利用含有anti-waxy基因表达载体改良两系不育系水稻261S食味品质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,世界各地在转基因作物研究和推广种植方面都取得了飞速发展,越来越多的转基因作物走向商业化种植,不仅给全球农业带来了勃勃生机,也为推广和应用转基因作物的种植者带来了良好的经济效益,尤其对帮助发展中国家农民摆脱贫穷具有重要的发展前景。但同时,转基因作物中常用标记基因的存在也引起越来越多人的关注和担忧,如何获得不含标记基因的转基因作物显得日益重要。本文首先对近年来在世界各地转基因作物研究和推广种植方面以及安全性转基因技术研究进行了综述。
     杂交水稻食味品质改良研究是目前杂交水稻育种研究领域中的重要内容之一。据文献报道,稻米直链淀粉含量是决定水稻食味品质最主要指标。杂交水稻在产量等性状所体现的优势与父本和母本遗传组成配合力相关。尽管目前利用常规育种技术也能够实现降低稻米直链淀粉含量,但改良后的水稻其他遗传组成也会随之发生变化。而利用转基因技术将能够降低稻米直链淀粉含量的反义蜡质基因(anti-waxy)导入杂交水稻亲本,即可实现在有效降低稻米直链淀粉含量的同时,最大程度地保持其与另一亲本杂交组合优势的原有遗传组成。
     本研究采用可获得无选择标记基因的安全性转基因策略,利用根癌农杆菌介导的共转化法,首先将含有抗性标记基因hpt和报告基因gus的pCAMBIA1301表达载体与含有单份拷贝anti-waxy基因片断的p13AWY-1表达载体以1:9的比例共同导入“闵优香粳”杂交稻两系不育系水稻品种261S,经过PCR检测筛选出共转化植株,通过对共转化植株的Southern blot分析证明anti-waxy基因已以不同拷贝数整合入水稻基因组中,通过对T1代种子的GUS检测已达到将含抗性标记基因的转基因后代去除的目的,从而为继续筛选出只含anti-waxy基因的安全性转基因后代奠定了基础。此外,还对目前已收获的部分T1代种子进行糙米直链淀粉含量检测,发现共转化后代的直链淀粉含量(AC)已有不同程度的降低,说明该转化试验是成功有效的。
     同时为了探索稻米直链淀粉含量降低程度与转入anti-waxy基因拷贝数之间的关系,本研究又对实验室早期获得转入单拷贝anti-waxy基因水稻进行杂交获得外源基因呈双拷贝的转基因后代,通过对其稻米直链淀粉含量分析证明,含有双份拷贝anti-waxy基因可以更大程度地降低稻米直链淀粉含量,并且可以获得与我国云南特种软米水稻品种直链淀粉含量(小于10%)范围相同的转基因软米新种质资源。
     基于前期两部分试验研究的结果,为了更便利地在一次转化中实现anti-waxy基因在水稻基因组中呈双拷贝整合,达到更进一步改良261S水稻食味品质的目的和培育无抗性选择标记基因的转基因软米,本研究又将在p13AWY-1表达载体基础上重新构建的含有双份拷贝串联重复anti-waxy基因的p13AWY-2表达载体转入261S水稻,目前也已成功获得了共转化植株。通过该研究不仅可为进一步改良由261S为母本配组而成的优质杂交稻“闵优香粳”的食味品质奠定基础,而且也可为研究水稻基因组中整合入不同拷贝数anti-waxy基因后的目的基因表达情况提供参考。
     通过文献查阅,尽管在国内外采用转基因技术将anti-waxy基因导入水稻改良稻米直链淀粉含量已有较多报道,但是在相关的报道中使用的载体大多都是将目的基因和抗性标记基因构建在一个T-DNA上,有个别报道将目的基因和抗性标记基因分别构建在不同载体上,但是在含有目的基因的T-DNA上依然存在来自于花椰菜花叶病毒的35S启动子。因此,从载体的安全性角度分析,本研究获得的转基因水稻后代将是最有可能通过我国农业部的安全性评价,在今后水稻的生产中被应用。
In recent years, with large amount of transgenic plants being commercialized, people feel uneasy about the potential risks of transgenic plants. Marker-free and acceptor promoter may raise food and environment biosafety of Genetically Modified Crops,so it becomes more and more important to abtain safety transgenic plants.
