基于电晕笼的特高压交流输电线路导线电晖损失特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电晕损失是特高压交流输电线路电晕放电效应的重要研究内容之一,电晕损失机理以及我国特高压交流输电线路电晕损失评估的研究具有深远的理论意义和重要的实用价值。本文从导线电晕产生机理出发,建立了电晕笼交流导线电晕损失计算模型,进行了特高压电晕笼交流分裂导线电晕损失、不同海拔下电晕笼交流分裂导线电晕损失研究,并对不同气象条件下特高压交流试验线段电晕损失进行监测分析,对电晕笼分裂导线电晕损失与试验线段电晕损失进行等效对比分析,并且对特高压交流输电工程线路电晕损失进行了综合评估。主要工作如下:
     从电晕损失机理出发,考虑电晕笼结构交流导线电晕损失计算的复杂性,针对每一面笼壁进行镜像处理,在导线表面各点分别判断起晕,仿真正离子、负离子在电场中的产生、迁移、复合等一系列过程,建立了电晕笼交流导线电晕损失计算模型。
     针对特高压分裂导线8×LGJ-400/35、8×LGJ-500/35、8×LGJ-630/45在不同分裂间距,以及干燥、人工降雨等条件下进行电晕损失试验,为特高压交流输电线路电晕损失评估奠定了试验数据基础。并且将电晕笼交流导线电晕损失计算模型推广至分裂导线电晕损失计算,进一步验证了计算模型的正确性。
     采用特高压交流试验基地人工环境气候实验室可移动式电晕笼开展试验研究,首次系统获得19m-4000m海拔高度范围内交流分裂导线在干燥、人工降雨条件下电晕损失试验数据。建立不同海拔高度下电晕笼分裂导线电晕起始电压计算模型。并且在电晕笼交流导线电晕损失计算模型的基础上,引入离子迁移率随海拔高度的变化,对模型进行进一步的拓展和完善,建立了考虑不同海拔高度影响的电晕笼分裂导线电晕损失计算模型,并与试验结果进行对比,验证了计算模型的正确性。
     应用光纤数字化电晕损失监测系统对特高压交流试验线段电晕损失进行监测,获得我国特高压交流单回试验线段、特高压交流同塔双回试验线段,在不同气象条件下的电晕损失监测结果,为我国特高压交流输电线路电晕损失评估提供了重要参考依据。通过电晕损失等效计算分析,相互佐证了电晕笼及试验线段电晕损失试验结果的有效性,并且对将特高压电晕笼分裂导线电晕损失等效应用至特高压交流输电线路电晕损失评估,提供了重要方法。
     基于特高压电晕笼分裂导线及特高压交流试验线段电晕损失研究成果,对特高压交流输电工程线路电晕损失进行了综合评估,首次获得我国特高压交流输电线路全年电晕损失能量、平均电晕损失功率、线路最大电晕损失功率关键参数,为我国特高压交流输电线路电晕损失评价提供了重要参考依据。
Corona loss is one of the important research contents of UHV AC transmission line corona discharge effect, corona loss mechanism, as well as the study on assessment of UHV AC transmission line corona loss has a far-reaching theoretical significance and an important practical value. Based on the generation mechanism of conductor corona, this paper established the corona loss calculation model of AC conductor in corona cage, researched the corona loss of UHV corona cage AC bundle conductors at different altitudes, and analyzed the corona loss of test line under different meteorological conditions, contrasted corona loss between the bundle conductor in corona cage and test line, and conducted a comprehensive assessment on actual line corona loss of UHV AC transmission project. The main work are as follows:
     Considering the generation mechanism of conductor corona, and the complexity of the calculation on corona cage AC conductor, on each side of the cage mirror image, this paper judged whether occurred corona at each point on conductor surface, simulated the generation, migration, composite and a series of processes of positive and negative ions in the electric field, established a corona cage AC conductor corona loss calculation model.
