菜用枸杞光合特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以茄科植物菜用枸杞(Lycium Chinense Mill)为试验材料,分别从环境生态因子、植物自身气孔运动特性及光合生化动力学模型等三个方面研究了菜用枸杞的光合作用,力求揭示菜用枸杞光合作用的特性及规律,为更深一步研究其光合作用机理奠定基础,并为实际生产提供理论指导。
     1.自然条件下,菜用枸杞的净光合速率日变化类型为“双峰”型,遮荫、恒温、外施高浓度CO_2均不能改变其日变化类型,只对其“午睡”现象起缓解作用;光照、温度是导致菜用枸杞“午睡”的主要生态原因。菜用枸杞的光合效率日变化类型为“凹弧”型,遮荫、外施高浓度CO_2均不改变其日变化类型,温度是影响其光合效率日变化的主要生态因子。
     2.菜用枸杞的光合特性参数呈现“生态因子型”差异。增大光强可提高菜用枸杞的光合适温、CO_2饱和点、CO_2半饱合点,降低CO_2补偿点;增高叶温可提高菜用枸杞的光饱和点、半光饱和点、CO_2饱和点:增施CO_2可提高菜用枸杞的光合适温、光饱和点、半光饱和点,降低CO_2饱和点。
     3.菜用枸杞的气孔在白天为不均匀开闭,气孔相对开度主要集中在0.2~0.7之间。气孔相对开度与净光合速率、气孔导度均呈极显著的对数相关关系。在叶片上所有气孔的相对开度均较小时(0.1<气孔相对开度<0.6),光合作用主要受气孔限制;在叶片上所有气孔的相对开度均较大时(0.6<气孔相对开度<1),光合作用主要受非气孔限制。
     4.通过Farquhar生化模型的拟合效果判断:在高光强(PAR>600μmol·m~(-2)·S~(-1))条件下,光合作用主要受非气孔限制,即经历了从RuBP再生限制阶段(Wj)向Rubisco数量与活性的限制阶段(Wc)再向磷酸丙糖利用能力限制阶段(Wp)的过渡过程。在低光强(半饱和光强)条件下,光合作用主要受气孔限制。
This study used environment ecological factor, motion characteristic of stoma and Farquhar's biochemistry model to investigated Photosynthesis of Lycium Chinese Mill, so as to open out characteristic and rule of Photosynthesis of Lycium Chinese Mill ,further to gave groundwork to photosynthesis mechanism and provided theoretic suggests for production practice at last.1.Daily variation type of Lycium Chinese Mill net photosynthesis rate is double peak type in natural conditions.Under shading、 fixed temperature and heavy CO_2 concentration couldn't change the type ,only can be mitigate the middy depression of photosynthesis;Illumination and temperature are main ecological factors which cause the Midday Depression .Apparent quantum yield daily variation of Lycium Chinense Mill is arcs of recesses type ,shading and increased CO2 concentration treatment cann't change its type ,but the temperature is the main ecological factor which effect the apparent quantum yield.2.Photosynthesis characteristic parameter of Lycium Chinense Mill appear ecological factor difference .Optimum leaf temperature (Topt) ,CO_2 saturation point (CSP ) ,semi-CO_2 saturation point (semi- CSP) increase;CO_2 compensation point (CCP) decreases as increasing photosyntectis available radiation;light saturation point (LSP) ,semi-light saturation point (semi-LSP) ,CO_2 saturation point (CSP) increases as increasing leaf temperature;Topt,LSP,semi-LSP increase and CSP decreases as increasing CO_2 concentration.3.Stomatal aperture of Lycium Chinense Mill was non-uniform closure in the day , most of the stomatal aperture between 0.2~0.7 . Stomatal aperture was greatly related to net photosynthetic rate、 stomatal conductance .When stomatal aperture all smaller ,the stomatal limitation became the main factor of photosynthesis;when stomatal aperture all bigger ,the non-stomatal limitation became the main factor of photosynthesis .
