弗劳氏枸橼酸杆菌分子分型和毒力岛分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探索了弗劳氏枸橼酸杆菌作为肠道病原菌的可能性。根据我们实验室完成的弗劳氏枸橼酸杆菌CF72菌株的基因组序列和多位点序列分析(MLST)基因选择的原则,我们选择了7个基因,建立了弗劳氏枸橼酸杆菌的MLST方法。根据该方法,可把36株菌分成12个序列型(ST型)。使用获得的7个管家基因序列的种系发生关系分析发现,弗劳氏枸橼酸杆菌可分为A、B两大类,A类仅包括ST9,含1株菌;B类包括其余的11个ST型。B类又可以聚为两类。B1类包括2个ST型2株菌:ST8、ST12。B2类包括9个ST型33株菌。其中ST1、ST3、ST4亲缘关系比较近,ST2、ST5亲缘关系比较近。这5个型别包括29株菌,属于优势ST型。从菌株的来源来看,有7个ST型仅包括人源菌株,1个ST型仅包括动物源菌株,4个ST型,如ST1、ST2、ST3、ST5,包括动物源和人源菌株。
     根据我们实验室完成的基因组分析,我们发现弗劳氏枸橼酸杆菌CF72菌株有49个基因组岛。根据功能分为10类:其中代谢岛17个,转运岛7个,噬菌体相关岛7个,DNA/RNA组装岛5个,细胞结构岛3个,DNA重组岛1个,功能不明的1个,其他1个,耐药性岛1个,毒力岛6个。在检测的36株菌中,只有6株菌所有检测的49个基因岛全部阳性,都属于ST2型。噬菌体转导可能是病原菌致病性进化的重要机理之一。ST1、ST2、ST3、ST4序列型的弗劳氏枸橼酸杆菌的噬菌体相关岛的分布,也和其他ST型有明显差异。GI22噬菌体相关岛可能和生物膜形成有关,在36株菌株中19株检测阳性,包括ST1(7/13株)、ST2(7/7株)、ST3(3/4株)、ST4(1/3株)、ST8(1/1株)。在36株菌中,有6株菌的GI13、GI29、GI30检测为阳性,这6株菌属于ST2型。GI36有7株菌检测阳性,包括ST2型6株菌和ST1型1株菌。噬菌体岛的分布提示,ST1、ST2、ST3、ST4、ST8的噬菌体转导比较活跃,其中ST1、ST3、ST4等以GI22为主,ST2也以其他几个噬菌体岛为主。噬菌体岛的分布具有ST型分布特征,主要分布在上述可能和致病性相关的ST型中。在6个毒力岛中,在36株菌中都能检测到的毒力岛有3个:包括编码铁转运系统的GI5、编码Tol-Pal内膜蛋白GI7、编码Curli菌毛蛋白GI9。编码侵袭相关菌毛蛋白GI6岛,可以在35株菌中都检测到。唯一没有完整检测到GI6毒力岛的菌株是CF5,属于ST9。编码O抗原的毒力岛GI24,在29株菌能够检测到。具有GI24岛的菌株分别是为ST1、ST2、ST3、ST4、ST5。这些ST型均属于优势ST型。编码亚碲酸钾抗性GI44岛,能够在8株菌中检测到,其中有6株菌属于ST2,其余两株分别属于ST6和ST7。
     Hela细胞粘附实验发现,36株菌中有34株具有甘露糖抗性粘附,其中粘附力强的菌株3株,分别属于ST1、ST3、ST12;中等粘附18株,16株属于ST1、ST2、ST3、ST5。结果提示,以ST9为代表的A类可能是致病性最弱的,它不具有粘附力,毒力岛(GI6、GI24、GI44)检测也为阴性。Hela细胞细胞毒性试验发现,在36株菌中,CF74在作用10小时,具有较强的细胞毒性作用。除了细胞毒性作用外,CF74菌株的粘附力也比较强,属于ST12型。
     简言之,我们发展了一种弗劳氏枸橼酸杆菌的MLST分析方法。使用这种方法,可将36株菌分为12个ST型。其中ST1、ST2、ST3、ST4、ST5属于优势型。这些ST型弗劳氏枸橼酸杆菌在基因组岛分布、毒力岛分布、噬菌体岛分布等方面,和其他ST型菌株相比,有明显差异。
     病原性细菌的一个最基本的特征就是入侵宿主,并在宿主体内找到适合自己生存的小环境。经典的EPEC(Enteropathogenic Escherichia coli肠致病性大肠杆菌)和EHEC(Enterohemorrhagic Escherichia coli肠出血性大肠杆菌)入侵宿主的第一步是在感染粘膜细胞表面形成一种经典的病理损伤过程,称为粘附抹平效应(Attaching and Effacing lesions A/E)。该损伤在其致病过程中起了关键作用。其特点是:细菌紧密粘附粘膜表面,感染细胞微绒毛的丢失,细菌粘附处形成一个致密的肌动蛋白垫。
     已有的研究的发现:该效应是由LEE(Locus of enterocyte effacement)毒力岛所编码的三型分泌系统(TypeⅢsecretion systerm TTSS)产生的。尽管EPEC和EHEC都具有LEE系统,但是它们的作用机制却有很大的差别,分别是通过Nck或TccP(Tir cytoskeleton coupling protein)蛋白两种不同的途径来激活细胞N-WASP蛋白,从而引起细胞肌动蛋白的聚集。因此,多年来,在体外细胞培养感染模型中,使用荧光染料标记细胞肌动蛋白聚集(Fluorescent actin stainingFAS),一直作为研究A/E损伤的模型和判断EPEC和EHEC菌株是否具有致病力的标准。
     在本研究中,我们发现了一大类具有代表性的EPEC O125:H6菌株,这类菌株既不能利用Nck途径也不能利用TccP途径,根据前述的研究结论,这类菌株将不能引起肌动蛋白的聚集,因此在活体外器官组织培养感染模型中也不能引起A/E损伤。但本研究发现:该类菌株在体外细胞培养感染模型中能引起微弱的肌动蛋白的聚集,而且,在体外人肠器官组织培养感染模型中,EPEC O125:H6还能够造成经典的A/E损伤。是否存在其他途径引起A/E损伤还是A/E损伤不需要肌动蛋白的聚集?进一步的研究发现:EPEC O125:H6表达外源TccP后,可以在体外的细胞模型上引起有效的肌动蛋白聚集,在体外人肠器官组织感染模型中粘附能力也明显增强,在细菌粘附处还能够检测到N-WASP蛋白。
     上述研究结果显示:在自然界里存在着一类不依赖于Nck或TccP途径来粘附肠道上皮产生A/E损伤的大肠杆;在体外细胞培养感染模型上引起肌动蛋白聚集现象,不应看作是EPEC和EHEC毒力的标志。
In this study, we explored the potential of Citrobacter freundii as a cause of infection diarrhea. Using the sequence information of CF72 complete genome sequence and following the principles on designing of the MLST, we developed a MLST scheme for Citrobacter freundii by choosing 7 house keeping genes. A total of 12 different STs were assigned in the 36 isolates. Phylogenetic tree based on the concatenated nucleotide sequences of the seven genes showed that the 36 isolates could be divided into 2 Clusters, namely CluterA and ClusterB. The ClusterA contained ST9, only one isolated from human in this Cluster. Cluster B contained the rest of the 11 STs, which could be subdivided into B1 and B2. B1 contained two STs , 2 isolates in B1, namely ST8 and ST12. B2 contained 9 STs of 33 isolates. ST1, ST3 and ST4 as well as ST2 and ST5 were closely related. The 4 STs contained 26 isolates and belonged to the common STs. From the original source of the strains, seven STs only contained the isolates from humans, one ST only contained the isolate from animals, four STs (ST1, ST2, ST3, ST5) contained the isolates from both humans and animals.