     Conducting an experiment of corona loss in cage for UHV bundle conductors8×LGJ-400/35,8×LGJ-500/35,8×LGJ-630/45in space between different divisions, and under the conditions of dry、artificial rainfall and so on, corona losses for UHV AC transmission line test data basis for assessment. This paper extended the corona cage AC corona loss calculation model to the bundle conductor corona loss calculation, and verified the correctness of the calculation model further.
     A removable corona cage in artificial environment laboratory at the UHV AC Test Base, is adopted to research AC conductor corona. This paper obtained the test data of corona loss under the conditions of dry, artificial rainfall within19m-4000m altitude range. The corona inception voltage calculation model of bundle conductor in corona cage at different altitude was established. And based on this model, considering ion mobility changes with altitude, this paper expanded and improved the corona loss calculation model further, established a model that considering the influence of different altitude, and compared with experimental results, so as to verify the correctness of the calculation model.
     The optical fiber digital corona loss monitoring system was applied to monitor the corona loss of the UHV AC test line. This paper obtained the corona loss mornitoring results of UHV AC single test line and UHV AC in the same tower double circuits test line in different weather conditions. The results provided important reference to UHV AC transmission lines corona loss assessment. Through the analysis, the approximate linear relationship between different rainfall rate logarithm and corona loss logarithm was found for UHV transmission lines. Using corona loss equivalence calculation and analysis, corona loss test results of corona cage and test line were effective, and this provided an important method to apply UHV corona cage bundle conductors'corona loss equivalence to UHV AC transmission line corona loss assessment.
     Based on the corona loss research of the UHV corona cage bundle conductors and UHV AC test line, corona loss of UHV AC transmission project transmission lines were assessed, and the UHV AC transmission line corona loss assessments of our country were obtained, including transmission line's corona loss in one year, annual average corona loss power, the maximum corona loss power key parameters, and this provides important reference for China's UHV AC transmission line corona loss evaluation.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005:253-256
    [2]舒印彪.1000kV特高压交流输电技术的研究与应用[J].电网技术,2005,29(19):1-6
    [3]舒印彪,胡毅.交流特高压输电线路关键技术的研究及应用[J].中国电机工程学报,2007,27(36):1-7
    [4]舒印彪,张文亮.特高压输电若干关键技术研究[J].中国电机工程学报,2007,27(31):1-6
    [5]R. Lings, V. L. Chartier, P. S. Maruvada. Overview of transmission lines above 700 kV [C]. Inaugural IEEE PES 2005 Conference and Exposition in Africa. Durban, South Africa,2005:33-34
    [6]S. A. Annestrand, G. A. Parks. Bonneville Power Administration prototype 1100/1200 kV transmission line project [J]. IEEE Transactions on Power Apparatus and Systems,1977,96(2):357-366
    [7]中国电工技术学会特高压输变电技术考察团.俄罗斯、乌克兰超、特高压输变电技术发展近况[J].电力设备,2003,4(2):49-56
