特高压电场的数值计算与全局优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特高压变压器是特高压变电站中最重要的设备之一。特高压变压器的绝缘设计对变压器的单台极限容量和运行可靠性具有决定性意义。对变压器进行电场分析,控制各处油隙的电场强度远小于起始局部放电电场,是特高压交流变压器绝缘设计的重要内容。变压器线圈及其出线装置的电场强度大小和均匀性直接影响特高压变压器设备的技术指标和经济指标,也影响了整个特高压输变电系统的经济性和稳定性,因此,对特高压变压器线圈及其出线装置的电场进行数值计算和优化设计具有重要意义。
     本文针对一台特高压交流变压器样机建立了线圈及其出线装置的三维实体模型。对中部模型,采用二维电场计算,初步确定了所需要重点计算的关键区域。采用解析法,计算了等效介电常数,把多层油纸绝缘结构等效成单一绝缘介质,进而对线圈及其出线装置的三维计算模型的简化提供依据。将简化后的模型分为上下两部分,通过手动剖分与自由剖分相结合,成功的建立了它们的三维有限元模型。对顶部模型和底部模型分别进行三维电场计算,得到了它们的电压和电场的分布图,并计算了最大电场强度值以及最大电场所在的位置,验证了样机线圈及其出线装置绝缘设计的合理性。
     为提高变压器线圈及其出线装置的设计效率,本文将高效快速的参数化方法从一般模型设计深入到有限元分析。采用APDL编写变压器线圈及其出线装置电场的参数化有限元分析文件,实现了后台调用ANSYS进行完全自动化批处理的可变参数有限元计算,并在此基础上采用零阶方法分别对顶部模型和底部模型的最大场强进行优化,分别得到最优解。通过对上下两部分的最优解的比较,得到了整个线圈及其出线装置最大场强的全局最优解。
     本文探讨了ANSYS与其它外部程序的接口方法,并编写了VC++6.0和ANSYS软件的接口程序。通过接口程序,可以实现在VC++6.0中将ANSYS作为子程序进行调用。采用这种方法,将遗传算法与有限元分析结合起来,通过VC++6.0和ANSYS对外部文件的读写实现参数的传递,从而完成了对变压器线圈及其出线装置电场的优化设计。最后,采用同样的方法,将粒子群算法引入到特高压变压器线圈及其出线装置电场的优化设计中,并分析了几种算法的优缺点。
The ultra-high voltage (UHV) transformer is one of the most important equipment in transformer substation. The insulation design is significant for the capacity limit and the function reliability of UHV transformer. It is necessary in the UHV transformer insulation design to analyze the electric field and decrease the electric field strength around the oil gap. The electric field strength and uniformity of transformer coil and outlet device have direct influence on the qualification and economic indicator as well as economical efficiency and stabilization of the UHV transformer. Thus, it is significant to carry out the numerical calculation and optimization on the electric field of the UHV transformer coil and outlet device.
     In this paper, the 3-D solid model is built for an UHV transformer prototype. 2-D electric field of the model middle part is calculated for preliminary confirmation of the critical area which needed selective calculation. The analysis method is employed to solve the equivalent dielectric constant considering the multilayer insulation oil-paper as homogeneous medium, and then the 3-D solid model can be simplified by dividing the model into two parts, the upper half and the lower one. The 3-D finite element meshing model is constructed by manual and auto-meshing generation so as to calculate the electric field around the upper half coil and the lower one, respectively. Voltage and electric field distribution are obtained, and the maximum electric field strength is calculated as well as its location is found. These calculated results verify the reasonability of the insulation design of the prototype’s coil and outlet device.
     To improve the coil and outlet device design efficiency, the finite element analysis is employed instead of fast and efficient parametric method of common model. The parametric finite element analysis file for electric field of coil and outlet device is compiled by APDL. And the variable parametric finite element calculation is established by invoking ANSYS in the computer programming to realize automatically processing batch. Furthermore, the maximum electric field is optimized by zero order optimization method in upper and lower model, and the optimal solution can be obtained. The overall optimized solution is obtained by comparing the optimized solutions of upper and lower model.
     The interface programming between ANSYS and other outer computer code is discussed in this paper, and the interface program code is proposed to link VC++6.0 and ANSYS. ANSYS can be invoked as VC++6.0’s subroutine by this interface program. Then the genetic algorithms and the finite element analysis are integrated to optimize the electric field of UHV transformer coil and outlet device by operating parameter delivery in VC++6.0 and ANSYS programming. Finally, particle swarm algorithm is introduced to optimize the electric field of the UHV transformer coil and outlet device with the same method. Additionally, merits and demerits are analyzed on the optimization algorithms of this paper.