     Based on the complete genome sequence, we found 49 genomic islands(GI). It could be divided into 10 categories: 17 GIs related to metabolism, 7 GIs encoding transport proteins, 7 GIs related to phage related genes, 5 GIs related to DNA/RNA processing gene, 3 GIs encoding cell structure proteins, 1 GI encoding DNA recombination, 1 GI related to function unknown, 1 GI encoding antibiotic resistance, 6 GIs ecoding virulence related proteins . Screening the 49 GIs in the 36 isolates, only 6 ST2 isolates contained all the GIs. Phages took important function in the evolution of the bacteria. The distribution of the phage related GIs in ST1, ST2, ST3, ST4 isolates were distinctly different from other STs. Phage related GI22 encoded the protein which was related to the biofilm. The STs that having GI22 (19 isolates) included ST1(7/13), ST2(7/7), ST3(3/4), ST4(l/3), ST8(1/1). Only 6 ST2 isolates had the phage related GIB, GI29, GI30. Phage related GI36 could be detected in 7 isolates, in which six belonged to ST2 and one belonged to ST1. The observation about distribution of phage related GIs suggested that the isolates of ST1, ST2, ST3, ST4 were relatively more active in horizontal gene transfer by phage. ST1, ST3, ST4 were more related to G122, while ST2 more related to others GIs. The distribution of phage related GIs was closely related to STs, in which existed in the possible virulence related islands. Three virulence related GIs could be detected in all isolates, and they were GI5 encoding OmpX-SfaABC ABC-transporter, GI7 encoding Tol-PaL inner member protein, GI9 encoding Curli pilus. One virulence related GI encoding invasion related Fim proteins could be detected in isolates except strain CF5(ST9). One virulence related GI encoding O-antigen could be detected in 29 isolates. The isolates belonged to the common STs. One virulence related GI encoding the tellurite resistance could be detected in 8 strains, in which six existing in ST2, one in ST6 and one in ST7.
     The observation about the adhesive properties of Citrobacter freundii showed that 34 isolates could adhere to Hela cell. Adhesion index indicated that 3 isolates had the strong adhesive ability, which belonged to ST1, ST3, ST12. Eighteen isolates had middle adhesive ability, in which 16 isolates belonged to ST1, ST3, ST2, ST5. The representative ST9 from ClusterA was relatively less pathogenic strain for the reason that the Virulence related GIs (GI6、GI24、GI44) were not detected in ST9 and no adhesive ability was observed. The results of the cytotoxicy of Hela cell showed that the CF74 (ST12) induced significantly different level after 10 hours incubation than others, and it also had strong adhesive ability to Hela cell.
     In summery, we developed a MLST method for Citrobacter freundii. 12 different STs were assigned to 36 isolates. 5 STs (ST1, ST2, ST3, ST4, ST5) were the common STs which were distinctly different from others on the aspects of distribution of GIs especially virulence related islands, phage related islands.
     Other project during PHD:
     We report that EPEC O125:H6, which represent a large category of strains, lack the ability to utilize either Nck or TccP and hence trigger actin polymerization in vitro only inefficiently. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck and TccP independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.
     Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli colonize the gut epithelium via formation of a distinct histopathological lesion name attaching and effacing (A/E).A/E lesions are characterized by loss of microvilli, an intimate adherence of bacteria adjacent to the host cell membrance and the generation of organized cytoskeletal structures containing filamentous actin beneath sites of bacterial attachment,termed actin polymerization.
     The gene necessary for A/E lesion formation in vitro are carried on the locus of enterocyte effacement, which encodes a type III secretion systerm. Although EPEC and EHEC prodece highly similar lesions by LEE, the mechanisms are different. The actin polymerization induced by EPEC is in a Nck-dependent pathway while EHEC in a TccP-dependent pathway to activate N-WASP and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains.
     In this paper we report that EPEC O125:H6, which represent a large category of strains, lack the ability to utilize either Nck or TccP and hence trigger actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expressing TccP in EPEC O125:H6, which harbor an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck and TccP independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.
引文
1 Janda, J. M., Abbott, S. L., Cheung, W. K., et al. 1994. Biochemical identification of citrobacteria in the clinical laboratory. J Clin Microbiol. 32:1850-1854
    