    [8]中村秋夫,冈本浩,曹祥麟.东京电力公司采用特高压输电技术的论证经过[J].电网技术,2005,29(10):5-8
    [9]中村秋夫,冈本浩,曹祥麟.东京电力公司的特高压输电技术应用现状[J].电网技术,2005,29(6):1-5
    [10]张运洲.对我国特高压输电规划中几个问题的探讨[J].电网技术,2005,29(19):11-14
    [11]张文亮,吴维宁,胡毅.特高压输电技术的研究与我国电网的发展[J].高电压技术,2003,29(9):16-18
    [12]谷定燮.我国发展特高压输电的前景[J].高电压技术,2002,28(3):28-30,40
    [13]万启发.二十一世纪我国的特高压输电[J].高电压技术,2000,26(6):12-13,42
    [14]关志成,王国利.中国特高压输电工程及相关的关键技术[J].南方电网技术研究,2005,1(6):12-18
    [15]W. C. Pokorny, R. W. Flugum. UHV tower insulation parameters defined by full-scale testing [J]. IEEE Transactions on Power Apparatus and Systems, 1975,94(2):518-529
    [16]周文俊,阮江军,邬雄.特高压输电线路对电视信号接收的影响研究[J].中国电机工程学报,2001,21(4):47-51
    [17]关志成,张福增,王国利,等.我国特高压的特有技术问题[J].电力设备,2006,7(1):1-4
    [18]J. G. Anderson.345kV及以上超高压输电线路设计参考手册[M].武汉高压研究所,译.北京:电力工业出版社,1981:324-336
    [19]P. S. Maruvad. Corona performance of high voltage transmission lines [M]. London, UK:Research Studies Press Ltd,2000:91-108,242
    [20]P. A. Abetti, J. J. Laforest. Results from the first year operation of project EHV [J]. IEEE Transactions on Power Apparatus and Systems,1962,81(3): 968-976
    [21]范建斌,谷琛,殷禹,等.800kV管母线的电晕起始特性研究[J].中国电机工程学报,2008,28(22):47-52
    [22]范建斌,谷琛,李军,等.800kV典型直流设备电晕起始电压的海拔校正方法[J].中国电机工程学报,2008,28(25):8-13
    [23]唐剑,何金良,刘云鹏,等.海拔对导线交流电晕可听噪声影响的电晕笼试验结果与分析[J].中国电机工程学报,2010,30(4):105-111
    [24]刘正响,陆宠惠.海拔高度对导线起晕电压影响的研究[J].高电压技术,1988,14(3):38-41
    [25]尤少华,律方成,刘云鹏,等.电晕笼交流单根导线电晕损失的计算分析[J].中国电机工程学报,2012,32(1):162-170
    [26]尤少华,刘云鹏,律方成,等.不同海拔下电晕笼分裂导线起晕电压的计算分析[J].中国电机工程学报,2012,32(4):169-177
    [27]V. L. Chartier, D. F. Shankle, N. Kolcio. The Apple Grove 750 kV Project: statistical analysis of radio influence and corona loss performance of conductors at 775 kV [J]. IEEE Transactions on Power Apparatus and Systems,1970, 89(3):867-881
    [28]M. P. Sarma, W. Janischewskyj. D.C. corona on smooth conductors in air: Steady-state analysis of the ionization layer [J]. Proceedings of the Institution of Electrical Engineers,1969,116(1):161-166
    [29]Gildas Hartmann. Theoretical evaluation of Peek's law [J]. IEEE Transactions on Industry Applications,1984, IA-20(6):1647-1651
    [30]Kenichi Yamazaki, R. G. Olsen. Application of a corona onset criterion to calculation of corona onset voltage of stranded conductors [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2004,11(4):674-680
    [31]J. G. Anderson.超高压输电线路[M].西南电力设计院情报组&北京电力设计院情报组,译.北京,水利电力出版社,1979:159-207
    [32]I. W. Gross. Corona investigation on Extra-High Voltage line-500kV test project of the American Gas and Electric Company [J], Transactions of the American Institute of Electrical Engineers,1951,70(1):75-94
    [33]E. R. Taylor, W. E. Pakala, N. Kolcio. The Apple Grove 750kV Project 515kV radio influence and corona loss investigations [J]. IEEE Transactions on Power Apparatus and Systems,1965,84(7):561-573
    [34]J. G. Anderson, M. Baretsky, D. D. MacCarthy. Corona loss characteristics of EHV transmission lines based on project EHV research [J]. IEEE Transactions on Power Apparatus and Systems,1966, PAS-85(12):735-748
    [35]J. J. LaForest, C. B. Lindh, D. D. MacCarthy, et al. Radio noise and corona loss results from project EHV [J]. IEEE Transactions on Power Apparatus and Systems,1963,82(68):735-748
