [13] Vojdani Ali,Smart integration,IEEE Power and Energy Magazine,2008,6(6):71-79
    [14] Ipakchi A,Albuyeh F,Grid of the future,IEEE Power & Energy Magazine,2009,7(2):52-62
    [15] Taylor Tim,Ohrn Arina,Network management for smart grids: Innovative operations centers to manage future distribution networks,ABB Review,2009,(3):45-49
    [16]肖世杰,构建中国智能电网技术思考,电力系统自动化,2009,33(9):1-4
    [17]常康,薛峰,杨卫东,中国智能电网基本特征及其技术进展评述,电力系统自动化,2009,33(17):10-15
    [18] Garcia-Valle R,da Silva L C P,Xu Z,Smart demand for improving short-term voltage control on distribution networks,IET Generation, Transmission & Distribution,2009,3(8):724-732
    [19] VADARI M,Demystifying intelligent networks,Public Utilities Fortnightly,2006,144(11):61-64
    [20] Paul Haase,IntelliGrid: A Smart Network of Power,EPRI Journal,2005:17—25
    [21]何光宇,孙英云,梅生伟,等,多指标自趋优的智能电网,电力系统自动化,2009,33(17):1-5
    [22]张伯明,孙宏斌,吴文传,等,智能电网控制中心技术的未来发展,电力系统自动化,2009,33(17):21-28
    [23]余贻鑫,智能电网的技术组成和实现顺序,南方电网技术,2009,3(2):1-5
    [24]王明俊,自愈电网与分布能源,电网技术,2007,31(6):1-7
    [25]张保明,“智能电网”再造美国能源业,把脉潮流,2009-05,102:66-68
    [26]裴玮,齐智平,智能电网的概念、关键技术及其在我国的前景,中国电力发展与改革研究,2009,5:11-14
    [27]韩晓平,智能电网——信息革命和新能源革命的整合,电力需求侧管理,2009,2:5-7
    [28]姚建国,智能电网——世界电力工业应对未来挑战的共同选择,国网培训资料
    [29]中国首提全面建设统一“坚强智能电网”,河南电力科技信息,2009,(3):1
    [30]熊小伏,陈星田,夏莹,等,面向智能电网的继电保护系统重构,电力系统自动化,2009,33(17):33-37
    [31]武建东,智能电网与中国互动电网创新发展,电网与清洁能源,2009,25(4):5-8
    [32]王毅,智能电网故障辨识系统设计研究,华东电力,2009,37(6):920-926
    [33]余贻鑫,徐臣,贾宏杰,智能电网快速仿真与模拟任务调度优化方法,计算机工程与应用,2009,45(19):26-30
    [34]张文峰,赵曼勇,李鹏,等,智能电网研究及其对电网调度的影响,中国电力发展与改革研究,2009,(5):5-10
    [35]张征容,智能电网浅述,云南电力技术,2009,37:28,56
    [36]陈建民,周健,蔡霖,面向智能电网愿景的变电站二次技术需求分析,华东电力,2008,36(11):37-39
    [37]谢开,刘永奇,朱治中,等,面向未来的智能电网,中国电力,2008,41(6):19-22
    [38]李永,许允之,基于AT89C51的智能电网信息采集终端,仪表技术与传感器,2008,(5):40-41,44
    [39]廖斌,仇宏祥,标准化的智能电网提升电网安全,上海电力,2006,(6):584-587
    [40]杨建,罗安,涂春鸣,等,应用神经网络和遗传算法的智能电网综合补偿控制的研究,控制理论与应用,2002,19(5):737-740
    [41]苗世洪,王少荣,刘沛,等,基于GPS的电网状态监测系统的设计与实现,电力系统自动化,2000,24(12):52-54
    [42]张承学,龚庆武,等,基于GPS同步采样装置的研制及其应用,电力系统自动化,2000,24(10):51
    [43]王正风,黄太贵,吴迪,等,广域测量技术在电力系统中的应用,华东电力,2007,35(5):32-36
    [44]卢志刚,郝玉山,康庆平,等,电力系统相角测量和应用,电力系统自动化,1997, 21(4):41-43
    [45]闵勇,丁仁杰,任勇,等,电力系统全网同步监测系统,清华大学学报(自然科学版),1997,37(7):86-88
    [46]蒋跃强,周健,电网数字化、智能化实践的技术要点分析,华东电力,2009,37(6):910-912
    [47]倪浩,黄杨珏,周勇伟,浅谈数字化变电站,中国科技博览,2009,(8):200
    [48]陈建平,德阳110kV数字化变电站建设方案,电工技术,2009,(5):3-4
    [49]徐科,张会建,送国旺,等,现阶段的数字化变电站网络架构设计,电力系统及其自动化学报,2009,21(2):61-66
    [50]丁书文,史志鸿,数字化变电站的几个关键技术问题,继电器,2008,36(10):53-56
    [51]隆丽,浅谈数字化变电站,继电器,2007,(S1):305-307