引文
[1]国家电网科.国家电网公司科技发展规划(2003~2005~2010), 2003(285号)
    [2]业界要闻-中国电力装机总容量规划到2010年达8.4亿千瓦.电器工业, 2007(2): 1
    [3]刘开俊,王怡萍.中国城市电网发展现状与规划探讨.电气工业, 2006, 6-9
    [4]吴敬儒,陈剑波.我国电力工业发展规划问题.中国电力, 2005, 38(9): 11-14
    [5]刘振亚.特高压电网.北京:中国经济出版社, 2005. 25
    [6]何诗丝.“十一五”期间我国电网建设发展概况.电器工业. 2006, 5: 11-18
    [7]中国电力年鉴编辑委员会.中国电力年鉴.北京:中国电力出版社, 2005.
    [8]袁季修.电力系统安全稳定控制的规划和研究.中国电力, 1999, 32(5): 29-32
    [9]王梅义,吴竟昌,蒙定中.大电网系统技术.北京:中国电力出版社, 1991.
    [10]张运洲.我国电网规划与发展中的几个具体问题.中国电力, 2003, 36(9): 50-53
    [11]何肇.改善华东电网结构,降低短路容量方案的探讨.电网技术, 2004, 28(2): 28-31
    [12]印永华.特高压大电网发展规划研究.电网与清洁能源. 2009, 25(10): 1-3
    [13]张文亮,胡毅.发展特高压交流输电,促进全国联网.高电压技术, 2003, 29(8): 20-23
    [14]刘振亚.加快建设坚强国家电网,促进中国能源可持续发展.中国电力, 2006, 39(9): 1-3
    [15]万启发.二十一世纪我国的特高压输电.高电压技术, 2000, 26(6): 12-13
    [16] Zhang Yunzhou, Li Hui. Analysis on the Development Strategies of the UHV Grid in China. Proceedings of the CSEE. 2009, 29(22): 1-6
    [17]中国工程院特高压专项咨询课题组.我国发展特高压技术的必要性和可行性.国家电网. 2009, 3: 32-34
    [18] Vladimirsky L L. Selection of insulator strings for 1150kV ac lines under Pollution conditions. Proceeding of international workshop of UHVAC transmission technology, Beijing, China, 2005: 67-74
    [19] Evgueni E U, Kassikhin S D. Design,tseting and operation of high voltage bushing of 1150kV and the ways of its updating. Proceeding of international workshop of UHVAC transmission technology, Beijing, China, 2005: 88-93
    [20] Kutuzova N B, Tikhodeev N N. UHVAC power transmission line conductor bundle features. Proceeding of international workshop of UHVAC transmission technology, Beijing, China, 2005: 75-87
    [21]赵建国,牛林.日本特高压交流输电技术的研究与实践(上)-参加对日咨询的考察见闻.电力系统及其自动化学报, 2007, 19(1): 28-33
    [22]赵建国,牛林.日本特高压交流输电技术的研究与实践(下)-参加对日咨询的考察见闻.电力系统及其自动化学报, 2007, 19(4): 1-6
    [23]杜玉清.日本1000kV特高压送电线路设计介绍.华北电力技术, 1993, 7
    [24] Provanzana J H, Adielson T. AEP-ASEA UVH research project-test line and station design. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1853-1861
    [25] Pokorny W C, Flugum R W. UHV tower insulation parameters determined by full-scale testing. IEEE Transactions on Power Apparatus and Systems, 1975, 94(2): 518-529
    [26] Retallack R L, Bourdon P. American Electric Power-UHV bundle conductor tests at magdalen islands. IEEE Transactions on Power Apparatus and Systems, 1981, 100(12): 4926-4934
    [27]中国电力科学研究院. 1000kV级交流输电系统最高运行电压选择的研究.北京:中国电力科学研究院, 2005.
    [28]刘振亚.特高压交流输电技术研究成果专辑.北京:中国电力出版社, 2005.
    [29]刘振亚.特高压直流输电技术研究成果专辑.北京:中国电力出版社, 2005.