    [36]J. M. Vanderleck. Instrumentation for power loss and meteorological measurements at Ontario Hydro Coldwater Project [J]. AIEE Transactions on Power Apparatus and Systems,1961,80(3):388-396
    [37]O. Nigol, J. G. Cassan. Corona loss research at Ontario Hydro Coldwater Project [J]. AIEE Transactions on Power Apparatus and Systems,1961,80(3):304-311
    [38]N. Giao Trinh, P. Sarma Maruvada. A method of predicting the corona performance of conductor bundles based on cage test results [J]. IEEE Transactions on Power Apparatus and Systems,1977,98(1):312-325
    [39]阿列克山得洛夫.超高压设备及其周围环境保护[M].顾乐观,孙才新,赵文麟,译.重庆:重庆大学出版社,1996:8-75
    [40]殷保廉.意大利对1000千伏等级输电的研究[J].高压电器,1979,15(4):17-24
    [41]J. G. Anderson, M. Baretsky, et al. Corona loss characteristics of EHV transmission lines based on project EHV research [J]. IEEE Transactions on Power Apparatus and Systems,1963, PAS-85(12):1196-1212
    [42]F. Cahen. Results of tests carried out at the 500-kV experimental station of Chevilly (France) especially on corona behavior of bundle conductors [J]. AIEE Transactions on Power Apparatus and Systems,1948,67(2):1118-1127
    [43]T. Sugimoto. Corona loss of 4-conductor experimental transmission lines [J]. Electrical Engineering in Japan,1965,85(1):85-94
    [44]K. Lahti, M. Lahtinen, K. Nousiainen. Transmission line corona losses under hoar frost conditions [J]. IEEE Transactions on Power Delivery,1997,12(2): 928-933
    [45]A. E. Loxton, A. C. Britten. The measurement and assessment of corona power losses on 400kV transmission lines [C]. IEEE the 6th Africon Conference in Africa, South Africa,2002:613-616
    [46]F. J. Sollerkvist, Andrew Maxwell, Klas Rouden, et al. Evaluation, verification and operational supervision of corona losses in Sweden [J]. IEEE Transactions on Power Delivery,2007,22(2):1210-1217
    [47]何津云.龙西线高海拔导线电晕的试验研究[J].高压电器,1983,19(3):26-30
    [48]李顺元.利用光纤技术测量高压输电线路的电晕损失[J].电网技术,1987,11(3): 1-9
    [49]李澍森,江帆,章润陆.多功能电力谐波分析仪及其在电晕测量中的应用[J].高电压技术,1989,15(1):90-95
    [50]李澍森,陈晓燕.试验线段电晕测量技术及结果[J].高电压技术,2006,32(12):33-39
    [51]LIU Yun-peng, YOU Shao-hua, LU Fang-cheng, et al. High altitude conductor corona characteristic test system research based on artificial climate laboratory [C]. International Conference on Condition Monitoring and Diagnosis 2010, Tokyo, Japan,2010:1048-1051
    [52]LIU Yun-peng, YOU Shao-hua, WAN Qi-fa, LU Fang-cheng. Research on transmission line's corona loss of 1000kV UHV AC power transmission demonstration project in China [C].2009 International Conference on UHV Power Transmission, Beijing, China,2009:782-788
    [53]尤少华.特高压交流试验线段电晕损失测量系统的研究[D].保定:华北电力大学,2008
    [54]吴湘源.1000kV特高压交流同塔双回试验线段电晕损失的实测研究[D].保定:华北电力大学,2011
    [55]朱妮妮.基于电晕笼和试验线段的导线电晕损失测量等效性的研究[D].保定:华北电力大学,2011
    [56]曾文芳.基于小电晕笼的污秽单根导线的电晕特性研究[D].保定:华北电 力大学,2011
    [57]C. F. Harding. Corona losses between wires at high voltages [J]. Transactions of the American Institute of Electrical Engineers,1912,31(1):1035-1049
    [58]F. W. Peek. Comparison of calculated and measured corona loss curves [J]. Transactions of the American Institute of Electrical Engineers,1915,34(1): 269-278