    [52]范金华,卢波,500kV海宁变电站数字化方案研究与工程应用,华东电力,2009,37(6):907-909
    [53]龚泉,刘琳,杨帆,基于IEC-61850标准的数字化变电站系统测试,华东电力,2009,37(6):936-940
    [54]高毅,袁敬中,范迪才,建设智能化现代电网的设想,华北电力技术,2009,(5):45-47
    [55]陈天香,王若醒,魏勇,数字化变电站新技术的发展现状及其对行业影响浅探,电力系统保护与控制,2009,37(7):86-90
    [56]余锐,熊小伏,于军,数字化变电站继电保护可靠性措施研究,四川电力技术,2009,32(2):33-36
    [57]曹金鹿,吴光强,符杨,110kV数字化变电站在浙江电网的应用,上海电力学院学报,2009,25(2):126-130
    [58]高翔,数字化变电站应用展望,华东电力,2006,34(8):47-53
    [59]胡学浩,美加联合电网大面积停电事故的反思和启示,电网技术,2003,27(9):T2-T6
    [60]鲁宗相,蒋锦峰,袁德,从“8.14”美加大停电思考电力可靠性,中国电力,2003,36(12):1-6
    [61]张保会,加强继电保护与紧急控制系统的研究提高互联电网安全防御能力,中国电机工程学报,2004,24(7):1-6
    [62]陈德树,大电网安全保护技术初探,电网技术.2004,28(9):14-17
    [63]蔡运清,汪磊,Kip Morison,等,广域保护(稳控)技术的现状及展望,电网技术,2004,28(8):20~25
    [64] Ingelsson B,Lindstrom P-O,Karlsson D,et al,Wide-area protection against voltage collapse,IEEE Computer Application in Power,1997,10(4):30-35
    [65] Serizawa Y,Myoujin M,et al,Wide-area Current Differential Backup Protection Employing Broadband Communications and Time Transfer Systems,IEEE Trans on Power Delivery,1998,13(4):1046-1052
    [66] Y.Serizawa,H.Imamura, and M.Kiuch,Performance evaluation of IP-based relay communications for wide-area protection employing external time synchronization , IEEE Power Engineering Society Summer Meeting ,Vancouver,Canada,2001:909-914
    [67] Y.Serizawa,H.Imamura,N.Sugaya,Experimental examination of wide-area current differential backup protection employing broadband communication and time transfer systems,IEEE Power Engineering Summer Meeting,1999:1070-1075
    [68] Karlsson D,Broski L,Ganesan S,Maximizing power system stability through wide area protection,Protective Relay Engineers,2004 57th Annual Conference for 30 Mar-1 Apr 2004:403-418
    [69] Bertsch J,Carnal C,Karlson D,et al,Wide-area protection and power system utilization,Proceedings of the IEEE,Volume 93,Issue 5,May 2005:997-1003
    [70] Chen-Ching Liu,Strategic power infrastructure defense(SPID):a wide area protection and control system,Transmission and Distribution Conference and Exhibition 2002:Asia Pacific,IEEE/PES.6-10 Oct,2002:500-502
    [71] Karlsson D,Henmmingsson M,Lindahl S,Wide area system monitoring and control-terminology ,phenomena,and solution implementation strategies,Power and Energy Magazine,IEEE Volume 2,Issue 5,Sept.-Oct.2004:68-76
    [72] Jonsson M,Daalder J,Begovic M,A system protection scheme concept to counter inter-area oscillations,IEEE Transactions on Power Delivery,Volume 19,Issue 4,Oct.2004:1602-1611
