特高压输电塔组合截面构件承载力理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着特高压工程的推进,使用传统钢材的单角钢塔已无法满足使用要求。现有单角钢塔进行加强时为了施工方便,经常采用在原主材上增加一根同规格角钢组成双角钢十字截面构件的方式。目前双角钢十字截面构件在设计上主要是按照实腹式构件进行设计,在真型塔和实际使用中发现现行的设计与构件实际承载力和破坏方式有差别,国内外相关规范和规程也没有对这种截面形式和连接方式的构件作出详细规定,且存在一些不甚合理的内容。鉴于实践中遇到的问题和目前国内相关理论和试验研究还较少,对双角钢十字截面构件进行深入研究,具体工作体现在如下几方面:
     (1)采用L160×12、L160×14、L160×16三种截面规格角钢的Q420双角钢十字截面构件进行轴心受压和偏心受压试验共26个,确定十字截面构件失稳破坏模式并与现有设计方法对比。使用有限元方法得到多种截面规格、边界条件和λ构件稳定系数,验证现行规范对双角钢构件适用性并得到单节间构件轴心受压和偏心受压柱子曲线、长细比修正系数。通过对弹性模量折减系数的计算得到构件的局部稳定限值计算式。
     (2)采用L160×14角钢的Q420双角钢十字截面构件进行双节间轴心受压和偏心受压试验共12个,用有限元方法得到更多规格构件稳定系数,与试验结果分析比较后得到双节间构件轴心受压和偏心受压时的稳定系数以及长细比修正系数。
     (3)通过构件试验和有限元分析填板受力状态,对填板与构件承载力关系进行研究,明确对构件承载力有明显影响的填板参数。分析采用不同填板型式、间距对构件的影响,使用不同填板数量时对同截面各种λ下承载力影响大小,在此基础上得到双角钢十字截面构件填板设计公式。
     (4)通过对双节间试验横向支撑受力数据和有限元分析结果的对比,得到不同参数构件横向支撑内力与构件承载力变化规律,以及横向支撑长度对构件承载力和支撑内力的影响。在分析基础上得到横向支撑内力、构件荷载、横向支撑长细比、构件长细比之间的关系。
     (5)将双节间构件简化成中间设置弹性支承的简支梁后,在三弯矩方程基础上得到双节间构件弹塑性阶段承载力并与现有设计方法对比,根据二者随长细比的变化得到双节间构件承载力修正公式。
For the development of State Grid and ultra-high voltage(UHV) projects in China, traditional latticed transmission tower could not meet the current demand, furthermore, adding another steel angle is a common way to mend and reinforce existent latticed tower for the simple reason that it is convenient in constructing . The generally accepted design technique treats such built-up cruciform section member formed by two equal-leg angles as a solid web cruciform section member, however, problems occur in full scale transmission tower tests and engineering applications. The test loads do not match with the design bearing capacity, and the failure mode of members is different from the design method. There is no detail design information in domestic and overseas codes for this kind of two equal-leg angle cruciform section member which could explain the different or guide the design. In consideration of the reasons mentioned above, a further research is made for built-up cruciform section member formed by two equal-leg angles, and the investigating work focuses on the following aspects:
     (1) Three different sectional dimension types of Q420(yield strength: 420MPa) steel single angle are used to form two equal-leg angle cruciform section member, which is L160×12, L160×14 and L160×16, respectively. The members are tested under axial and eccentric loading, and the total test number is 26. The unstable failure mode and failure mechanism are affirmed during the test and a comparison is made toward design method in current codes. A finite element analysis is conducted for more sectional dimension, boundary condition and slenderness ratio. Based on the experiment and finite element analysis, the applicability of nowadays codes is validated, column curves for single internode and double internode members are obtained, and the slenderness ratio correction factor for eccentric load test is calculated. A local stability limit value is gained through computing the reduction of elasticity modulus for single and double internode members.
     (2)The Q420(yield strength: 420MPa) steel single angles whose sectional dimension is L160×14 are used to run axial and eccentric load test, and the total test number is 12. Based on the finite element analysis of more sectional dimension and test results, stability coefficients and the slenderness ratio correction factor for double internode members are obtained.