    [59]Roy Wilkins. Corona loss tests on the 202-mile 60-cycle 220-kV Pit-Vaca transmission line of the pacific gas and electric company [J]. Transactions of the American Institute of Electrical Engineers,1924,43(1):1148-1171
    [60]C. F. Harding. Corona losses between wires at Extra High Voltages-II [J]. Transactions of the American Institute of Electrical Engineers,1924,43(1): 1182-1196
    [61]J. C. Clark, F. F. Evenson. Fair weather corona losses at 60 cycles on large overhead power cables [J]. Transactions of the American Institute of Electrical Engineers,1924,43(1):1139-1147
    [62]C. T. Hesselmeyer, J. K. Kostko. On the nature of corona loss [J]. Transactions of the American Institute of Electrical Engineers,1925,44(1):1016-1024
    [63]W. L. Lloyd, E. C. Starr. Methods used in investigating corona loss by means of the cathode ray oscillograph [J]. Transactions of the American Institute of Electrical Engineers,1927,46(1):997-1008
    [64]F. W. Peek. The law of corona and the dielectric strength of air-IV the mechanism of corona formation and loss [J]. Transactions of the American Institute of Electrical Engineers,1927,46(1):1009-1024
    [65]J. S. Carroll, L. H. Brown, D. P. Dinapoli. Corona loss measurements on a 220-kV 60-Cycle three-phase experimental line [J]. Transactions of the American Institute of Electrical Engineers,1931,50(1):36-43
    [66]W. D. Weidlein. Corona energy loss influence of surface conditions as affecting corona energy loss from high-voltage transmission lines [J]. Transactions of the American Institute of Electrical Engineers,1932,51(1):154-156
    [67]J. S. Carroll, Bradley Cozzens. Corona loss measurements for the design of transmission lines to operate at voltages between 220 kV and 330 kV [J]. Transactions of the American Institute of Electrical Engineers,1933,52(1): 55-62
    [68]L. Hegy, G. W. Dunlap. Corona loss vs. atmospheric conditions [J]. Transactions of the American Institute of Electrical Engineers,1933,53(2):272-273
    [69]J. S. Carroll, Bradley Cozzens, T. M. Blakeslee. Corona losses from conductors of 1.4-Inch Diameter [J]. Transactions of the American Institute of Electrical Engineers,1934,53(12):1727-1733
    [70]J. S, Carroll, D. M. Simmons. Corona losses at 230 kV with one conductor grounded [J]. Transactions of the American Institute of Electrical Engineers, 1935,54(8):846-847
    [71]J. S. Carroll, M. M. Rockwell. Empirical method of calculating corona loss from high-voltage transmission lines [J]. Transactions of the American Institute of Electrical Engineers,1937,56(5):558-565
    [72]W. S. Peterson, Bradley Cozzens, J. S. Carroll. Desert measurements of corona loss on conductors for operation above 230 kV [J]. Transactions of the American Institute of Electrical Engineers,1950,69(2):872-881
    [73]O. Naef, R. L. Tremaine, A. R. Jones. Techniques of corona loss measurement and analysis-500-kV test project of the American Gas and Electric Company [J]. Transactions of the American Institute of Electrical Engineers,1951,70(1): 496-516