    4.Analysed through result of Farquhar's biochemistry model ,Under high photosynthetic available radiation (PAR > 600 n mol'm^'s"1), the non-stomatal limitation is the main factor of photosynthesis and show a transfer of wc,wj,wp;under low photosynthetic available radiation (semi-LSP) , the stomatal limitation the main factor of photosynthesis.
引文
[1] 刘静,赵国栋.叶用枸杞栽培技术[J].河北农业,2004,5:25-26
    [2] 惠晓平,殷丽青,余进安,张彩丰.菜用枸杞的繁殖与种植技术[J].上海蔬菜,2005(1):50-51
    [3] 宋丽花,李培习.菜用枸杞大棚栽培技术[J].种植园地
    [4] 马萱等.菜用枸杞的栽培及其病虫害防治[J].农业新技术,2003,8(5):26-27
    [5] 惠红霞,许兴,李守明.宁夏干旱地区盐胁迫下枸杞光合生理特性及耐盐性研究[J].中国农学通报,2002,18(5):29-34
    [6] 刘静,王连喜,马力文,李凤霞,张小煜,苏占胜,周慧琴,李剑萍.枸杞的生理因子与外环境气象因子的日变化规律研究.干旱地区农业研究.2003,21(1):77-82
    [7] Schulze ED, Lange OL, Evenri M, Kappen L and Buschbom U. The role of air humidity and leaf temperature in controlling photosynthesis, stomatal resistance of Prunus armeniaca L. under desert condition. Ⅰ. A stimulation of the daily course of stomatal resistance. Oecologia, 1974, 17: 159-170
    [8] Schulze ED, Lange OL, Evenri M, Kappen L and Buschbom U. The role of air humidity and leaf temperature in controlling photosynthesis, stomatal resistance of Prunus armeniaca L. under desert condition. Ⅱ. Significance of leaf water status and internal carbon dioxide concentration. Oecologia, 1975, 18: 219-233
    [9] Landsberg JJ, Beadle CL, Biscoe PV et al. Diurnal energy, water and CO_2 exchange in an apple (Malus pumila) orahard. J Appl Ecol, 1975, 12: 659-684
    [10] Tenhunen JD, Lange OL, Braun M, Meyer A, Losch R, Pereira JS. Midday stomatal closure in Arbutus unedo leaves in a natural macchia and under simulated habitat conditions in an environmental chamber. Oecdogia, 1980, 47: 365-367
    [11] Tenhunen JD, Lange OL, Gebel J, et al. Changes in photosynthetic capacity, carboxylation efficiency, and CO_2 compensation point associated with middy stomatal closure and midday depression of net CO_2 exchange of leaves of Quercus suber. Planta, 1984, 162: 193-203
    [12] 杜占池 杨宗贵.羊草光合生态特性的研究.植物学报,1983,25(4):370-379
    [13] 许大全,李德耀,沈允钢等.田间小麦光合作用“午睡”现象的研究.植物生理学报,1984,(10):269-276
    [14] Kuppers M, Schulze E-D. An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO_2 and H_2O exchange. J Plant Physiol, 1985, 12: 513-526
    [15] Lakso AN. Photosynthesis in fruit trees in relation to environmental factors. In Lakso AN and Leng F (eds) Regulation of Photosynthesis in Fruit Trees. Symp. Proc. Publ, NY State Agri Expt Sta, Gennva, 1986, pp.6-13
    [16] Downton WJS, Grant WTR and Loveys BR. Diurnal changes in the photosynthesis of field-grown grapevines. New Phytol, 1987, 105: 75-80