    2 Deal, E. N., Micek, S. T., Ritchie, D. J., et al. 2007. Predictors of in-hospital mortality for bloodstream infections caused by Enterobacter species or Citrobacter freundii. Pharmacotherapy. 27: 191-199
    
    3 Liu, C. P., Weng, L. C., Tseng, H. K., et al. 2007. Cefotaxime-resistant Citrobacter freundii in isolates from blood in a tertiary teaching hospital in Northern Taiwan. J Infect. 55: 363-368
    
    4 Dervisoglu, E., Yumuk, Z. and Yegenaga, I. 2008. Citrobacter freundii peritonitis and tunnel infection in a patient on continuous ambulatory peritoneal dialysis. J Med Microbiol. 57: 125-127
    
    5 Mukhopadhyay, C., Dey, A. and Bairy, I. 2008. Citrobacter freundii infection in glutaric aciduria type 1: adding insult to injury. J Postgrad Med. 54:35-36
    
    6 Deal, E. N., Micek, S. T., Reichley, R. M., et al. 2009. Effects of an alternative cefepime dosing strategy in pulmonary and bloodstream infections caused by Enterobacter spp, Citrobacter freundii, and Pseudomonas aeruginosa:a single-center, open-label, prospective, observational study. Clin Ther. 31:299-310
    
    7 Zhang, R., Yang, L., Cai, J. C., et al. 2008. High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. J Med Microbiol. 57:332-337
    
    8 Baylet, R. J. and Linhard, J. 1959. [Paracoli bethesda (Citrobacter) and Escherichia freundii in disease in Dakar.]. Bull Soc Pathol Exot Filiales. 52:723-725
    
    9 Koppel, J., Prochazka, D. and Vichnar, M. 1960. [An institutional epidemic of infant diarrhea caused by Citrobacter.]. Cesk Pediatr. 15: 822-826
    
    10 Parida, S. N., Verma, I. C., Deb, M., et al. 1980. An outbreak of diarrhea due to citrobacter freundii in a neonatal special care nursery. Indian J Pediatr.47: 81-84
    
    11 Guarino, A., Capano, G., Malamisura, B., et al. 1987. Production of Escherichia coli STa-like heat-stable enterotoxin by Citrobacter freundii isolated from humans. J Clin Microbiol. 25: 110-114
    
    12 Thurm, V. and Gericke, B. 1994. Identification of infant food as a vehicle in a nosocomial outbreak of Citrobacter freundii: epidemiological subtyping by allozyme, whole-cell protein and antibiotic resistance. J Appl Bacteriol. 76:553-558
    