    [73] Bertsch J,Zima M,Suranyi A,et al,Experiences with and perspectives of the system for wide area monitoring of power systems,Quality and Security of Electric Power Delivery Systems,CIGRE/PES 2003.CIGRE/IEEE PES International Symposium,8-10 Oct,2003:5-9
    [74] Rehtanz C,Bertsch J,Wide area measurement and protection system for emergency voltage stability control,IEEE Power Engineering Society Winter Meeting,27-31 Jan,2002:842-847
    [75]范琦,穆钢,王克英,基于同步相量测量的线路参数在线测量的实验研究,东北电力学院学报,2002,22(4):1-6
    [76]安艳秋,高厚磊,基于同步相量测量的线路参数在线计算,电力自动化设备,2002,22(9):21-23
    [77]肖晋宇,谢小荣,李建,等,电网广域动态安全监测系统及其动态模拟实验,电网技术,2004,28(6):5-9
    [78]王兆家,岑宗浩,陈汉中,华东电网多功能功角实时监测系统的开发及应用,电网技术,2002,26(8):73-77
    [79]闵勇,丁仁杰,韩英铎,等,一次系统事故的同步相量量测结果分析,电力系统自动化,1998,22(7):10-13
    [80]鞠平,郑世宇,徐群,等,广域测量系统研究综述,电力自动化设备,2004,27(7):37-49
    [81] Phadke A G,Synchronized phase measurements in power system,IEEE Computer Applications in Power,1993,6(2):42-47
    [82] Ota Y,Nakamura K,Fujita H,et al,PMU based midterm stability evaluation of wide-area power system,IEEE Trans.on Power Systems,2002,17(2):378-382
    [83]丁军策,蔡泽祥,王克英,基于广域测量系统的状态估计研究综述,电力系统自动化,2006,7(30):98-103
    [84]丁军策,蔡泽祥,王克英,相量测量单元测量值对状态估计中等效电流量测变换算法的影响,电网技术,2005,29(5):47-51
    [85] Phadke A G,Thorp J S,Karimi K J,State estimation with phasor measurements,IEEE Trans on Power Systems,1986,1(1):233-241
    [86] Phadke A G,Thorp J S,Karimi K J,Power system monitoring with state vector measurement,In: Proceedings of second international conference on power system monitoring and control.Durham (England),1986:124-129
    [87]吴笃贵,徐政,基于相量量测得电力系统谐波状态估计(I)—理论、模型与求解算法,电工技术学报,2004,19(2):64-68
    [88]吴笃贵,徐政,基于相量量测得电力系统谐波状态估计(II)—可观性、质量评估与算例研究,电工技术学报,2004,19(3):76-81
    [89] R.C.Hardiman,M.Kumbale,Y.V.Makarov,An advanced tool for analyzing multiple cascading failures,International Conference on Probabilistic Methods Applied to Power Systems,2004,629-634
    [90] D.S.Kirschen,D.Jayaweera,D.P.Nedic,R.N.Allan,A probabilistic indicator of system sterss,IEEE Transactions on Power Systems,2004,19(3):1650-1657
    [91] I.Dobson,B.A.Careeras,V.E.Lynch,D.E.Newman,An initial model for complex dynamics in electric power system blackouts,34 th HICSS,Maui,Hawaii,Jan.2001
    [92] J.Chen,J.S.Thorp,I.Dobson,Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model,International Journal of Electrical Power and Energy Systems.2005,27:318-326
    [93] M.Aanghel,K.A.Werley,A.E.Motter,Stochastic model for power grid dynamics,The 40 th HICSS.2007
    [94]赵庆生,刘笙,陈陈,基于相量测量与能量分析的在线失稳预警,电力系统自动化,2003,27(14):9-12
    [95]毛安家,郭志忠,张学松,一种基于广域测量系统过程量测数据的快速暂态稳定预估方法,中国电机工程学报,2006,26(17):38-43