    [30]吴敬儒,徐永禧.我国特高压交流输电发展前景.电网技术, 2005, 29(3): 1-4
    [31]陈德铭.大力发展特高压输电技术.中国科技投资, 2007, 1: 1-5
    [32]汪秀丽.特高压输电技术的发展.水利电力科技, 2006, 32(2): 6-16
    [33]陈晓光.我国发展高压特输电技术的评价研究.科技咨询, 2009, 22: 86
    [34]张章奎.国内外特高压电网技术发展综述.华北电力技术, 2006, 1: 1-2, 11
    [35] Zhang Wei, Chang Qing, Zhang Jianyun. Dynamic Stability Characteristics and Control Strategies of the UHV System in Initial Operation Period. Proceedings of the CSEE. 2009, 29(22): 19-24
    [36] Zhang Jian, Ge Dong, Wang Xiaotong, et al. Summary of Commissioning Test on the 1000 kV UHV AC Demonstration Project. Proceedings of the CSEE. 2009, 29(22): 12-17
    [37]舒印彪. 1000kV交流特高压输电技术的研究与应用.电网技术, 2005, 29(19): 1-6
    [38]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展.高电压技术, 2003, 29(9): 16-18
    [39]袁清云.特高压直流输电技术现状及在我国的应用前景.电网技术, 2005, 29(14): 1-3
    [40] Wang Xiaogang, Yin Yonghua, Ban Liangeng, et al. Summary of Commissioning Test on the 1000kV UHV AC Demonstration Project. Proceedings of the CSEE, 2009, 29(22): 12-18
    [41]孙优良,王清璞,李文平,等.±800kV换流变压器的设计工艺技术研究.变压器, 2007, 44(5): 22-29
    [42]舒印彪,刘泽洪,高理迎,等.±800kV 6400MW特高压直流输电工程设计.电网技术, 2006, 30(1): 1-8
    [43]傅铁军,王健,钟俊涛,等.直流输电±800 kV换流变压器的绝缘结构分析.变压器, 2009, 46(3): 1-5
    [44]宓传龙,谢庆峰,孟丽坤,等.超、特高压交流变压器出线绝缘结构的设计和应用.高电压技术, 2010, 36(1): 20-23
    [45] A. LOKHANIN. Insulation Coordination of UHV Transformers. Proceedings of the CSEE, 2009, 29(28): 63-67
    [46]杨宝祥,吴峡.关于特高压变压器的一点思考.高电压技术, 2005, 31(12): 21-22
    [47]刘泽洪,郭贤珊.特高压变压器绝缘结构.高电压技术, 2010, 36(1): 7-12
    [48]冯奎胜,卢万铮,朱章虎.电磁场数值计算方法分析.山西电子技术, 2005, 6: 43-46
    [49]徐桂芝,杨庆新,颜威利.现代电磁技术发展综述.河北工业大学学报, 2000, 29(3): 45-48
    [50]周克定等.工程电磁场数值计算的理论方法与应用.北京:高等教育出版社, 1994.
    [51]颜威利,杨庆新,汪友华.电气工程电磁场数值分析.北京:机械工业出版社, 2005.
    [52] Muller W, Fritz W, Wolf W. New Numerical Calculation for Large Turbo-generators. ETZ-A, 1972, 93(7): 394-399
    [53] Mayergoyz I. Iteration Method for the Calculation of Steady Magnetic Filed Nonlinear Ferromagnetic Media. COMPEL, 1982, 1:89-110
    [54] Ma XS, Wexler A. BEM Calculation for magnetic Shielding with Steel Sheets. IEEE Transactions on Magnetics, 1985, 21: 2153-2156
    [55] Lean M H, Bloomberg D S. Nolinear Boundary Element Method for two-dimensional Magnetostatics. J Appl phys. 1984, 55(6): 2195-2197
    [56] Shao KR, Zhou KD. Boundary Element Solution to Transient Eddy Current Problems. Engineering Analysis. 1984, 1(4): 182-187
    [57] Krajewski W. BEM analysis of electric field excited by overhead HV lines erected in built-up areas. IEE Proceedings. Science, Measurement & Technology. 1997, 144(2): 81-86
    [58] Malik N H. A review of the charge simulation method and its application. IEEE Transactions on Dielectrics and Electrical Insulation. 1989, 24(1): 3-20
    [59]彭迎,阮江军.模拟电荷法计算特高压架空线路3维工频电场.高电压技术, 2006, 32(12): 69-73
    [60]杨文翰,吕英华.用模拟电荷法求解高压输电线附近电磁场.电网技术, 2008, 32(2): 47-50.