    13 Ibenyassine, K., Mhand, R. A., Karamoko, Y., et al. 2007. Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco. J Environ Health. 69: 47-51
    
    14 Schmidt, H., Montag, M., Bockemuhl, J., et al. 1993. Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect Immun. 61: 534-543
    
    15 Schauer, D. B., Zabel, B. A., Pedraza, I. F., et al. 1995. Genetic and biochemical characterization of Citrobacter rodentium sp. nov. J Clin Microbiol.33: 2064-2068
    
    16 Mundy, R., MacDonald, T. T., Dougan, G, et al. 2005. Citrobacter rodentium of mice and man. Cell Microbiol. 7: 1697-1706
    
    17 Baker, G. C., Smith, J. J. and Cowan, D. A. 2003. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods. 55: 541-555
    
    18 Maiden, M. C., Bygraves, J. A., Feil, E., et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 95: 3140-3145
    
    19 Feavers, I. M., Gray, S. J., Urwin, R., et al. 1999. Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol. 37: 3883-3887
    
    20 Enright, M. C. and Spratt, B. G . 1999. Multilocus sequence typing. Trends Microbiol. 7: 482-487
    
    21 Maiden, M. C. 2006. Multilocus sequence typing of bacteria. Annu Rev Microbiol. 60: 561-588
    
    22 Jolley, K. A., Feil, E. J., Chan, M. S., et al. 2001. Sequence type analysis and recombinational tests (START). Bioinformatics. 17: 1230-1231
    
    23 Singer, R. S., Sischo, W. M. and Carpenter, T. E. 2004. Exploration of biases that affect the interpretation of restriction fragment patterns produced by pulsed-field gel electrophoresis. J Clin Microbiol. 42: 5502-5511
    
    24 Hunter, P. R. and Gaston, M. A. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 26: 2465-2466
    
    25 Hsiao, W., Wan, I., Jones, S. J., et al. 2003. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics. 19: 418-420
    
    26 Orth, D., Grif, K., Dierich, M. P., et al. 2007. Variability in tellurite resistance and the ter gene cluster among Shiga toxin-producing Escherichia coli isolated from humans, animals and food. Res Microbiol. 158: 105-111
    
    27 Mange, J. P., Stephan, R., Borel, N., et al. 2006. Adhesive properties of Enterobacter sakazakii to human epithelial and brain microvascular endothelial cells. BMC Microbiol. 6: 58
    
    28 Vanier, G., Segura, M., Friedl, P., et al. 2004. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun.72: 1441-1449
    
    29 Weinberg, E. D. 1984. Iron withholding: a defense against infection and neoplasia. Physiol Rev. 64: 65-102
    
    30 Ye, C. and Xu, J. 2001. Prevalence of iron transport gene on pathogenicity-associated island of uropathogenic Escherichia coli in E. coli O157:H7 containing Shiga toxin gene. J Clin Microbiol. 39: 2300-2305
    
    31 Pattery, T., Hernalsteens, J. P. and De Greve, H. 1999. Identification and molecular characterization of a novel Salmonella enteritidis pathogenicity islet encoding an ABC transporter. Mol Microbiol. 33: 791-805
    
    32 Badger, J. L., Stins, M. F. and Kim, K. S. 1999. Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect Immun. 67:4208-4215
    
    33 Hess, P., Daryab, N., Michaelis, K., et al. 2000. Type 1 pili of Citrobacter freundii mediate invasion into host cells. Adv Exp Med Biol. 485: 225-235
    
    34 Hess, P., Altenhofer, A., Khan, A. S., et al. 2004. A Salmonella fim homologue in Citrobacter freundii mediates invasion in vitro and crossing of the blood-brain barrier in the rat pup model. Infect Immun. 72: 5298-5307
    
    35 Bowe, F., Lipps, C. J., Tsolis, R. M., et al. 1998. At least four percent of the Salmonella typhimurium genome is required for fatal infection of mice. Infect Immun. 66: 3372-3377
    
    36 Heilpern, A. J. and Waldor, M. K. 2000. CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol. 182: 1739-1747
    
    37 Dubuisson, J. E, Vianney, A., Hugouvieux-Cotte-Pattat, N., et al. 2005.Tol-Pal proteins are critical cell envelope components of Erwinia chrysanthemi affecting cell morphology and virulence. Microbiology. 151: 3337-3347
    
    38 Barnhart, M. M. and Chapman, M. R. 2006. Curli biogenesis and function. Annu Rev Microbiol. 60: 131-147
    
    39 Rochon, M. and Romling, U. 2006. Flagellin in combination with curli fimbriae elicits an immune response in the gastrointestinal epithelial cell line HT-29. Microbes Infect. 8: 2027-2033
    
    40 Tukel, C, Raffatellu, M., Humphries, A. D., et al. 2005. CsgA is a pathogen-associated molecular pattern of Salmonella enterica serotype Typhimurium that is recognized by Toll-like receptor 2. Mol Microbiol. 58:289-304
    