    [96] Novosel D,Begovic M,Taylor C,et al,Wide Area Protection and Emergency Control,Power Engineering Society 1999 Winter Meeting,Volume:2,31 Jan-4 Feb 1999
    [97] Larsson M,Karlsson D,System protection scheme against voltage collapse based on heuristic search and predictive control,IEEE Trans on Power Systems,2003,18(3):1001-1006
    [98] Rehtanz C,Bertsch J,Wide area measurement and protection system for emergency voltage stability control, 2002 IEEE Power Engineering Society Winter Meeting.New York,USA,2002,2:842-847
    [99] Liu C W,Chang C C,Su M C,Neuro-fuzzy network for voltage security monitoring based on synchronized phasor measurements,IEEE Trans on Power Systems,1998,13(2):326-332
    [100] Nuqui R F,Phadke A G,Schulz R P,et al,Fast on-line voltage security monitoring using synchronized phasor measurements and decision trees,IEEE Power Engineering Society Winter Meeting,2001,3:1347-1352
    [101] Ismail Musirin,Titik Khawa Abdul Rahman. Novel fast voltage stability index (FVSI) for voltage stability analysis in power transmission system,IEEE Student Conference on Research and Development Proceedings,,Shah Alam,Mylaysis,2002:265-268
    [102] Larsson M,Rehtanz C,Predictive frequency stability control based on wide-area phasor measurements,2002 IEEE Power Engineering Society Summer Meeting.Chicago,USA,2002,1:233-238
    [103] J.C.Tan,P.A.Crossiey,D.Kirschen,etal, An expert system for the back-up protection of a transmission network,IEEE Trans on Power Delivery,2000,15(2):508-513
    [104] Tan J C,Crossley P A,Mclaren P G,et al,Application of a wide area backup protection expert system to prevent cascading outages,IEEE Trans on Power Delivery,2002,17(2):375-380
    [105] Tan J C,Crossley P A,Mclaren P G,et al,Sequential tripping strategy for a transmission network back-up protection expert system,IEEE Trans on Power Delivery,2002,17(1):68-74
    [106]徐天奇,尹项根,游大海,等,广域保护系统功能与可行结构分析,电力系统保护与控制,2009,3(37):93-97
    [107]熊小伏,周家启,赵霞,等,快速后备保护研究,电力系统自动化,2003,27(11):45-47
    [108]王冬青,苗世洪,林湘宁,等,基于光纤网的后备保护系统的研制,电网技术,2006,30(7):77-81
    [109]王冬青,刘沛,基于CORBA的混杂MAS广域后备保护系统设计,高电压技术,2006,32(10):98-101,105
    [110]童晓阳,王晓茹,韩旭东,等,基于UML的MAS环境下Agent的一般性分层框架,西南交通大学学报,2006,2(41):143-149
    [111] WANG X R,HOPKINSON K M,THORP J S,et al,Developing an Agent-based Backup Protection System for Transmission Networks, In: Proceedings of International Conference on Power Systems and Communication Systems Infrastructures for the Future,Beijing(China),2002
    [112]陈艳霞,尹项根,张哲,等,基于多Agent技术的继电保护系统,电力系统自动化,2002,26(12):1-6