     In the first part of the study,the two kinds of Agrobactium tumefaciens, which respectively carried the vector pCAMBIA1301 (contains hygromycin gene and gus gene) and vector p13AWY-1, which carried aim gene (anti-waxy gene) only but without resistance marker gene (hygromycin) and 35S promoter,were mixed at the density ratio of 1:9. The T-DNAs of the two vectors pCAMBIA1301 and p13AWY-1 were introduced into 261S by the co-transformation method of which is safety transgenic technique. Using PCR analysis showed that 6 lines among 46 transgenic lines were co-transformation plants, The vector p13AWY-1 T-DNA in the rice genome was confirmed through Southern blot analysis. Then using gus gene to wash out T1 seeds that have the report gene and the marker gene. It can lay the groundwork for filtrating rice materials which containing target gene, without the marker gene and report gene.The amylase analysis shows that the amylose content of some of the transgenic rice have been lower than the wild tipe.
     In the second part of the study,we contrast the amylose content of four lines of trandgenic rice,of which contain one copy or two copies of anti-waxy gene. It shows that amylose content is reduced obviously in the two lines of transgenic rice.,which carried two copies of anti-waxy gene by crossing the transgenic species which were introduced one copy of anti-waxy gene.It also showed that the average amylose contents of the two hybrid rice of F1 were 8.96% and 8.23%, and they all within reach of the extension of amylose contents of soft rice ,it meaned we could cultivate new kinds of soft rice by introducing anti-waxy gene into some rice species ,and the results also told us we could obtain the highly expressed transgenic plants by crossing the transgenic species which obtained through the same transformation.
     In the third part of the study,the plasmid p13AWY-2 which carried two copies of aim gene(anti-waxy) was introduced into 261S by the co-transformation method too,and we have got co- transformed plants now.It will lay the foundation for rice eating quality improvement by transgenic technology. Moreover, it can make the genetically modified plants safer for consumers and the environment.
     In this first and third parts of the study,we used not only the safety methord but also the marker free vectors for transforming the anti-waxy gene into the male sterile line to improve the tasting quality of rice, so the transgenic rice with aim gene only will be safety and we can hope that the transgenic products will be more easily and early planted for use.
引文
Bertolla F,Kay E,Simonet P.Potential dissemination of antibiotic restistance genes from transgenic plants to microorganisms[J].Infect Control Hosp Epidemi ol 2000,June,21(6):390-393
    Breitler J C,Meynard D,van Boxtel J,et al. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Research,2004,13(3):271-287
    Craig N L,Nash H A.The mechanism of phage lambda site-specific recombination:site-specific breakage of DNA by Inttopoisomerase[J].Cell,1984,39:707-716
    Cregg J M,Madden K R.Use of site-specific recombination to regenerate selectable markers. Mol Gen Genet ,1989,219:320-323
     Clare JJ,Michael A,et al.Production of mouse epidermal growth factor in yeast: high—level secretion using Pichia pastoris strains containing multiple gene copies「J」.Gene,1991,105 Cotsaftis O,Sallaud C,Breitler J C,et al. Transposon-mediated generation of T-DNA and marker-free rice plants expressing a Bt endotoxin gene. Molecular Breeding,2002,10:165-180
    Depicker A,Herman L,Matsunaga E,et al. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet,1985,201(3):477-484
    De Framond A J,Back E W,Chilton W S,et al. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet,1986,202(1):125-131(1986)
    De Block M,Debrouwer D. Two T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet,1991,82:257-263
    De Neve M,De Buck S,Jacobs A,et al. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs,The Plant Journal,1997,11(1):15-29
    Daley M,Knauf V C,Summerfelt K R,et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports,1998,17:489-496
    De Vetten N,Wolters A M,Raemakers K,et al. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol,2003,21:439-442
    Ebinuma H,Sugita K,Matsunaga E,et al. Selection of marker-free transgenic plants using the isopentenyl transferase gene,Proc Natl Acad Sci USA,1997,94(6):2117-2121
    Fuchs R L,Ream J E,Hammond B J,Naylor M W.Safty assessment of the neomycin phosphotransferase Ⅱ (npt II) protein[J].Bio/Technology 1993,11:1543-1547
    Goldsbrough A P,Lastrella C N,Yoder J I. Transposition mediated re-positioning and subsequedt elimination of marker genes from transgenic tomato. Biotechnology,1993,11:1286-1292
    Guo F,Deshmukh N,Gopaul,et al. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature,1997,389(9):40-46