    41 Bettelheim, K. A., Evangelidis, H., Pearce, J. L., et al. 1993. Isolation of a Citrobacter freundii strain which carries the Escherichia coli 0157 antigen. J Clin Microbiol. 31: 760-761
    
    42 Chart, H., Willshaw, G A., Cheasty, T., et al. 1993. Structure and antigenic properties of Citrobacter freundii lipopolysaccharides. J Appl Bacteriol. 74:583-587
    
    43 Nishiuchi, Y., Doe, M., Hotta, H., et al. 2000. Structure and serologic properties of O-specific polysaccharide from Citrobacter freundii possessing cross-reactivity with Escherichia coli O157:H7. FEMS Immunol Med Microbiol. 28: 163-171
    
    44 Samuel, G, Hogbin, J. P., Wang, L., et al. 2004. Relationships of the Escherichia coli 0157, O111, and 055 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. J Bacteriol. 186: 6536-6543
    
    45 Vinogradov, E., Conlan, J. W. and Perry, M. B. 2000. Serological cross-reaction between the lipopolysaccharide O-polysaccharaide antigens of Escherichia coli O157:H7 and strains of Citrobcter freundii and Citrobacter sedlakii. FEMS Microbiol Lett. 190: 157-161
    
    46 Saint-Martin, M. 1948. Use of Mueller's potassium tellurite medium in the detection of Corynebacterium diphtheriae. Can J Public Health. 39: 148-155
    
    47 Erickson, H. P., Taylor, D. W., Taylor, K. A., et al. 1996. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings,structural homologs of tubulin polymers. Proc Natl Acad Sci U S A. 93:519-523
    
    48 Tarr, P. I., Bilge, S. S., Vary, J. C., Jr., et al. 2000. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun. 68: 1400-1407
    
    49 Chasteen, T. G., Fuentes, D. E., Tantalean, J. C., et al. 2009. Tellurite:history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev. 33: 820-832
    
    50 Ferrandez, A., Minambres, B., Garcia, B., et al. 1998. Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem. 273: 25974-25986
    
    51 Heinzinger, N. K., Fujimoto, S. Y., Clark, M. A., et al. 1995. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol. 177:2813-2820
    
    52 Rabin, R. S. and Stewart, V. 1992. Either of two functionally redundant sensor proteins, NarX and NarQ, is sufficient for nitrate regulation in Escherichia coli K-12. Proc Natl Acad Sci U S A. 89: 8419-8423
    
    53 Habrych, M., Rodriguez, S. and Stewart, J. D. 2002. Purification and identification of an Escherichia coli beta-keto ester reductase as 2,5-diketo-D-gluconate reductase YqhE. Biotechnol Prog. 18: 257-261
    
    54 Kasahara, Y., Nakai, S., Ogasawara, N., et al. 1997. Sequence analysis of the groESL-cotA region of the Bacillus subtilis genome, containing the restriction/modification system genes. DNA Res. 4: 335-339
    
    55 Arifuzzaman, M., Maeda, M., Itoh, A., et al. 2006. Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16: 686-691
    
    56 Wang, B. and Kuramitsu, H. K. 2003. Control of enzyme Uscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon. J Bacteriol. 185: 5791-5799
    
    57 Staudenmaier, H., Van Hove, B., Yaraghi, Z., et al. 1989. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J Bacteriol. 171: 2626-2633
    
    58 Lazzaroni, J. C., Germon, P., Ray, M. C., et al. 1999. The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett. 177: 191-197
    
    59 Fernandez-Mora, M., Oropeza, R., Puente, J. L., et al. 1995. Isolation and characterization of ompS1, a novel Salmonella typhi outer membrane protein-encoding gene. Gene. 158: 67-72
    
    60 Flores-Valdez, M. A., Puente, J. L. and Calva, E. 2003. Negative osmoregulation of the Salmonella ompSl porin gene independently of OmpR in an hns background. J Bacteriol. 185: 6497-6506
    
    61 Divakaruni, A. V., Baida, C., White, C. L., et al. 2007. The cell shape proteins MreB and MreC control cell morphogenesis by positioning cell wall synthetic complexes. Mol Microbiol. 66: 174-188
    
    62 Hill, C. W., Sandt, C. H. and Vlazny, D. A. 1994. Rhs elements of Escherichia coli: a family of genetic composites each encoding a large mosaic protein. Mol Microbiol. 12: 865-871
    
    63 Mittl, P. R. and Schneider-Brachert, W. 2007. Sell-like repeat proteins in signal transduction. Cell Signal. 19: 20-31
    
    64 Foley, S. L., Simjee, S., Meng, J., et al. 2004. Evaluation of molecular typing methods for Escherichia coli O157:H7 isolates from cattle, food, and humans. J Food Prot. 67: 651-657
    