     (3)The mechanism performance of filler plates is analysis by test results and finite element method. By the research on relationship between filler plates and members' bearing capacities, the parameters which affluence the members' bearing capacities remarkably are separated out. Different forms of filler plates and intervals are adopted in finite element analysis to find the relationship toward members' bearing capacity, and the influence of filler plates arrangement with a series of members' slenderness ration is test. Based on the test result and analysis, a filler plates design method is formed for two equal-leg angle cruciform section members.
     (4)Based on the comparison of experimental data and finite element analysis on lateral bracing in double internode members, the variation rule of lateral bracing axial force and member's loading is obtained, and the influence of lateral bracing slenderness to member's bearing capacity and lateral bracing axial force is found. A relational expression containing lateral bracing axial force, member's loading, slenderness ratio of lateral bracing and members is given.
     (5)A simplification of double internode member is made which change the actual boundary condition to that of simply supported beam, and calculation equation is established based on the three-moment equation. The bearing capacity involving lateral bracing stiffness in elastic-plastic stage is computed. The calculation results are comparison with current design method, and bearing capacity modified formula is given for double internode members.
引文
[1]周海兵.特高压输电技术的发展与现状[C].华东六省一市电机(电力)工程学会输配电技术研讨会2006年年会,安徽省电机工程学会, 2006.
    [2]中村秋夫,冈本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术, 2005, 29(6):1-5.
    [3]常美生.特高压输电的现状和发展方向[J].电力学报, 1997, 12(3):29-31.
    [4]虞菊英.我国特高压交流输电研究现状[J].高电压技术, 2005, 31(12):23-25.
    [5]冯庆东,王伟.国外特高压变压器技术现状及发展趋势[J].电力设备, 2005, 6(8):18-19.
    [6]李殿雄,郭日彩.韩国电力系统765kV电压等级发展现状[J].国际电力, 2004, 8(4):37.
    [7]刘振亚.特高压电网[M].北京:中国经济出版社, 2005.
    [8]马学能.我国特高压输电技术发展前景[J].上海电器技术, 2007, 12(4):1-5.
    [9]付周兴,王清亮,董张卓.电力系统自动化[M].北京:中国电力出版社, 2006.
    [10]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术, 2005, 29(14):1-3.
    [11]朱鸣海.关于发展我国特高压输电的意见[J].电网技术, 1995, 19(3):54-57.
    [12]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术, 2005, 29(3):1-4.
    [13]黄万永,霍继安,曾南超,等.跨省电网以直流相联是全国联网的最佳模式[J].电网技术, 1999, 23(1):59-67.
    [14]胡学浩,丁功扬.全国电网互联中采用高压直流输电方式时国外经验之借鉴推荐[J].电网技术, 1998, 22(5):64-70.
    [15]黄莹,徐政,曾德文,等.西电东送纯直流输电方案研究[J].电网技术, 2004, 28(19):1-5.
    [16]万启发.二十一世纪我国的特高压输电[J].高电压技术, 2000, 26(6):12-13.
    [17]杨隆宇,李正良,魏磊.高强钢管轴压承载力研究[J].西安建筑科技大学学报(自然科学版), 2010, 42(2):201-210.
    [18]杨隆宇,李正良,等.铰支轴心受压高强钢管的局部稳定强度折减系数[J].四川大学学报(工程科学版), 2010, 42(4):203-208.
    [19]中华人民共和国建设部. GB 50017-2003钢结构设计规范[S].北京:中国计划出版社, 2003.
    [20]中华人民共和国国家经济贸易委员会. DL/T 5154-2002架空送电线路杆塔结构设计技术规定[S].北京:中国计划出版社, 2002.
    [21]李茂华. Q420和Q460高强钢在输电线路铁塔应用的研究[R].北京:国网北京电力建设研究所, 2006.
    [22] Aisc. AISC LRFD99 Load and Resistance Factor Design Specification for Structural SteelBuildings[S]. Chicago: AISC Commettee, 1999.
    [23] Asce. Design of Latticed Steel Transmission Structure[S]. New York: American Society of Civil Engineers, 2000.
    [24] Institution, British Standards. BS 4360 1990 British Standard Specification for Weldable structural steels[S]. London: British Standards Institution, 1990.
    [25]日本電気技術規格委員会規格. JESC E0008(2000)/JEAC 6001-2000架空送電規程[S].东京:日本電気技術規格委員会規格, 2000.
    [26]赵熙元.建筑钢结构设计手册[M].北京:冶金工业出版社, 1995.