    [61] Singer H, Steinbigler H, Weiss P. A charge simulation method for the calculation of high-voltage fields. IEEE Transactions on Power Apparatus and Systems, 1974, 93(5): 1660-1668
    [62] Silvester P, Chari M V K. Finite Element Solution of Saturable Magnetic Field Problem. IEEE Trans. on PAS, 1970, 89: 1642-1652
    [63] Chari M V K, Silvester P. Analysis of Turboalternator Magnetic Fields by Finite Elements. IEEE Trans. on PAS, 1971, 90(2): 454-458
    [64]颜威利,张云峰,邱祖述.用有限元素法计算电磁机构的吸力特性.低压电器技术情报, 1978, 4: 1-12
    [65]颜威利.三维恒定非线性磁场有限元法的变分原理.哈尔滨电工学院学报, 1983, 1: 11-21
    [66] Fan Mingwu, Miao Yixin, Yan Weili. DE2D Interactive Software Package for 2D Magnetostatic Electrostatic and Eddy Current Field Computations. IEEE Trans. on Magnetics, 1985, 21(6): 2539-2542
    [67] Yan Weili, Yang Qingxin, Li Zhigang. Finite Element Analysis for Static and Dynamic Characteristics of Electromagnets. IEEE Trans. on Magnetics, 1988, 24(1): 282-285
    [68]汪友华.真空组合电器三维静电场逆问题的数值计算[博士学位论文].福州:福州大学, 1994
    [69]汪友华,颜威利,张冠生等.自适应模拟退火法在电磁场逆问题中的应用.中国电机工程学报. 1995, 15(4): 43-46
    [70] Wang Youhua, Yan Weili, Zhang Guansheng. Adaptive Simulated Annealing for the Optimal Design of Electromagnetic Devices. IEEE Trans. on Magnetics, 1996, 32(3): 1219-1221
    [71]龚曙光,谢桂兰. ANSYS操作命令与参数化编程.北京:机械工业出版社, 2004.
    [72]邓凡平. ANSYS10.0有限元分析自学手册.北京:人民邮电出版社, 2007.
    [73]谢德馨,唐任远.计算电磁学近年来的若干重要成果.电工技术学报, 2005, 20(9): 1-6
    [74]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001.
    [75] Chari M V K, Silvester P. Finite Element for Electrical and Magnetic Field Problems. London, 1980
    [76]王勖成.有限单元法.北京:清华大学出版社, 2003.
    [77]王烈衡,许学军.有限元方法的数学基础.北京:科学出版社, 2004.
    [78]李荣华.边值问题的Galerkin有限元法.北京:科学出版社, 2005.
    [79]曾攀.有限元分析及应用.北京:清华大学出版社, 2004
    [80] Shaw C, Nelson J K, Prevost T A. On the Criterion for the Design of Oil-Cellulose Struetures. IEEE International Conference on Dielectric Liquids, 2005, 385-388.
    [81] Nelson J K, Shaw C. The Impulse Design of Transformer Oil-Cellulose Struetures.IEEE Trans. on Dielectrics and Electrical Insulation, 2006,13(3): 477-483
    [82]李锦彪.变压器电磁场问题的自适应有限元分析方法研究[博士学位论文].沈阳:沈阳工业大学, 2009
    [83]刘东升,赵峰,张喜乐. 1000kV交流特高压变压器关键技术研究.变压器, 2010, 47(5): 30-34
    [84]罗青林,谢德馨,钟俊涛.特高压1000kV变压器绝缘研究.变压器, 2010, 47(1): 1-4
    [85]李光范,张翠霞,李金忠. 1000 kV变压器绝缘水平的探讨.电网技术, 2009, 33(18): 1-4
    [86]路长柏,李新.超高压电力变压器线圈端部电场计算与绝缘结构的分析.电工技术学报, 1986, 3:59-62
    [87]路长柏.超高压电力变压器高压线圈端部绝缘设计问题.哈尔滨电工学院学报, 1986, 9(4): 311-317
    [88]葛为民.变压器电场分析方法研究.黑龙江电力, 2005, 27(2): 87-89
    [89]龚宜祥.变压器绕组端部场强计算.变压器, 2008, 45(12): 1-3
    [90]刘建军.变压器主绝缘电场的解析计算与数值计算.沈阳工程学院学报(自然科学版),2009, 5(1): 56-58
    [91]罗青林.关于800kV换流变压器主绝缘研究.变压器, 2009, 46(11): 7-9
    [92] Lv Dianli, Wang Youhua, Han Tingyan, et al. Calculation and optimization on electric field intensity of ultra-high voltage transformer coil. 2nd International Conference on Industrial and Information Systems, IIS 2010, Dalian, China, 2010, 266-269
    [93]张惠娟,杨文荣,李玲玲,等.工程电磁场与电磁波基础.北京:机械工业出版社, 2009.
    [94]高有华,丁春红,王国刚.电力变压器主绝缘结构的优化及影响因素分析.变压器, 2009, 46(10): 1-5
    [95]路长柏.电力变压器绝缘技术.哈尔滨:哈尔滨工业大学出版社, 1997.