    Hohn B,Le vy A,Puchta H .Elimination of selection makers from transgenic plants。Current Opinion in Biotechnology ,2001,12(2):139-143
    H Daniell.Marker free transgenie plants: engineering the chloroplast genome without the use of antibiotic selection.CurtGenet,2001,39:109-116
    Hoa T T,Bong B B,Hug E,et al. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome. Theor Appl Genet,2002,104:518-525
    Iamtham S,Day A.Removal Of antibiotic resistance genes from transgenic tobacco plasmids.Nature Biotechnology,2000,18:1172-1176
    Juliano BO. A simplified assay for milled rice amylose. Cereal Sci Today , 1971 ,16 (10) :334~336
    Juliano BO , Perez CM , Laignelet B et al . International cooperative testing on amylose content of milled rice. Starch , 1981 ,33 :157~162
    James , Clive. Global review of Commercialized transgenic Crops: 1998.ISAAA Briefs No.8-1998,ISAAA:Ithaca,NY.USA,1998
    James , Clive. Global review of Commercialized transgenic Crops:2000.ISAAA Briefs No.21-2000,ISAAA:Ithaca,NY.USA,2000
    James , Clive. Global review of Commercialized transgenic Crops:2001.ISAAA Briefs No.24-2001,ISAAA:Ithaca,NY.USA,2001
    James Clive. Global status of commercialized transgenic crops. 2002. ISAAA Briefs No. 27: Preview. The International Service for the Acquisition of Agri-biotech Applications, c/o IRRI, DAPO Box 7777, Metro Manila, Philippines. 2002
    James,Clive. Global Status of Commercialized Biotech/GM Crops: 2005.ISAAA Briefs No. 2005,ISAAA:Ithaca,NY.USA,2005
    James , Clive. Global Status of Commercialized Biotech/GM Crops: 2006.ISAAA Briefs No.35-2006,ISAAA:Ithaca,NY.USA,2006
    Kilby N J,Davies G J,Hodges T K.FLP recombinase in transgenic plants:constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis[J].Plant J,1995,8:637~652
    Komari T,Hiei Y,Saito Y. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. The Plant Journal,1996,10(1):165-174
    Lyznik L,Rao K V,Hodges T K.FLP-mediated recombination of FRT sites in the maize genome[J].Nucleic Acids Res, 1996,24:3784~3789
    Lu Hui-Juan,Zhou Xue-Rong,Gong Zhu-Xun,et al. Generation of selectable marker-free transgenic rice using double right-border (DRB) binary vectors. Aust J Plant Physiol,2001,28(3):241-248
    Liu Q,Wang Z,Cheng X,at al.Stable Inherence of the Antisense Waxy Gene in Transgenic Rice with Reduced A mylose Level and Improved Quality[J].Transgenic Res,2003,12(1):71-82
    McKnight T D,Lillis M T,Simpson R B. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol,1987,8(6):439-445
    Matzke and Matzkez(eds).Special issue on plant gene silencing[J].Plant Mol Biol,2000,43:121~148
    Matthews P R,Wang M B,Waterhouse P M,et al. Marker gene elimination from transgenic barley,using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Molecular Breeding,2001,7(3):195-202(2001)
    Michael Miller,Laura Tagliani,Ning Wang,et al. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Research,2002,11:381-396
    Maliga P. Engineering the plastid genome of higher plants. Curr Opin Biotechnol,2002,5:164-172
     Miki B,McHugh S. Selectable marker genes in transgenic plnats: applications, alternatives and biosafety. Journal of Biotechnology,2004,107(3):193-232
    Napoli C, Lemirux C,Jorgensen R. Introduction of a chimeric chalacome synthase gene into Petunia results in reversible co-suppression of homologous genes intrans[J]. Plant Cell,1990,2:279-289
    Onouchi H,Nishihama R,Kudo M,et al. Visualization of site-specific recombination catalized by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet,1995,247:653-660
    Okagaki R J,Wessler S R.Comparison of non-mutant and mutant waxy genes in rice and maize「J」.Genetics,1988,120:1137-1143
    Puchta H,Swoboda P,Gal S,et al.Somatic intrachromosomal homologous recombination events in population of plant siblings「J」.Plant Mole Biol,1995,28:281-292
    Qian Y.Analysis of advantages and disadvantages on transgenic crops[J].Biotechnology Information,1999,5:7-11
    Shimada N,Toyoda—Yamamoto A ,Nagamine J,et a1.Control of expression of Agrobacerium vir genes by synergistic actions of expression of phenolic singal molecules and m onsaccharides、Proc Natl Acad Sci USA ,1990,87:6684- 6688
    Shimada H,Tada Y, Kawasaki T,et al.Antisense Regulation of the Rice Waxy Gene Expression Using a PCR-amplified Fragment of the Rice Genome Reduce the Amylose Content in Grain Starch[J].Theor Appl Genet,1993,86(6):665-672
    Srivastava V,Anderson O D,Ow D W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA,1999,9(96):11117-11121
    Sugita K,Matsunaga E,Ebinuma H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Report,1999,18(11):941-947
     Stewart C N Jr,Richards H A 4th,Halfhill M D.Transgenic plants and biosafety:science misconceptions and public perceptions [J] .Biotechniques 2000 Oct;29(4):832-836,838-843.