    [27]中华人民共和国建设部. GBJ 17-88钢结构设计规范[S].北京:中国计划出版社, 1988.
    [28]中华人民共和国建设部. GB/T 1591-94低合金高强度结构钢[S].北京:中国标准出版社, 1994.
    [29]中华人民共和国建设部. GB/T 1627-1996高强度结构钢热处理和控轧钢板、钢带[S].北京:中国标准出版社, 1996.
    [30]范金华,薛敏,傅鹏程. Q460高强钢管在500kV练塘_泗泾输电线路工程中的应用[J].华东电力, 2010, 38(7):1040-1042.
    [31]秦永坚,王登科,唐其练. 500kV双回路输电线路铁塔采用Q420高强钢的研究[J].输电线路, 2007, 40(5):200-203.
    [32]韩钰,徐德录,杨建平,等. Q420高强钢在特高压输电工程中的应用研究[J].电力建设, 2009, 30(4):33-35.
    [33]郭日彩,何长华,李喜来,等.输电线路铁塔采用高强钢的应用研究[J].电网技术, 2006, 30(23):21-25.
    [34]贾国强,姚一丁.高强钢在输电线路双回路终端塔设计中的应用[J].内蒙古电力技, 2010, 28(5):36-39.
    [35]梁浩. Q420高强钢在输电线路铁塔上的应用研究[J].上海电力, 2009, 12(4):298-303.
    [36]段然. Q420高强角钢在输电铁塔上的应用[J].云南电力技术, 2010, 38(4):56-57.
    [37] Euler, Leonhard. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes[M]. Lausannae: Apud Marcum-Michaelem Bousquet & Socios, 1744.
    [38] Euler, Leonhard. Sur la force des colonnes[R]. Berlin: Euler, Leonhard, 1757.
    [39] Engesser, F. Uber die Knickfestigkeit geradu strabe[J]. Z. Architekten-Ingenieur-Vereins zu Hannover, 1889, 35(1):455-462.
    [40] Considere, A. Resistance des pieces comprimes[M]. Paris: Congr. Int. Proc. Constr., 1891.
    [41] Shanley, F. R. Inelastic column theory[J]. J. Aeronaut. Sci, 1947, 14(5):261-267.
    [42] Bijlaard, P. P. Theory of plastic buckling of plates and application to simply supported plates subjected to bending or eccentric compression in their plane[J]. J. Appl. Mech., 1956,23(1):27-34.
    [43] G. Gerard, H. Becker. Handbook on structural stability: Part I-Buckling of flat plates[R]. Natl. Adv. Comm. Aeronautics, Technical Note 3781, 1957.
    [44] Haaijer, G. Plate buckling in the strain-hardening range[J]. Eng. Mech. Div., Am. Soc. Civ. Eng., 1957, 83(2):1-47.
    [45] Batdorf, S. B. Theories of plastic buckling[J]. J. Aeronaut. Sci., 1949, 17(2):404-408.
    [46] Wagner, H. Verdrehung und Knickung von Offenen Profilen[J]. Festschrift 25 Jahre Technische Hochschule Danzig, 1929, 329.
    [47] Goodier, J. N. The Buckling of Compressed Bars by Torsion and Flexure[C]. Cornell University Experiement Station, Cornell University, 1941.
    [48]规结-4-54钢结构设计规范试行草案[S].北京:建筑工程出版社, 1955.
    [49]陈绍蕃.钢结构设计规范的回顾与展望[J].工业建筑, 2009, 39(6):1-4.
    [50]中华人民共和国建设部. TJ 17-74钢结构设计规范[S].北京:中国计划出版社, 1974.
    [51]沈祖炎,胡学仁.单角钢压杆的稳定计算[J].同济大学学报, 1982, 3):56-71.
    [52]李开禧,肖允徽.逆算单元长度法计算单轴失稳时钢压杆的临界力[J].重庆建筑工程学院学报, 1982, 4(4):26-45.
    [53]李开禧,须宛明.关于“逆算单元长度法”的改进[J].重庆建筑工程学院学报, 1989, 11(3):37-43.
    [54] Ting, Chui Huon Tina, Lau, Hieng Ho. Compression test on cold-formed steel built-up back-to-back channels stub columns[J]. Advanced Manufacturing Systems, 2011, 201-203(1):2900-2903.