    65 Boyd, E. F. and Brussow, H. 2002. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved.Trends Microbiol.10:521-529
    66 Brussow,H.,Canehaya,C.and Hardt,W.D.2004.Phages and the evolution of bacterial pathogens:from genomic rearrangements to lysogenic conversion.Microbiol Mol Biol Rev.68:560-602
    67 Niemann,H.H.,Schubert,W.D.and Heinz,D.W.2004.Adhesins and invasins of pathogenic bacteria:a structural view.Microbes Infect.6:101-112
    68 Taylor,D.E.1999.Bacterial tellurite resistance.Trends Microbiol.7:111-115
    69 Taylor,D.E.,Rooker,M.,Keelan,M.,et al.2002.Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates.J Bacteriol.184:4690-4698
    70 Ram,S.and Shanker,R.2005.Plasmid and drug resistance profile of sorbitol nonfermenting cefixime-tellurite resistant Escherichia coli isolates from the Gomti River.Bull Environ Contam Toxicol.75:623-628
    71 Chasteen,T.G.,Fuentes,D.E.,Tantalean,J.C.,et al.2009.Tellurite:history,oxidative stress,and molecular mechanisms of resistance.FEMS Microbiol Rev.33..820-832
    72 Lee,D.G,,Urbaeh,J.M.,Wu,G,,et al.2006.Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial.Genome Biol.7:R90
    73 李烛,侯天文,李振奇等。2004住院病人感染枸橼酸杆菌临床分布及其耐药性分析。中国微生物学杂志。16:38-39
    74 Epidemiologic Notes and Reports Gastrointestinal Illness Associated withImported Brie Cheese -- District of Columbia》.1983 CDC.
    75 王爱荣,王奇岩。1989。弗劳地氏枸橼酸杆菌性肠炎5例。中原医刊。6:17
    76 刘明娟。1993。枸橼酸杆菌肠炎26例临床分析。中国乡村医学杂志。7:40
    77 纪新梅,赵奋勤,张云梅等。1997。小儿枸橼酸杆菌性肠炎110例临床分析。中华医学感染学杂志。7:95
    78 王丽丽。2006。《我国大肠杆菌O157和猪链球杆菌脉冲场凝胶电泳分析》。硕士研究生论文。中国疾病预防控制中心传染病预防控制所。
    79 张集。2005。《细菌16SrRNA基因共有序列数据库的构建》。硕士研究生论文。中国疾病预防控制中心传染病预防控制所。
    80 庞慧。2007。《大肠杆菌O157:H7菌株EDL933的UTA岛在弗氏枸橼酸杆菌中的分析》。硕士研究生论文。大连医科大学。
    1 Chen, H. D. and Frankel, G. 2005. Enteropathogenic Escherichia coli:unravelling pathogenesis. FEMS Microbiol Rev. 29: 83-98
    
    2 Donnenberg, M. S. and Kaper, J. B. 1992. Enteropathogenic Escherichia coli.Infect Immun. 60: 3953-3961
    
    3 Trabulsi, L. R., Keller, R. and Tardelli Gomes, T. A. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis. 8: 508-513
    
    4 Donnenberg, M. S. and Whittam, T. S. 2001. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest.107: 539-548
    
    5 Whale, A. D., Hernandes, R. T., Ooka, T., et al. 2007. TccP2-mediated subversion of actin dynamics by EPEC 2 - a distinct evolutionary lineage of enteropathogenic Escherichia coli. Microbiology. 153: 1743-1755
    
    6 Nataro, J. P. and Kaper, J. B. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 11: 142-201
    
    7 Moon, H. W., Whipp, S. C., Argenzio, R. A., et al. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun. 41: 1340-1351
    
    8 Knutton, S., Lloyd, D. R. and McNeish, A. S. 1987. Adhesion of enteropathogenic Escherichia coli to human intestinal enterocytes and cultured human intestinal mucosa. Infect Immun. 55: 69-77
    
    9 Jarvis, K. G, Giron, J. A., Jerse, A. E., et al. 1995. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacing lesion formation. Proc Natl Acad Sci U S A. 92: 7996-8000
    
    10 McDaniel, T. K., Jarvis, K. G, Donnenberg, M. S., et al. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc Natl Acad Sci U S A. 92: 1664-1668
    
    11 Jerse, A. E., Yu, J., Tall, B. D., et al. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc Natl Acad Sci U S A. 87: 7839-7843
    
    12 Kenny, B., DeVinney, R., Stein, M., et al. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell. 91:511-520
    
    13 Hartland, E. L., Batchelor, M., Delahay, R. M., et al. 1999. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells. Mol Microbiol. 32:151-158
    
    14 DeVinney, R., Stein, M., Reinscheid, D., et al. 1999. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun. 67: 2389-2398
    
    15 Campellone, K. G, Giese, A., Tipper, D. J., et al. 2002. A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nck localization to actin pedestals. Mol Microbiol. 43: 1227-1241
    