    [96] Burczynski Tadeusz, Koko Grzegorz. ToPology optimization using boundary elements nad genetic algorihtms. In: Computational Mechanics New Trends and Applications. CIMNE. Barcelona, 1998, 1-12
    [97] Galante M, Gerrolaza M, Annicchiarico W. Optimization of structural and finite element models via genetic algorithms. Structural Optimization. SAMPE. 1994, 30(3): 127-137
    [98]刘茜.仿生算法及其在油压机结构优化设计中的应用研究[博士学位论文].天津:天津大学, 2004
    [99]周宁. APDL高级工程应用实例分析与二次开发.北京:中国水利水电出版社, 2007.
    [100]博弈创作室, APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社, 2004.
    [101]博弈创作室, ANSYS 9.0经典产品高级分析技术与实例详解.北京:中国水利水电出版社, 2005.
    [102]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999.
    [103]李敏强等,遗传算法的基本原理与应用,北京:科学出版社, 2002.
    [104]王小平,曹立明.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社, 2002.
    [105]陈国良,庄镇泉,王东生等.遗传算法及其应用.北京:人民邮电出版社, 1996.
    [106]汪友华,陈敏等.改进的遗传算法及其在SF6灭弧室永磁场优化中的应用.中国电机工程学报,2001, 21(10): 43-46.
    [107]于音杰,王赞基.用遗传算法进行电力变压器纵绝缘结构优化设计.中国电机工程学报, 2000, 20(11): 21-24.
    [108]陈堂功,汪友华.基于遗传算法的电磁继电器优化设计.低压电器, 2004(6): 35-38.
    [109]樊叔维,汪国梁,谢卫.遗传算法在电力变压器优化设计中的应用研究.中国电机工程学报, 1996, 16(5): 346-348.
    [110]杨仕友,倪光正,李岩,等.模拟退火算法的改进及其在电机电磁场逆问题数值计算中的应用.电工技术学报, 1998(02).
    [111] Wang Youhua, Chen Tanggong, Yang Xiaoguang, Yan Weili. Crossover-Controlled Genetic Algorithm and Its Application to Inverse Problem in SF6 Interrupter. International Journal of Applied Electromagnetics and Mechanics (IJAEM), 2004, 20(3-4): 189-195.
    [112] Chen Tanggong, Wang Youhua. Adaptive Population Disappear of Genetic Algorithm and Its Application. 3rd International Conference on Computational Electromagnetics and its Applications (ICCEA), Proceedings, 2004, 145-148.
    [113]董连文,印华.基于遗传算法用的电流互感器参数优化设计方法.高压电器,2003,39(4):41-43.
    [114]陈堂功.遗传算法及其应用于电磁装置优化设计的研究[博士学位论文].天津:河北工业大学, 2006
    [115] Holland J H. Adaptation in Nature and Artificial System. MIT Press, 1992.
    [116] Bagley J D. The Behavior of Adaptive system which Employ Genetic and Correlation Algorithm. Dissertation Abstracts International,1967,28(12)
    [117] Goldberg D E. Genetic algorithm in Search, Optimization and Machine Learning. Addison- Wesley, 1989.
    [118]彭文杰.复合材料层合结构极限强度预测方法及分层应力最小化研究[博士学位论文].武汉:华中科技大学, 2009
    [119]钱能, C++程序设计教程.北京:清华大学出版社, 1994.
    [120]北京博彦科技发展有限公司, Visual C++编程高手.北京:北京大学出版社, 2000.
    [121] De Jong K A. An Analysis of the Behavior of a Class Adaptive systems. Ph.D Dissertation, University of Michigan, No.76-9381,1975.
    [122] Kennedy J, Eberhart R. C. Particle Swarm Optimization. In: Proc. IEEE Int’l. Conf. on Neural Networks, IV. Piscataway, NJ: IEEE Service Center, 1995, 1942-1948
    [123] Eberhart R. C, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science, IEEE service center, Piscataway, NJ, Nagoya, Japan, 1995: 39-43
    [124] Kennedy J, Eberhart R. C. Swarm intelligence. San Francisco: San Francisco Morgan Kaufinann Publishers, 2001
    [125] Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer. In: Proc. of the IEEE CEC 1998, 69-73.
    [126] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm Optimization.. In: Proc. of the IEEE CEC 2001, 101-106
    [127] Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evolut. Comput. 2002, 6:58-73
    [128]王凌,刘波.微粒群优化与调度算法.北京:清华大学出版社, 2008.
    [129]纪震,廖惠连,吴青华.粒子群算法及应用.北京科学出版社, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700