    [55] Charles, Libove. SPARSELY CONNECTED BUILT-UP COLUMNS[J]. Journal of Structural Engineering, 1985, 111(3):609-627.
    [56] Kalochairetis Konstantinos E., Gantes Charis J. Numerical and analytical investigation of collapse loads of laced built-up columns[J]. Computers and Structures, 2011, 89(12):1166-1176.
    [57] Mousumi, Paul. Theoretical and experimental study on buckling of built-up columns[J]. Journal of Engineering Mechanics, 1995, 121(10):1098-1105.
    [58] Gjelsvik, Atle. Minimum weight design of continuous beams[J]. International Journal of Solids and Structures, 1971, 7(10):1411-1425.
    [59] Lue Dung M., Yen Tsong, Liu Jui Ling. Experimental investigation on built-up columns[J]. Journal of Constructional Steel Research, 2006, 62(12):1325-1332.
    [60] Aisc. AISC LRFD05 Load and Resistance Factor Design Specification for Structural Steel Buildings[S]. Chicago: AISC Commettee, 2005.
    [61] Aisc. AISC-ASD Allowable stress design specification for structural steel buildings[S]. Chicago: American Institute of Steel Construction, 1989.
    [62] Saa. AS-4100 Steel structures[S]. Homebush: Standards Association of Australia, 1998.
    [63] Csa. CSA S16-01 Limit states design of steel structures[S]. Toronto: Canadian Standards Association, 2001.
    [64] Megnounif, A., Djafour M., Belarbi A., Kerdal D. . Strength buckling predictions of cold-formed steel built-up columns[J]. Structural Engineering and Mechanics, 2008, 28(4):443-460.
    [65] Tong Geng-Shu, Chen Shao-Fan. Interactive buckling theory for built-up beam-columns and its application to centrally compressed built-up members[J]. Journal of Constructional Steel Research, 1989, 14(3):221-241.
    [66]李鸥,周华樟,祝恩淳.工字形组合截面梁腹板的局部屈曲[J].哈尔滨工业大学学报, 2008, 40(12):1900-1905.
    [67]武胜,张素梅.冷弯新型箱形组合截面受压构件性能研究[J].哈尔滨工业大学学报, 2008, 40(2):196-202.
    [68]周天华,汪乐,王群.双肢组合截面冷弯薄壁型钢轴压长柱受力性能试验研究[C].第六届全国土木工程研究生学术论坛论文集,中国土木工程学会, 2008.
    [69]魏群,王镇岳.一种新型超薄壁冷弯钢构件组合截面形式及其力学特性分析[J].华北水利水电学院学报, 2010, 31(6):1-5.
    [70]熊义泳,赵江倩.实腹式组合截面压弯构件的简化计算方法[J].工业建筑, 2006, 36(7):87-91.
    [71]邓海文.烟风道加固肋组合截面特性计算[J].湖北电力, 2011, 35(1):52-67.
    [72]须宛明,李开禧,魏明钟.不等端弯矩作用下双角钢截面压弯构件的承载能力研究[J].重庆建筑工程学院学报, 1989, 11(2):13-26.
    [73]姚谏,余国英.双角钢压弯构件T形截面的等效轴压构件设计法[J].浙江建筑, 1998, 7(5):1-3.
    [74] Leko, Toma. SECONDARY WARPING OF THIN-WALLED BEAMS[J]. Journal of Engineering Mechanics, 109(2):639-642.
    [75] Mahmood Md Tahir, Poi Ngian Shek, Arizu Sulaiman, Etc. Experimental investigation of short cruciform columns using universal beam sections[J]. Construction and Building Materials, 2009, 23(3):1354-1364.
    [76] Makris, Nicos. Plastic Torsional Buckling of Cruciform Compression Members[R]. ASCE TECHNICAL NOTES, 2003.
    [77]石鹿言.高强度双角钢组合十字型截面压杆承载力研究[D].北京:北京工业大学, 2009.
    [78]李振宝,石鹿言,刑海军,等. Q420双角钢十字组合截面压杆承载力试验[J].电力建设, 2009, 30(9):8-11.
    [79]赵峥,王贵年.输电铁塔十字断面组合角钢构件的试验与研究[C]. 2007年电力建设学术年会论文,电力建设学会, 2007.
    [80]左元龙,赵峥,付鹏程,等.大跨越输电铁塔十字组合角钢填板的设计与试验[J].武汉大学学报(工学版), 2007, 40(5):209-213.