    Sugita K,Kasahara T,Matsunaga E,et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant Journal,2000,22(5):461-469
    Terada R,Nakajima M,Isshiki M,et al.Antisense Waxy Gene with Highly Active Promoters Effectively Suppress Waxy Gene Expression in Transgenic Rice[J].Plant Cell Physiol,2000,41(7):881-888
    Wang Z Y,Wu Z L,Xing Y Y,et a1.Nucleotide sequence of rice waxy gene 「J」.Nucleic Acids Research,1990,18(19):58-98.
    Xing A,Zhang Z,Sato A,et a1.The Use of the two T-DNA binary system to derive marker-free transgenic soybeans.In Vitro Cell Dev Biol-Plant,2000,36:456-463
    Xue G P,Patel M,Johnson J S,et a1.Selectable marker-free transgenic barley producing a high level of cellulase (1,4-β-glueanase)in developing grains.Plant Cell Rep,2003,21:1088-l094
    Yoder J I,Goldsbrough A P.Transformation system for generating marker-free transgenic plants.Biotechnology(NY),1994,12:263-267
    Zubko E,Scutt C,Meyer P.1ntrachromosomal recombination between attp regions as a tool to remove selectable marker genes from tobacco transgenes「J」.Nat Biotechnology.2000.18:442-445
    Zuo JR,Nui Qw,GeirM S,et Al.Chemical regulated,site-specific DNA excision in transgenic plan ts.Nat Biotechnol,2001,19:157-161
    柏亚罗.2005 年全球转基因作物面积增长 11%「J」.农药科学与管理,2006,25(8)52-53
    陈能,罗玉坤,朱智伟,等. 优质食用稻米品质的理化指标与食味的相关性研究「J」. 中国水稻科学,1997,11(2):70-76
    陈能,罗玉坤,朱智伟,等. 食用稻米米饭质地及适口性的研究「J」.中国水稻科学,1999,13(3):152-156
    常汝镇等.转基因作物的进展及其安全性「J」中国食物与营养,2000,(4):11-14
    陈秀花,刘巧泉,王兴稳,等.反义 Wx 基因导入我国籼型杂交稻重点亲本[J].科学通报,2002,47(9):684-688
    陈松彪,李旭刚,王锋等.无选择标记转基因植物的培育「J」.生物工程杂志,2005,25(2):1-7
    董志峰,马荣才,彭于发等. 转基因植物中外源非目的基因片段的生物安全研究进展. 植物学报,2001,43(7):661-672)
    邓其明、张红宇、李平.植物无选择标记转基因技术的研究进展「J」. 中国生物工程杂志,,2005:71-7
    冯坚.转基因耐除草剂作物的历史、现状及展望「J」.杂草科学,2006, 02:1-6
    洪梅,陈伟京,李丹等.操纵子重复克隆以提高外源基因的表达水平及同一大肠杆菌细胞内质粒 DNA 总量为一常数的新概念「J」.中华医学科学院学报,2000,22(1):30-35
    黄爱龙 ,单幼兰 ,Allison Jilbert 等. 顺式串联双拷贝 DuIFN 一 γ 基因的真核表达「J」.重庆医科大学学报,2001,26(4):368-371
    黄世君,周勇,李乾安,等. 优质软米不育系乐软 101A 的选育「J」. 杂交水稻,2002,17(3):7-9
    贾士荣. 转基因食品中标记基因的安全性评价. 中国农业科学,1997 ,30 (2) :1-15
    江良荣,李义珍,王候聪,等. 稻米外观品质的研究进展与分子改良策略. 分子植物育种,2003,1(2):243-255