    [74]B. L. Lloyd, O. Naef. Corona loss measurements on bundle conductors-500-kV test project of the American Gas and Electric Company [J]. Transactions of the American Institute of Electrical Engineers,1957,76(3):1164-1172
    [75]F. M. Cahen, J. M. Carteron. The French 380-kV system measurement of corona losses on transmission lines under normal operating conditions [J]. Transactions of the American Institute of Electrical Engineers,1957,76(3):1525-1531
    [76]L. M. Robertson, D. F. Shankle, J. C. Smith, J. E. O'Neil. Leadville high-altitude extra-high-voltage test project part II corona loss investigations [J]. AIEE Transactions on Power Apparatus and Systems,1961,80(3):725-732
    [77]A. S. Timascheff. Effective dielectric constant of the atmosphere during snowstorms and its influence upon corona losses [J]. IEEE Transactions on Power Apparatus and Systems,1964,83(5):482-495
    [78]C. N. Hylten, S. Annestrand, H. Witt, et al. Insulation requirements, corona losses, and corona radio interference for high voltage DC lines [J]. IEEE Transactions on Power Apparatus and Systems,1964,83(5):500-508
    [79]R. Bartnikas, G. L. D'Ombrain. A study of corona discharge rate and energy loss in spark gaps [J]. IEEE Transactions on Power Apparatus and Systems, 1965,84(9):770-779
    [80]E. Rawlinson, P. H. King, P. K. Richardson. Automatic corona-loss measuring equipment [J]. Proceedings of Institute of Electrical Engineers,1966,113(6): 705-709
    [81]J. G. Anderson, M. Baretsky, D. D. Maccarthy. Corona loss characteristics of EHV transmission lines based on project EHV research [J]. IEEE Transactions on Power Apparatus and Systems,1966, PAS-85(12):1196-1212
    [82]S. W. Redfearn, L. B. S. Golds, P. M. Clifford, et al. Discussion on high-input-impedance clipon a.c. voltmeter and automatic corona-loss measuring equipment [J]. Proceedings of Institute of Electrical Engineers,1966, 113(10):1695-1696
    [83]N. Kolcio, V. Caleca, S. J. Marmaroff, W. L. Gregory. Radio-influence and corona-loss aspects of AEP 765-kV Lines [J]. IEEE Transactions on Power Apparatus and Systems,1969, PAS-88(9):1343-1355
    [84]V. L. Chartier, D. F. Shankle, N. Kolcio. The Apple Grove 750-kV Project: statistical analysis of radio influence and corona-loss performance of conductors at 775 kV [J]. IEEE Transactions on Power Apparatus and Systems,1970, 89(5/6):867-881
    [85]A. C. Baker, M. G. Comber, K. E. Ottosen. Investigation of the corona performance of conductor bundles for 800-kV transmission [J]. IEEE Transactions on Power Apparatus and Systems,1975,94(4):1117-1130
    [86]T. Vinh, C. H. Shih, J. V. King, et al. Audible noise and corona loss performance of 9-conductor bundle for UHV transmission lines [J]. IEEE Transactions on Power Apparatus and Systems,1985, PAS-104(10):2764-2770
    [87]T. Vinh, J. V. King. Statistical analyses of audible noise and corona loss data for a 10-conductor UHV bundle [J]. IEEE Power Engineering Review,1987, PER-7(1):53-54
    [88]J. J. Clade, C H. Gary. Predetermination of corona losses under rain: experimental interpreting and checking of a method to calculate corona losses [J]. IEEE Transactions on Power Apparatus and Systems,1970,89(5):853-860