    [81]钟寅亥,金晓华.输电铁塔双角钢填板计算方法[J].广东电力, 2008, 21(3):37-39.
    [82]陈绍蕃.钢结构稳定设计讲座第三讲轴心压杆的计算长度和桁架的极限承载力[J].钢结构, 1992, 7(2):23-32.
    [83]陈绍蕃.钢压弯构件弯扭屈曲的研究[J].建筑结构学报, 1988, 4):13-21.
    [84] Timoshenko, S. P., Gere, J. M. Theory of Elastic Stability[M].北京:科学出版社, 1965.
    [85] Aisc, Commettee. ANSI/AISC 360-05 Specification for Structural Steel Buildings[S]. Chicago: AISC Commettee, 2005.
    [86]中华人民共和国建设部. GB/T 228-2002金属材料室温拉伸试验方法[S].北京:中国计划出版社, 2002.
    [87] Global, Pera. ANSYS结构分析指南[R]. Beijing: Global, Pera, 2011.
    [88] Global, Pera. ANSYS Workbench Mechanical非线性技术培训手册[R]. Beijing: Global, Pera, 2011.
    [89]张中权.冷弯薄壁型钢轴心受压构件的稳定性计算[J].建筑结构学报, 1991, 12(4):2-10.
    [90]潘汉明,郭彦林,梁硕,等.大直径薄壁钢管压弯构件的稳定分析[J].土木工程学报, 2007, 40(3):11-17.
    [91]中华人民共和国建设部. GB 50205-95钢结构工程施工及验收规范[S].北京:中国计划出版社, 1995.
    [92]《钢结构设计手册》编辑委员会.钢结构设计手册(上册)[M].北京:中国建筑工业出版社, 2008.
    [93]王新敏. ANSYS工程结构数值分析[S].北京:人民交通出版社, 2007.
    [94]周宁. ANSYS-APDL高级工程应用实例分析与二次开发[S].北京:中国水利水电出版社, 2007.
    [95] Marsh, Cedric. Design of single and multiple angle colulmns and beams[J]. Journal of Structural Engineering, 1997, 123(7):847-856.
    [96] Timoshenko, S. P. Theory of Bending, Torsion and Buckling of Thin-Walled Members of Open Cross Section[J]. Journal of the Franklin Institute, 1945,
    [97] Chajes, A., G. Winter. Torsional-Flexural Buckling of Thin-Walled Members[J]. Journal of the Structural Division, 1965,
    [98] Chajes A., P. J. Fang, G. Winter. Torsional flexural buckling, elastic and inelastic, of cold formed thin walled columns[C]. Engineering research bulletin 66-1, Corneel University, 1966.
    [99] Bleich, F. Buckling Strength of Metal Structures[M]. New York: McGraw-Hill, 1952.
    [100]童根树.钢结构的平面外稳定[M].北京:中国建筑工业出版社, 2005.
    [101]李正,杨靖波,韩军科,等. 2008年输电线路冰灾倒塔原因分析[J].电网技术, 2009, 33(2):31-35.
    [102]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社, 2002.
    [103]黄新波,刘家兵,蔡伟,等.电力架空线路覆冰雪的国内外研究现状[J].电网技术, 2008, 32(4):23-28.
    [104]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术, 2008, 32(4):14-22.
    [105]李振宝,杨小强,韩军科,等.双角钢十字组合截面偏心受压构件承载力试验研究[J].工程建设与设计, 2009, 10(11):15-18.
    [106]黄道春,魏远航,钟连宏,等.我国发展特高压直流输电中一些问题的探讨[J].电网技术, 2007, 31(8):6-12.
    [107]李喜来,廖宗高,李晓光.中国输电塔钢结构现状及市场情况[J].中国钢铁业, 2005, 12(10):25-27.
    [108]何长华.高强冷弯型钢在输电铁塔上应用可行性的探讨[J].钢结构, 2004, 19(5):35-37.
    [109]徐力,金晓华. 800kV云广直流线路铁塔应用高强度钢的探讨[J].广东电力, 2007, 20(5):54-57.
    [110]秦永坚,王登科,唐其练,等. 500kV双回路输电线路铁塔采用Q420高强钢的研究[J].电力勘测设计, 2007, 12(3):60-65.