    金维正,段瑞君,张帆,等. 利用 Ac/Ds 转座子系统在水稻中获得无选择标记转基因植株的方法. 生物工程学报,2003,19(6):668-673
    刘宜柏,黄英金. 稻米食味品质的相关性研究. 江西农业大学学报,1989,11(4):1-5
    刘巧泉,等.反义 waxy 基因导入水稻降低胚乳直链淀粉含量的研究.中国农学会.21 世纪水稻遗传育种展望「J」.中国农业科技出版社,1999:206-213
    李诤友,滇型软米杂交籼稻的选育进展,Hybrid Rice,2001,16(5):16
    李宏伟.美国转基因作物品种及其商业化应用「J」.全球科际经济瞭望,2003,6
    李建粤,毛万霞,杨丽君等.利用安全性转基因技术导入反义蜡质基因降低稻米直链淀粉含量「J」.科学通报,2004,49(24):2557-2561
    刘峰, 赵伊英,苏永昌等. 双农杆菌共转化获得无标记转 pepc 基因的水稻植株「J」. 应用与环境生物学报 2005,11 (4):393-39
    刘治兰.21 世纪新的经济增长点-全球转基因作物产业迅猛发展「J」.全球科技经济瞭望,2006 年,7:44-46
    罗会颖, 黄火清, 柏映国等. 增加植酸酶基因 appA-m 的拷贝提高其在巴斯德毕赤酵母的表达量「J」.生物工程学报,2006,22(4):528-533
    李建粤,尹中明,吕英海,等. 导入反义蜡质基因降低两系不育系稻米直链淀粉含量.上海师范大学学报,2006,(3):82-86
    李建粤,毛万霞,范士靖等.导入反义蜡质基因改良稻米食味品质和营养品质的研究「J」.植物研究,2007,27(1):94-98
    潘辉,高向东,王飞等. 基因拷贝数与染色体位置对酵母表达乙肝病毒融合表面抗原 S A-28
    基因的影响「J」,生物工程学报,2000,16(2):124-128
    宋文昌,特种稻栽培与利用「M」.科学出版社,1997;11-12
    沈革志等.通过根癌农杆菌介导的共转化法获得具有蜡质基因反义片断的转基因水稻,植物生理与分子生物学学报,,2003,29(6):569-575
    沈革志,王新其,殷丽青等.通过共转化和花药培养快速获得直链淀粉含量降低且无抗性标记的转基因水稻「J」. 植物生理与分子生物学学报,2004,30(6):637-643
    单晓昳,李 蓓,张举仁. 利用 FLP/frt 重组系统产生无选择标记的转基因烟草植株.生物工程学报,2006,22(5):744-750
    唐俐,刘巧泉,邓晓湘等.无选择标记的转高赖氨酸蛋白(LPR)基因籼稻恢复系的获得「J」.作物学报,2006,32(8):1248-1251
    童一中.生物统计法..湖南:湖南科学技术出版社,1986.339-397
    王德平,王丽伟.国内外转基因研发现状与中国发展对策「M」.安徽大学出版社,2006
    夏仲炎. 糯稻品质相关性的初步研究. 种子,1986,(4):35-38
    向远鸿,唐启源,黄燕湘. 稻米品质性状的相关性研究:Ⅰ籼型粘稻食味与其它米质性状的关系. 湖南农业学院学报,1990,16(4):325-330
    宣文敏. 特种稻米育种研究进展「J」. 农业与技术,2002,22(3):67-69,74
    徐绍忠等.云南软米育成品种品质的分析与鉴定,山东农业大学学报(自然科学版),2002,33(3):380-383)
    殷丽青等.根癌农杆菌介导反义蜡质基因的水稻遗传转化,上海交通大学学报,2001,19(4):285-289
    殷丽青,王新其,沈革志. 去除标记基因的水稻转基因研究「J」. 上海农业学报,2004,20(1):33-36
    赵则胜,赖来展,,郑金贵.中国特种稻「M」.上海科学技术出版社,1995:49
    赵国珍,刘吉新,孙有泉,等. 云南粳稻食味品质的综合评价及标准品种的选定. 西南农业学报,1997,10(3):29-34
    曾亚文等.云南稻种资源的蒸煮食味品质研究,西南农业大学学报,2001,23(5):410-413
    曾北危.转基因生物安全「M」.北京:化学工业出版社,2004
    朱行.世界转基因作物发展概述「J」.粮食问题研究,2004,2:55-57
    张晶,周长梅.无选择标记转基因植物研究进展「J」.东北农业大学学报,2004,35(4):496-499
    邹良平,起登凤,李平,等. 利用农杆菌介导法将反义 Wx 基因导入水稻的研究.分子植物育种,2004,2(6):765-770
    张新梅,徐惠君,杜丽璞,等. 共转化法剔除转基因小麦中的 bar 基因,作物学报,2004,30(1):26-30
    朱行.2004 年世界转基因作物迅猛发展「J」.粮食与油脂,2005,12:23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700