    [17] 许大全.光合作用“午睡”现象的生态、生理与生化.植物生理学通讯,1990,137(6):5-10
    [18] 高志奎 张明贤 潭俊杰.韭菜光合作用特性的研究.园艺学 报.1992.19(3).240-244
    [19] 高志奎 刘彦民 何俊萍等.西葫芦光合作用特性.园艺学报.1996.23(3).305-306
    [20] 张振贤 周绪元 陈利平.主要蔬菜作物光合与蒸腾特性研究.园艺学报.1997,24(2):155~160
    [21] 张振贤,梁书华,陈利平.田间大白菜光合速率日变化与“午睡”现象的研究.植物学报,1994,36(增刊):97-101
    [22] 何俊萍 高志奎 王如英等.香椿苗期光合特性的研究.园艺学报.1996.23(2).205-206
    [23] Hellmuth ED. J Ecol, 1968, 56: 319
    [24] 张福墁 马国成.日光温室不同季节的生态环境对黄瓜光合作用的影响.华北农学报,1995,10(10):70-75
    [25] 王志强,何方,牛良等.设施栽培油桃光合特性研究.园艺学报,2000 27(40:245-250)
    [26] Shen Y-G, Qiu G-X, Xu D-Q, Huang Q-M, Yang D-D, Gao A-X, Long S P, Hall D O. Studies on the photosynthesis of bamboo. Chin J Bot, 1991, 3: 116-121
    [27] 张树源,陆国泉,武海,沈镇西,钟海民,沈允钢,许大全,丁焕根,胡文新.青海高原主要C_3植物的光合作用.植物学报,1992,34:176-184
    [28] 李新国,许大全,孟庆伟.银杏叶光合作用对强光的响应[J].植物生理学报,1998,24(4):354-360
    [29] 余叔文,汤章城.植物生理与分子生物学[M] 。北京,科学出版社
    [30] 王永健,张海英,张峰等.低温弱光对不同黄瓜品种幼苗光合作用的影响[J].园艺学报,2001,28(3):230-234.
    [31] 郭连旺,许大全等.自然条件下珊瑚树叶片光合作用的光抑制[J].植物生理学报,1994,20(1):46-54.
    [32] 赵世杰,许长成,孟庆伟等.田间小麦叶片光合作用的光抑制[J].西北植物学报,1998,18(4):521-526
    [33] 张宇,孟庆伟,赵世杰,等.光胁迫下银杏光合作用的光抑制[J].西北植物学报,1999,19(3):461-465.
    [34] 徐志防,罗广华,王爱国等.强光及活性氧对大豆光合作用的影响[J].植物学报,1999,41(8):862-866.
    [35] 郭延平,张良诚,洪双松等.温州密桔叶片光合作用的光抑制[J].园艺学报,1999,26(5):281-286.
    [36] Bongi G, Long SP, Light-dependent dam age to photosynthesis in alive leaves during chilling and high temperature stress [J]. Plant Cell Environ. 1987, 10: 241-249
    [37] Long SP, East TM, Baker NR. Chilling dam age to photosynthesis to young Zea mays[J]. J Exp Bot, 1983, 34: 177-188
    [38] Nunes MA, Ramalho JDC, Dias MA. Effect of nitrogen supply on the photosynthesis performance leaves from coffee plants exposed to bright light [J]. J Exp Bot, 1993, 44: 893-899.
    [39] Pastense C, Horton P. Effect of high temperature on photosynthesis in beans [J]. Plant Physical, 1996, 112: 1253-1260.
    [40] Oquist G, Chow W S, Anderson J H. Photoinhibition of photosynthesis represent a mechanism for the long-term regulation of photosystem Ⅱ[J]. Plant, 1992, 186: 450-460.
    [41] Correia MJ, Chaves MMC and Pereira JS 1990 Afternoon depression depression in photosynthesis in grapevine leaves-Evidence for a high light stress effect[J]. J Exp bot 41: 417-426.
    [42] Takaham a U, Nishimura M. Formation of single molecular oxygen in illuminated chloroplasts. Effect on photo inactivation and lioid peroxidation[J]. Plant Cell Physiol. 1975, 16: 737-748.
    [43] Demmi-Adarn B, Adams W W Ⅲ, Photoprotection and other responses of plants to light stress[J]. Ann Rev Plant Physical Plant Mol Biol, 1992, 43: 599-626.
