植酸酶高效生产菌株74~#的改良
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸酶是一种可以水解植酸的磷酸酶类,能够分解饲料中的植酸为动物可利用的无机磷和肌醇,已经在动物营养,人类营养以及酶法合成低磷酸肌醇方面有了很广的应用范围。但目前,提高植酸酶生产菌株的单位表达量,进一步降低其生产成本仍然是最重要的植酸酶产业目标之一。
     本研究以目前植酸酶表达量最高的实际生产菌株74#为材料,通过共表达二硫键异构酶、透明颤菌血红蛋白,增加基因拷贝数等方法,以期进一步提高其表达量,降低生产成本。本研究也对毕赤酵母表面展示植酸酶进行了尝试。
     根据已发表的毕赤酵母来源二硫键异构酶(PDI)基因序列,克隆获得PDI编码基因,并构建了含有PDI编码基因的毕赤酵母胞内表达载体pPICZA-pdi,以植酸酶生产菌株74#为受体进行了转化。从600个转化子中筛选到3个酶活性更高的重组子,其中酶活性最高的49#菌株其活性是原有菌株74#酶活性的120%,在5L发酵罐中表达活性达到16,582 U/mL。在此基础上,用经密码子优化的大肠杆菌植酸酶基因appA-m,构建了表达载体pPIC9K-appA-m。以共表达PDI蛋白的植酸酶菌株49#为受体,筛选重组子后得到多拷贝的植酸酶菌株79#,酶活性达到17,434 U/mL,与共表达PDI蛋白的49#菌株相比,提高了10%;与生产菌株74#相比,提高了34%。
     根据已发表的树干毕赤酵母基因组序列克隆了低氧启动子PsADH2 promoter序列,并根据已发表的透明颤菌血红蛋白序列,按照毕赤酵母密码子偏爱性对血红蛋白基因进行了密码子改造和合成。构建了表达载体pPIC9K-PsADH2-vgb-m,以植酸酶生产菌株74#为受体进行了转化。对重组子进行筛选得到低氧条件下植酸酶活性最高的转化子15#,利用摇瓶培养,其在低氧条件下的酶活性是74#菌株酶活性的4倍,达到249 U/mL。
     另外,本研究对表面展示植酸酶进行了尝试。通过已发表的啤酒酵母基因组序列克隆了α凝集素蛋白AGα1编码基因,构建了表达载体pPIC9K-appA-m-AGα1,转化毕赤酵母,对重组子进行筛选,得到了在酵母细胞表面有植酸酶活性的菌株。
Phytase (myo-inositol hexakisphosphate phosphohydrolases) can hydrolyze phytate to lower myo- inositol phosphates and inorganic phosphate and has extensive applications in animal nutrition, human nutrition and synthesis of lower inositol phosphates. One of the main objectives of phytase industrial production is to further improve the protein expression level of the phytase production strain and reduce its production costs.
     Using the commercial phytase strain #74 as the host strain, which has the highest expression level at present, through the coexpression of protein disulfide isomerase and Vitreoscilla hemoglobin(VHb), and increasing the appA-m gene copy number, we aimed at further improving the phytase production level and decreasing the costs. Besides, the cell surface display of the phytase on P. pastoris was also tried.
     According to the reported gene sequence (GenBank accession number AJ302014) of disulfide isomerase (PDI) from Pichia pastoris, the PDI encoding gene was cloned and then ligated into the vector pPICZA. Plasmid pPICZA-pdi was then transformed into the competent cell of P. pastoris #74. Among the 600 positive clones, P. pastoris #49 had the highest phytase activity of 16,582 U/mL in a 5 L fermenter, 20% more than that of P. pastoris #74. Western blot result revealed that the PDI was functionally expressed in P. pastoris #49 with the molecular mass of about 65 kD, resulting in the improvement of phytase production. Using the E. coli phytase gene appA-m which has been modified according to the codon bias of P. pastoris, the expression vector pPIC9K-appA-m was constructed and transformed into P. pastoris #49 for multicopy integration. Among the 300 clones, P. pastoris #79 showed the highest phytase activity of 17,434 U/mL, 10% higher than that of P. pastoris #49 and 34% higher than that of P. pastoris #74.
     According to the reported sequence (EMBL accession numbers Y13397 and AF008245), the ADH2 promoter of 600 bp was obtained from Pichia stipitis. Moreover, based on the Vitreoscilla hemoglobin sequence (GenBank accession number M27601), the vgb gene was modified and synthesized according to the codon bias of P. pastoris, without changing the amino acid sequence of VHb. The PsADH2- promoter and the vgb-m gene were fused through overlap PCR. The P. pastoris expression vector pPIC9K-PsADH2-vgb-m was then constructed and transformed into P. pastoris #74. Under oxygen limitation, P. pastoris #15 showed the highest phytase activity of 249 U/mL, three times higher than that of P. pastoris #74.