    16 Gruenheid, S., DeVinney, R., Bladt, F., et al. 2001. Enteropathogenic E. coli Tir binds Nek to initiate actin pedestal formation in host cells. Nat Cell Biol. 3:856-859
    
    17 Kenny, B. 1999. Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol. 31:1229-1241
    
    18 Campellone, K. G, Rankin, S., Pawson, T., et al. 2004. Clustering of Nck by a 12-residue Tir phosphopeptide is sufficient to trigger localized actin assembly. J Cell Biol. 164:407-416
    
    19 Caron, E., Crepin, V. F., Simpson, N., et al. 2006. Subversion of actin dynamics by EPEC and EHEC. Curr Opin Microbiol. 9: 40-45
    
    20 Campellone, K. G, Brady, M. J., Alamares, J. G, et al. 2006.Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol. 8: 1488-1503
    
    21 Allen-Vercoe, E., Waddell, B., Toh, M. C, et al. 2006. Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation. Infect Immun. 74: 6196-6205
    
    22 Garmendia, J., Phillips, A. D., Carlier, M. R, et al. 2004. TccP is an enterohaemorrhagic Escherichia coli O157:H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol. 6: 1167-1183
    
    23 Campellone, K. G, Robbins, D. and Leong, J. M. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev Cell. 7: 217-228
    
    24 Brady, M. J., Campellone, K. G, Ghildiyal, M., et al. 2007.Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol. 9: 2242-2253
    
    25 Schuller, S., Chong, Y., Lewin, J., et al. 2007. Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models. Cell Microbiol. 9: 1352-1364
    
    26 Kenny, B. 2001. The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell Microbiol. 3: 499-510
    
    27 Datsenko, K. A. and Wanner, B. L. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 97:6640-6645
    
    28 Schlosser-Silverman, E., Elgrably-Weiss, M., Rosenshine, I., et al. 2000.Characterization of Escherichia coli DNA lesions generated within J774 macrophages. J Bacteriol. 182: 5225-5230
    
    29 Kumar, S., Tamura, K. and Nei, M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5: 150-163
    
    30 Hicks, S., Frankel, G, Kaper, J. B., et al. 1998. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect Immun. 66: 1570-1578
    31 Campellone, K. G and Leong, J. M. 2005. Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir. Mol Microbiol. 56: 416-432
    
    32 Ogura, Y., Ooka, T., Whale, A., et al. 2007. TccP2 of O157:H7 and non-0157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun. 75: 604-612
    
    33 Ooka, T., Vieira, M. A., Ogura, Y., et al. 2007. Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 271: 126-135
    
    34 Deng, W., Vallance, B. A., Li, Y., et al. 2003. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation,intestinal colonization and colonic hyperplasia in mice. Mol Microbiol. 48: 95-115
    
    35 Shaw, R. K., Smollett, K., Cleary, J., et al. 2005. Enteropathogenic Escherichia coli type III effectors EspG and EspG2 disrupt the microtubule network of intestinal epithelial cells. Infect Immun. 73: 4385-4390
    
    36 Knutton, S., Baldwin, T., Williams, P. H., et al. 1989. Actin accumulation at sites of bacterial adhesion to tissue culture cells: basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli. Infect Immun. 57:1290-1298
    
    37 Knutton, S., Shaw, R., Phillips, A. D., et al. 2001. Phenotypic and genetic analysis of diarrhea-associated Escherichia coli isolated from children in the United Kingdom. J Pediatr Gastroenterol Nutr. 33: 32-40
    1 Staley,T.E.,Jones,E.W.and Corley,L.D.(1969) Attachment and penetration of Escherichia coli into intestinal epithelium of the ileum in newborn pigs.Am J Pathol.56,371-392
    2 Moon,H.W.,Whipp,S.C.,Argenzio,R.A.,et al.(1983) Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines.Infect Immun.41,1340-1351
    3 Frankel,G.,Phillips,A.D.,Rosenshine,I.,et al.(1998) Enteropathogenic and enterohaemorrhagic Escherichia coli:more subversive elements.Mol Microbiol.30,911-921
    4 Knutton,S.,Baldwin,T.,Williams,P.H.,et al.(1989) Actin accumulation at sites of bacterial adhesion to tissue culture cells:basis of a new diagnostic test for enteropathogenic and enterohemorrhagic Escherichia coli.Infect Immun.57,1290-1298
    5 Caron,E.,Crepin,V.F.,Simpson,N.,et al.(2006) Subversion of actin dynamics by EPEC and EHEC.Curr Opin Microbiol.9,40-45
    6 Campellone,K.G.and Leong,J.M.(2003) Tails of two Tirs:actin pedestal formation by enteropathogenic E.coli and enterohemorrhagic E.coli O157:H7.Curr Opin Microbiol.6,82-90
    7 Gruenheid,S.,DeVinney,R.,Bladt,F.,et al.(2001) Enteropathogenic E.coli Tir binds Nck to initiate actin pedestal formation in host cells.Nat Cell Biol.3,856-859
    8 Elliott,S.J.,Yu,J.and Kaper,J.B.(1999) The cloned locus of enterocyte effacement from enterohemorrhagic Escherichia coli O157:H7 is unable to confer the attaching and effacing phenotype upon E.coli K-12.Infect Immun.67,4260-4263
    9 Garmendia,J.,Phillips,A.D.,Carlier,M.F.,et al.(2004) TccP is an enterohaemorrhagic Escherichia coli O157:H7 type Ⅲ effector protein that couples Tir to the actin-cytoskeleton.Cell Microbiol.6,1167-1183
    10 Campellone,K.G,,Robbins,D.and Leong,J.M.(2004) EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly.Dev Cell.7,217-228
    11 Garmendia,J.,Ren,Z.,Tennant,S.,et al.(2005) Distribution of tccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates.J Clin Microbiol.43,5715-5720
    12 Viswanathan,V.K.,Koutsouris,A.,Lukic,S.,et al.(2004) Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function,Infect Immun.72,3218-3227
    13 Ogura,Y.,Ooka,T.,Whale,A.,et al.(2007) TccP2 of O157:H7 and non-O157enterohemorrhagic Escherichia coli(EHEC):challenging the dogma of EHEC-induced actin polymerization,Infect Immun.75,604-612
    14 Ooka, T., Vieira, M. A., Ogura, Y., et al. (2007) Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 271, 126-135
    