    [111]李正良,刘红军,张东英,等. Q460高强钢在1000kV杆塔的应用[J].电网技术, 2009, 32(24):1-5.
    [112]陈绍蕃.钢结构设计原理[M].北京:科学出版社, 2007.
    [113] J. M. Thompson, G. W. Hunt. A general theory of elastic stability[M]. Hoboken: John Wiley & Sons, 1973.
    [114] Don Brush, Bo Almroth. Buckling of bars plates and shells[M]. New York,: McGraw-Hill, 1975.
    [115]童根树.柱间水平撑杆设计方法[J].西安冶金建筑学院学报, 1986, 12(3):111-140.
    [116] Winter, G. Lateral bracing of columns and beams[J]. ASCE, 1960,
    [117] Mcguire, W. Steel Structures[M]. New Jersey: Prentice-Hall, 1968.
    [118]陈绍蕃.塔架辅助杆的支撑力[J].西安建筑科技大学学报(自然科学版), 2009, 41(4):445-449.
    [119] G. M. S. Knight, A. R. Santhakumar. Joint effects on behavior of transmission towers[J]. JOURNAL OF STRUCTURAL ENGINEERING, 1993, 119(3):690-712.
    [120] Stowell, E. Z. A Unified Theory of Plastic Buckling of columns and Plates[R]. Washington: NACA, 1948.
    [121] Y. Fukumoto, T. V. Galambos. INELASTIC LATERAL-TORSIONAL BUCKLING OF BEAM-COLUMNS[J]. Proc. of ASCE, 1966, 92(2):1-18.
    [122] White, M. W. THE LATERAL TORSIONAL BUCKLING OF YIELDED STRUCTURAL STEEL MEMBERS[D]. Bethlehem: Lehigh University, 1956.
    [123] Lee, G. C. INELASTIC LATERAL INSTABILITY OF BEAMS AND THEIR BRACING REQUIREMENTS[D]. Bethlehem: Lehigh University, 1960.
    [124] Hoff, N. J. APPROXIMATE ANALYSIS OF THE REDUCTION IN TORSIONAL RIGIDITY AND OF THE TORSIONAL BUCKLING OF SOLID WINGS UNDER THERMAL STRESS[J]. Jour. Aero. Sci., 1956, 23(6):1-20.
    [125] B. Budiansky, J. Mayers. INFLUENCE OF AERODYNAMIC HEATING ON THE EFFECTIVE TORSIONAL STIFFNESS OF THIN WINGS[J]. Jour. Aero. Sci., 1956, 23(12):1-12.
    [126] Fujita, J. INFLUENCE OF RESIDUAL STRESSES ON THE INSTABILITY PROBLEMS[J]. Jour. Zosen Kyokai, 1960, 107(1):23-45.
    [127] Nishino, F. Buckling Strength of Columns and Their Component Plates[D]. Bethlehem: Lehigh University, 1964.
    [128] G. C. Lee, D. S. Fine, W. R. Hastreiter. INELASTIC TORSIONAL, BUCKLING OF H-COLUMNS[J]. Proc. of ASCE, 1967, 93(5):65-79.
    [129] Ajmani, J. L. Discussion to "Inelastic Torsional Buckling of H-Colmns by Lee et al."[J]. Proc. of ASCE, 1968, 94(3):182-201.
    [130] Nishino, F. Discussion to "Inelastic Torsional Buckling of H-Columns by Lee et al."[J]. Proc. of ASCE, 1968, 94(6):264-281.
    [131] Zimmermann, H. Die Knickfestigkeit eines Stabes mit elastischer Querstutzung[M]. Berlin: W. Ernst und Sohn, 1906.
    [132]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社, 2005.
    [133]钢结构规范管理组.关于受压构件科研专题采用残余应力统一模式的通知[R].北京:钢结构规范管理组, 1983.
    [134]《钢结构设计规范》编制组.《钢结构设计规范》应用讲解[M].北京:中国计划出版社, 2003.
    [135] Simitses, G. J. An introduction to the elastic stability of structures[M]. Englewood Cliffs:Pretice-Hall, 1976.
    [136]《现代应用数学手册》编委会.现代应用数学手册:计算与数值分析卷[M].北京:清华大学出版社, 2005.
    [137] Aisc. AISC 351-00 Load and Resistance Factor Design Specification for Single-Angle Members[S]. Chicago: American Institute of Steel Construction, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700