     Besides, we also tried the cell surface display of E. coli phytase. Based on the published sequence ofα-agglutinin (Genbank accession number X16861) from Saccharomyces cereviase, AGα1 encoding gene was obtained by PCR and expression vector pPIC9K-appA-m-AGα1 was constructed, and then transformed into P. pastoris GS115. Phytase activity was detected on the yeast cell surface.
引文
1. 樊建勇. 毕赤酵母表达系统《.国外医学》预防、诊断、治疗用生物制品分册. 2003,6(25):217-219.
    2. 高剑坤,蔡绍皙,范开,冯强,陈海蓉,张益,胡伟,杨应彬. 含短C肽人胰岛素原类似物DesB~(30)在毕赤酵母中的表达及纯化,生物化学与生物物理进展,2008, 35(1): 63-69.
    3. 李洪钊, 李亮助. 巴斯德毕赤酵母表达优化策略. 微生物学报, 2003, 43 (2) : 288-291.
    4. 李仁宽,赖庆安,陈菁,刘树滔猪胃蛋白酶原A在毕赤酵母中的高效表达及其分离纯化,福州大学学报(自然科学版)2007, 35(5):775-779.
    5. 罗会颖, 黄火清, 柏映国, 王亚茹, 杨培龙, 孟昆, 袁铁铮, 姚斌. 增加植酸酶基因appA-m 的拷贝提高其在巴斯德毕赤酵母的表达量. 2006,22(4):528-533.
    6. 罗会颖,姚斌,袁铁铮,王亚茹,史秀云,伍宁丰,范云六. Overexpression of Escherchia coli Phytase with High Specific Activity. 生物工程学报, 2004, 20(1):78-84.
    7. 彭毅, 步威, 康良仪. 甲醇酵母表达系统. 生物技术通报,2000,1,38-41.
    8. 舒正玉,杨江科,徐莉,闫云君.黑曲霉脂肪酶基因的克隆及其在毕赤酵母中的表达. 2007, 53(2): 204-208.
    9. 汪洋,杨桂香,吴波浪,张万江,黄伟华,彭险峰. 猪表皮生长因子在毕赤酵母中的表达及鉴定,中国农业科学 2007, 40(11):2593-2599.
    10. 王洪海,高卜渝, 陈佩丽,等. 酵母表达基因工程产物不均一性分析及其对策[J]. 中国科学(B 辑),1994,24:1270-12741.
    11. 王亚茹,姚斌,曾虹,史秀云,操时树,袁铁铮,范云六.枯草芽孢杆菌中性植酸酶的纯化和酶学性质. 微生物学报, 2001, 41:198–203.
    12. 王亚茹,姚斌,罗会颖,袁铁铮,都占魁,史秀云,伍宁丰,范云六.来源于Selenomonas ruminantium的高比活植酸酶基因在毕赤酵母中的高效表达. 中国农业科学, 2004, 37(5):762-768.
    13. 熊爱生,彭日荷,李贤等.信号肽序列对毕赤酵母表达外源蛋白的影响.生物化学与生物物理学报,2003, 35(2):154-160.
    14. 张红莲,姚斌,王亚茹,袁铁峥,张王照,伍宁丰,范云六. 链霉菌 Streptomyces olivaceoviridis A1 木聚糖酶基因 xynA 在大肠杆菌及毕赤酵母中的高效表达. 生物工程学报 , 2003, 19(1): 41-45.
    15. 张伟,范云六,姚斌. 亮白曲霉乳糖酶基因在毕赤酵母中的高效分泌表达及酶学性质研究, 微生物学报. 2005, 45(2): 247-251.
    16. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 1984, 312(5992): 315–321.
    17. Bhave SL, Chattoo BB. Expression of Vitreoscilla hemoglobin improves growth and levels of extracelluar enzyme in Yarrowia Lipolytica. Biotechnol Bioeng 2003, 84:658–666.
    18. Boer H, Teeri TT, Koivula A. Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters. Biotechnol Bioeng. 2000,5;69(5):486-94.
    19. Brierley RA. Secretion of recombinant human insulin-like growth factor ( IGF-1). Methods Mol Biol, 1998, 103: 149-77.
    20. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB. Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed. 2000, 6:195–206.
    21. Bulow L, Holmberg N, Lilius G, Bailey E. The metabolic effects of native and transgenic hemoglobins on plants. Trends Biotechnol., 1999, 17: 21–24.
    22. Call Ewaert N , Larey W, Cadirgi H , et al. Use of HDEL-tagged Trichoderma reesei mannosyl oligosacch- aride 1 , 2-alpha-D-mannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett , 2001 , 503 : 173-178.
    23. Casey A, Walsh G. Identification and characterization of a phytase of potential commercial interest. J Biotechnol., 2004, 110:313–322.
    24. Cereghino, J L, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000, 24(1):45-66.
    25. Chen CC, Wu PH, Huang CT, Cheng KJ. A Pichia pastoris fermentation strategy for enhancing the heterologous expression of an Escherichia coli phytase. Enzyme Microb Technol. 2004, 35:315–320.