    [89]J. J. Clade, C. H. Gary. Predetermination of corona losses under rain:influence of rain intensity and utilization of a universal chart [J]. IEEE Transactions on Power Apparatus and Systems,1970,89(6):1179-1185
    [90]J. J. Clade, C. H. Gary, C. A. Lefevre. Calculation of corona losses beyond the critical gradient in alternating voltage [J]. IEEE Transactions on Power Apparatus and Systems,1969,88(5):695-703
    [91]M. Abdel-Salam, D. Shamloul. Computation of ion-flow fields of AC coronating wires by charge simulation techniques [J]. IEEE Transactions on Electrical Insulation,1992,27(2):352-361
    [92]M. Abdel-Salam, E. Z. Abdel-Aziz. A charge simulation based method for calculating corona loss on AC power transmission lines [J]. Journal of Physics D:Applied Physics,1994(27):2570-2579
    [93]M. Abdel-Salam, E. Z. Abdel-Aziz. Corona power loss determination on multi-phase power transmission lines [J]. Electric Power Systems Research, 2001,58(2):123-132
    [94]李伟,张波,何金良,等.超特高压交流输电线路电晕对地面电场的影响[J].高电压技术,2008,34(11):2288-2294
    [95]李伟,张波,何金良,等.超/特高压交流输电线路电晕损失的数值仿真研究[J].中国电机工程学报,2009,29(19):118-124
    [96]李伟.交直流并行输电线路混合场特性及其环境效应的研究[D].北京:清华大学,2010
    [97]彭迎,阮江军.模拟电荷法计算特高压架空线路3维工频电场[J].高电压技术,2006,32(12):69-73,77
    [98]杨文翰,吕英华.用模拟电荷法求解高压输电线附近电磁场[J].电网技术,2008,32(2):47-50,55
    [99]杨津基.气体放电[M].北京:科学出版社,1983:20-25,70
    [100]唐剑,杨迎建,何金良,等.1000kV级特高压交流电晕笼设计关键问题探讨[J].高电压技术,2007,33(4):1-5
    [101]范建斌,李中新,谷琛,等.直流电压下导线起晕电压计算方法[J].电工技术学报,2008,23(10):100-105
    [102]孟晓波,卞星明,陈枫林,等.负直流下绞线电晕起始电压分析[J].高电压技术,2011,34(9):1797-1801
    [103]刘云鹏,尤少华,律方成,等.不同海拔高度下单根绞线的负直流起始电晕特性分析[J].高电压技术,2010,36(10):2424-2429
    [104]卞星明,惠建峰,黄海鲲,等.气压湿度对负直流电晕特性影响的研究[J].中国电机工程学报,2010,30(4):118-124
    [105]X. M. Bian, X. B. Meng, L. M. Wang, J. M. K. MacAlpine, and Z. C. Guan. Negative corona inception voltages in rod-plane gaps at various air pressures and humidity [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(2):613-619
    [106]M. Abdel-Salam. Calculation of corona onset voltage for duct-type precipitators[J]. IEEE Transactions on Industry Applications,1993,29(2): 274-280
    [107]林锐.直流正极性下导线电晕放电特性及影响因素的研究[D].重庆:重庆大学,2009
    [108]M. M. EI-Bahy, M. Abouelsaad. Onset voltage of negative corona on stranded conductors [J]. Journal of Physics D: Applied Physics,2007,40(10):3094-3101
    [109]M. Abdel-Salam. Calculating the effect of high temperatures on the onset voltages of negative discharges [J], Journal of Applied Physics,1976,9(12): L149-L154
    [110]宫林.低气压下导线表面状况对电晕放电起始特性影响的研究[D].重庆:重庆大学,2008::4-10
    [111]刘有为,李继红,李斌.空气密度和湿度对导线电晕特性的影响[J].电网技术,1990,14(4):46-50
    [112]赵宇明,麻敏华,楚金伟,等.电晕笼中直流导线起晕电压的测量方法[J].高电压技术,2008,34(8):1567-1572
    [113]范欣然.用于离子迁移率谱仪的瞬态漂移电场研究[D].北京:中国科学院,2007
    [114]胡树植.离子迁移率谱仪(IMS)及其应用[J].核电子学与探测技术,1998,18(1):5-11
    [115]Mahmoud Tabrizchi, Fereshteh Rouholahnejad. Corona discharge ion mobility spectrometry at reduced pressures [J]. Review of Scientific Instruments,2004, 75(11):4656-4661
    [116]Gerhard W. Juette, Luciano E. Zaffanella. Radio noise, audible noise, and corona loss of EHV and UHV transmission lines under rain:Predetermination based on cage tests. IEEE Transactions on Power Apparatus and Systems, 1970,89(6):1168-1178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700