    [44] Osmond CB, Ben GY, Huang LK et al, 1987: Determing the role of light and stress effects on photosyntheyis[J]. Current Topics In Plant Biochemistry And Physiology, 6: 134.
    [45] Demming Adams B, Adams ⅢW W. Photoprotection and other responses of plants to high light stress [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1992, 43: 599-626.
    [46] Kurets-V-K, Drozdov-S-N, opov-E-G, Talanov-A-V, Obshatko-L-A. Effect of thermoperiod on net photosynthesis and night respiration of cucumber plants[J]. Fiziologiya-Rastenii-Moscow. March-April, 1999;46 (2): 198-202
    [47] Sage R F, Reid C D.Photosynthetic response mechanisms to environmental change in C_3 plant. In: Wilkinson R E(ed). Plant-Environment Interactions. New York: Marcel Dekker, 1994. 413-499
    [48] Berry J A, Downton W J S. Environmental regulation of photosynthesis.In: Govindjee (ed). Photosynthesis Vol Ⅱ Development, Carbon Metabolism and Plant Productivity. New York: Academic Press, 1982. 263-343
    [49] Dubey R S. Photosynthesis in plants under stressful conditions. In: Pessarakli M(ed). Handbook of Photosynthesis. New York: Marcel Dekker, 1977. 859-875
    [50] Carpentier R. Effect of high-temperature stress on the photosynthetic apparatus. In: Passarakli M(ed). Handbook of Plant and Crop Stress(second Edition). New York: Marcel Dekker, 1999. 337-348
    [51] Gerbaud-A {a};Andre-M, Down regulation of photosynthesis after CO_2 enrichment of lettuce;relation to photosynthetic characteristics[J]. Biotronics. Dec., 1999;(28): 33-44
    [52] 许大全.光合作用及有关过程对长时期高CO_2浓度的响应[J].植物生理学通讯.1994,30(2):81-87
    [53] Gunderson C A and W ullscbleger SD. Photosynthesis acclimation in trees to rising atmospheric CO_2: Abroader perspective[J]. Photosynthesis Res. 1994, 39: 369-388
    [54] Eamus D., G. A. Duff, C. A. Berryman. Photosynthetic responses to temperature, light flux-density, CO_2 concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under CO_2 enrichment. Environmental Pollution, 1995, 41-49
    [55] Hand DW, Warren WJ, Acock B, Wilson JW. Effects of light and CO_2 on n et photosynthetic rates of stands of aubergine and Amaranthus. Annals-of-Botan y, 1993, 71(3): 209-216-224
    [56] 许大全,李德耀,沈允钢等.田间小麦光合作用“午睡”现象的研究.植物生理学报,1984,(10):269-276
    [57] Hakala-Kaija {a};Helio-Riitta {a};Tuhkanen-Eeva;Kaukoranta-Timo. Photosynthesis an d Rubisco kinetics in spring wheat and meadow fescue under conditions of simulated climate change with elevated CO_2 and increased temperatures[J]. Agricultural-and-Food-Science-in-Finland. 1999;8 (4-5): 441-457
    [58] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Ann Rew Physiol, 1982, 33: 317-328
    [59] Downton WJS, Loveys BR, Grant WJS. Stomatal closure fully accounts for the nhibition of photosynthesis by abscisic acid[J]. New Phytol, 1988, 108: 263-266
    [60] Downton WJS, Loveys BR, Grant WJS. Non-uniform stomatal closure ind uced by water stress causes putative non-stomatal inhibition of Photo synthesis[J]. New Phytol, 1988, 110: 503-512
    [61] Terashima I, Wong SC, Osmond CB et al Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies[L]. Plant Cell Physiol, 1988, 29: 385-394
    [62] Raschke K, Patzke J, Daley P F, Berry J A. Spatial and temporal heterogeneities of photosynthesis dectected throught analysis of chlorophyll-fluorescence images of leaves. In: Baltscheffsky M (ed). Current Research in Photosynthesis, Vol Ⅳ. Dordrecht, Natherlands: Kluwer Academic Publishers, 1990. 573-578