    15 Cantarelli, V. V., Kodama, T., Nijstad, N., et al. (2007) Tyrosine phosphorylation controls cortactin binding to two enterohaemorrhagic Escherichia coli effectors: Tir and EspFu/TccP. Cell Microbiol. 9,1782-1795
    
    16 Mousnier, A., Whale, A. D., Schuller, S., et al. (2008) Cortactin recruitment by enterohemorrhagic Escherichia coli O157:H7 during infection in vitro and ex vivo. Infect Immun.76,4669-76
    
    17 DeVinney, R., Puente, J. L., Gauthier, A., et al. (2001) Enterohaemorrhagic and enteropathogenic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol Microbiol. 41,1445-1458
    
    18 Lommel, S., Benesch, S., Rohde, M., et al. (2004) Enterohaemorrhagic and enteropathogenic Escherichia coli use different mechanisms for actin pedestal formation that converge on N-WASP. Cell Microbiol. 6, 243-254
    
    19 Campellone, K. G, Giese, A., Tipper, D. J., et al. (2002) A tyrosine-phosphorylated 12-amino-acid sequence of enteropathogenic Escherichia coli Tir binds the host adaptor protein Nck and is required for Nek localization to actin pedestals. Mol Microbiol. 43,1227-1241
    
    20 Campellone, K. G, Brady, M. J., Alamares, J. G, et al. (2006) Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspF-mediated actin assembly and harbours N-terminal sequences that influence pedestal length. Cell Microbiol. 8,1488-1503
    
    21 Allen-Vercoe, E., Waddell, B., Toh, M. C, et al. (2006) Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation,alpha-actinin recruitment, and Nck-independent pedestal formation. Infect Immun. 74,6196-6205
    
    22 Garmendia, J., Carlier, M. E, Egile, C, et al. (2006) Characterization of TccP-mediated N-WASP activation during enterohaemorrhagic Escherichia coli infection.Cell Microbiol. 8, 1444-1455
    
    23 Whale, A. D., Garmendia, J., Gomes, T. A., et al. (2006) A novel category of enteropathogenic Escherichia coli simultaneously utilizes the Nck and TccP pathways to induce actin remodelling. Cell Microbiol. 8, 999-1008
    
    24 Hayward, R. D., Leong, J. M., Koronakis, V., et al. (2006) Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol. 4,358-370
    
    25 Campellone, K. G and Leong, J. M. (2005) Nck-independent actin assembly is mediated by two phosphorylated tyrosines within enteropathogenic Escherichia coli Tir.Mol Microbiol. 56, 416-432
    
    26 Bai, L., Schuller, S., Whale, A., et al. (2008) Enteropathogenic Escherichia coli O125:H6 triggers attaching and effacing lesions on human intestinal biopsy specimens independently of Nck and TccP/TccP2. Infect Immun. 76, 361-368
    
    27 Brady, M. J., Campellone, K. G, Ghildiyal, M., et al. (2007) Enterohaemorrhagic and enteropathogenic Escherichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol. 9, 2242-2253
    
    28 Schuller, S., Chong, Y., Lewin, J., et al. (2007) Tir phosphorylation and Nck/N-WASP recruitment by enteropathogenic and enterohaemorrhagic Escherichia coli during ex vivo colonization of human intestinal mucosa is different to cell culture models.Cell Microbiol. 9, 1352-1364

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700