    [113]丛伟,潘贞存,赵建国,基于纵联比较原理的广域继电保护算法研究,中国电机工程学报.2006,26(21):8-14
    [114]苏盛,段献忠,曾祥君,等,基于多Agent的广域电流差动保护系统,电网技术,2005,29(14):15-19
    [115]苏盛,K.K.Li,W.L.Chan,等,广域电流差动保护区划分专家系统,电网技术,2005,29(3):55-58,63
    [116]杨增力,石东源,段献忠,基于方向比较原理的广域继电保护系统,中国电机工程学报,2008,28(22):87-93
    [117]徐慧明,毕天姝,黄少锋,等,基于WAMS的潮流转移识别算法,电力系统自动化,2006,30(14):14-19
    [118]姚峰,张保会,周德才,等,输电断面有功安全性保护及其快速算法,中国电机工程学报,2006,26(13):31-36
    [119]张保会,姚峰,周德才,等,输电断面安全性保护及其关键技术研究,中国电机工程学报,2006,26(21):1-7
    [120]王丽霞,纪会争,浅谈光纤通信在电力系统继电保护中的应用,华北电力技术,2005,B11:37-39,102
    [121]周喜超,刘峻,何世恩,IEC61850标准与数字化变电站,电气时代,2009,4:76-78
    [122]谭文恕,变电站通信网络和系统协议IEC61850介绍,电网技术,2001,25(9):8-12
    [123]姜廷刚,高厚磊,刘炳旭,适合广域测量系统的通信网探讨,电力系统及其自动化学报,2004,3:57-60
    [124]吴云,基于光纤+SDH+IP技术的继电保护及故障信息传输系统,电力系统自动化,2004,28(1):88-91
    [125]崔沅,程林,孙元章,等,应用ATM网络实现电力系统远程实时监控,电力系统自动化,2002,26(14):7-11
    [126]朱永利,黄敏,邸剑,基于广域网的电力远动系统的研究,中国电机工程学报,2005,25(7):119-124
    [127]刘英亮,丛伟,张洁,等,基于IEC61850的广域保护系统通信服务模型,继电器,2007,35(15):9-13
    [128]彭静,卢继平,汪洋,等,WAMS中的通信网络平台构建,2009,37(12):62-67
    [129]杨军,童晓阳,韩涛,等,一种广域后备保护多Agent系统的动态行为分析,电力系统及其自动化学报,20(3):56-61
    [130]陈振宇,王钢,李海锋,等,基于智能多代理技术的广域电网协调保护系统,电网技术,2008,32(5):42-45
    [131]吴际舜,电力系统静态安全分析,上海交通大学出版社,1985
    [132]宗孔德,多抽样率信号处理,清华大学出版社,1996
    [133]陶然,张惠云,王越,多抽样率数字信号处理理论及其应用,清华大学出版社,2007
    [134]袁智强,陈宇晨,刘涌,等,改进直流法在静态安全分析中的应用,继电器,2003,31(7):23-27,80
    [135]赵晋泉,江晓东,张伯明,一种基于连续线性规划技术的在线静态安全校正算法,电网技术,2005,29(5):25-30
    [136]何银菊,宋玮,周庆捷,等,面向对象的电力系统潮流计算与静态安全分析,电网技术,2001,25(8):11-14
    [137] Brandwajn V,Efficient bounding method for linear contingency analysis,IEEE Trans,on Power System,1988,PAS-3(1):38-43
    [138] IEC 60044-8 Instrument transformerspart 8: electronic current transformers,2002
    [139]吴崇昊,陆于平,徐光福,等,适用于母线保护的电子互感器采样频率转换算法,电力系统自动化,2007,31(3):79-82
    [140]吴崇昊,陆于平,侯喆,基于时域连续有限冲激响应滤波器的电子互感器采样数据站间同步算法,中国电机工程学报,2006,26(12):50-54
    [141]周斌,张何,基于电子式互感器的变电站智能设备采样值接口技术,江苏电机工程,2007,26(2):37-39
    [142]郑世林,数字化信号的抽取、插值方法及次序,通信技术,2001,(7):106-108
    [143]万永革,数字信号处理的MATLAB实现,北京:科学出版社,2007
    [144]郑南宁,程洪,数字信号出处理,北京:清华大学出版社,2007
    [145] Landers TL, Richeda R J , Krizauskas E, et al,High phase order economics: Constructing a new transmission line,IEEE Transactions on Power Delivery, 1998,13(4):1521-1526
    [146]刘千宽,黄少锋,王兴国,同杆并架双回线基于电流突变量的综合选相,电力系统自动化,2007,31(21):53-57
    [147]俞波,杨奇逊,李营,等,同杆并架双回线保护选相元件研究,中国电机工程学报,2003,23(4):38-42
    [148]葛耀中,新型继电保护与故障测距原理与技术,西安交通大学出版社,1996
    [149]刘万顺,电力系统故障分析,中国电力出版社,1986
    [150]盛万兴,杨旭升,多Agent系统及其在电力系统中的应用,中国电力出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700