    [63] Sharkey TD, Loreto F, Vassey TL. Effect of stress on Photosynthesis. In Baltscheffsk-y M(ed) Current Research in photosynthesis[J]. Vol Ⅳ. Dordrecht: Kluwer Academic Publishers, 1990. 549-556
    [64] 张守仁,高荣孚.白杨派新无性系气孔生理生态特性的研究[J].生态学报,1998,18(4):358-363-372
    [65] Shouren Zhang, Rongfu Gao. Non-uniform stomatal closure of hybrid poplar c lones under light stress determined by scanning electron microscopy and modifi cation of inter-cellular CO_2 concentration[J]. Original Article, 2000, 14: 376-383
    [66] Enoch H. Z. Carbon dioxide uptake efficiency in relation to crop-intercepted solar radition. Acta Horticulturae, 1984, 162: 137-147
    [67] Farquhar GD, von Caemmerer S, Berry JA. A biochemical model of photosynthetic CO_2 assimilation in leaves of C_3 species. Planta, 1980, 149: 78-90
    [68] Farquhar GD, yon Caemmerer S. Modelling of photmsynthetic response to environmental conditions. In Physiological Plant Ecology Ⅱ. Encyclopedia of Plant Physiology, New Series(eds O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler) vol. 12B, pp. 550-587, 1982. Springer-Verlag, Heidelberg, Germeny.
    [69] Von Caemmerer S. and Farquhar GD. Some relationgships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 1981, 153, 373-387
    [70] Von Caemmerer S, Evans JR. Determination of the average partial pressure of CO_2 in chloroplasts from leaves of several C_3 plants. Australian Journal of Plant Physilology, 1991, 18: 287-305
    [71] Von Caemmerer S, Evans JR, et al. The kinetics of dbulose-1, 5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta, 1994, 195, 88-97
    [72] Farquhar GD, Sharkey TD Stomatal conductance and photosynthesis. Ann Rev Plant Physiol, 1982, 33: 317-345
    [73] Farquhar GD, von Caemmerer S, Berry JA. Models of photosynthesis. Plant Physiology, 2001, 125: 42-45
    [74] Von Caemmerer S. Biochemical models of leaf photosynthesis. CSIRO PUBLISHING. 2000, pp.29-90
    [75] Harley PC, Thomas RB, et al. Modelling photosynthnsis of cotton grown in elevated CO_2. Plant, Cell and Environment, 1992, 15: 271-282
    [76] Wullschleger. Biochemical limitations to carbon assimilation in C_3 plants- a retrospective analysis of the A/Ci curves from 109 species. Journal of Experimental Botany, 1993, 44: 907-920
    [77] Hans RS. Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines. Functional Plant Biology, 2003, 30, 673-687
    [78] Long SP. and Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitation to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 2003, (54)392, 2393-2401
    [79] Ethier G. J., Livingston N. J. On the need to incorporate sensitivity to CO_2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant, Cell and Environment, 2004(27), 137-153
    [80] Wong YP, Leuning R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy Ⅰ: model description and comparison with a multi-layer model. Agricultural and Forest Meteorology, 1998, 91: 89-111
    [81] 陶汉之.茶树光合日变化的研究.作物学报,1991,17(6):444-452
    [82] 张往祥.环境因子对银杏光合作用的影响.南京林业大学硕士论文,2002
    [83] Cheeseman JM, Clough BF, Carter DR, Lovelock CE, OngJinEong and Sim RG. The analysis 0f photosynthetic performance in leaves under field conditions: A case syudy using Bruguiera mangroves. Photosyn Res, 1991, 29: 11-22
    [84] 许大全,丁勇,武海.田间小麦光合效率日变化与光合“午睡”的关系.植物生理学报,1992,18(3):279-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700