    26. Cho JS, LeeCW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Kim SC, Choi YJ. Purification and characterization of a phytase from Pseudomonas syringae MOK1. Curr Microbiol, 2003, 47:290–294.
    27. Cho,J.Y., Jeffries,T.W.. Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl. Environ. Microbiol. 1998, 64(4): 1350-1358.
    28. Clare J , Scorer C , Buckholz R et al . Expression of EGF and HIV envelope glycoprotein. Methods Mol Biol , 1998, 103 :209-25.
    29. Clare JJ, Romanos MA, Rayment FB, Rowedder JE, Smith MA, Payne MM, Sreekrishna K, Henwood CA. Production of mouse epidermal growth factor in yeast: high-level secretion using Pichia pastoris strains containing multiple gene copies. Gene. 1991, 105(2):205-12.
    30. CosO, Serrano A, Montesinos J L, et al. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J Biotechnol, 2005, 116 (4) : 321-335.
    31. Courtois JE, Manet L. Research on phytase. XVII. The phytases of Escherichia coli. Bull Soc Chim Biol (Paris). 1952, 34(3-4):265-78.
    32. Cowieson, A.J., Acamovic, T., Bedford, M.R.. The effects of phytase and phytic acid on the loss of endogenous amino acids and minerals from broiler chickens.British Poultry Science, 2004, 45(1):101-108.
    33. Cregg JM, Barringer KJ, Hessler AY, Madden KR. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985, 5(12):3376-85.
    34. Cregg JM, Cereghino JL, Shi J, Higgins DR. Recombinant protein expression in Pichia pastoris[J].Mol Biotechnol. 2000, 16(1): 23-52.
    35. Dasgupta S, Dasgupta D, Sen M, Biswas S, Biswas BB. Interaction of myoinositol trisphosphate–phytase complex with the receptor for intercellular Ca2+ mobilization in plants. Biochem. 1996, 35(15):4994–5001.
    36. Dikshit KL, Webster DA. Cloning, characterization, and expression of the bacterial globing gene from Vitreoscilla in Escherichia coli. Gene. 1988, 70:377–386.
    37. Dungelhoef, M., Rodehutscord, M., Spiekers, H., Pfeffer, E.. Effects of supplemental microbial phytase on availability of phosphorus contained in maize, wheat and triticale to pigs. Animal Feed Science and Technology ,1994, 49(1-2):1-10.
    38. Eeckhout W, De Paepe M. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim Feed Sci Technol. 1994, 47:19–29.
    39. Egli T,Van Dijken JP,Veenhuis M,et al.Methanol metabolism in yeasts:regulation of the synthesis of catabolic enzymes.Arch microbiol, 1980, 124:115~124.
    40. Frey AD, Kallio PT. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev., 2003, 27: 525–545.
    41. Gellissen G, Weydemann U, Strasser AW, Piontek M, Janowicz ZA, Hollenberg CP. Progress in developing methylotrophic yeasts as expression systems. Trends in Biotechnology, 1992,10 (12):413-417.
    42. Gellissen G. Heterologous protein production in methylotrophic yeasts[J]. Appl Microbiol Biotechnol, 2000, 54(6): 741-50.
    43. Gemmill TR, Trimble RB. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta. 1999, 1426(2):227-37.
    44. Gibson D. Production of extracellular phytase from Aspergillus ficuum on starch media. Biotechnol Lett., 1987, 9:305–310.
    45. Golovan S, Wang G, Zhang J, Forsberg CW. Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol. 2000, 46:59–71.
    46. Gorgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hagerdal B. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res. 2005, 5: 677–683.
    47. Greiner R, Konietzny U, Jany KD. Purification and characterization of two phytases from Escheri- chia coli. Arch Biochem Biophys, 1993, 303:107–113.
    48. Greiner, R., Carlsson, N.G.. Myo-Inositol phosphate isomers generated by the action of a phytate- degrading enzyme from Klebsiella terrigena on phytate. Canadian Journal of Microbiology, 2006, 52(8):759-768.
    49. Hamada JS. Isolation and identification of the multiple forms of soybean phytases. J Am Oil Chem Soc., 1996, 73:1143–1151.
    50. Hayakawa T, Toma Y, Igaue I . Purification and characterization of acid phosphatases with orwitho- ut phytase activity from rice bran. Agric Biol Chem, 1989, 53:1475–1483.
    51. Hong C, Cheng K, Tseng T, Wang C, Liu L, Yu S, Hong CY, Cheng KJ, Tseng TH, Wang CS, Liu LF, Yu SM. Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Res. 2004,13:29–39.
    52. Horton RM, Hunt HD, Ho SN, Pullen JM et al. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene, 1989, 77: 61–68.
    53. Howson SJ, Davis RP, Production of phytate hydrolyzing enzymes by some fungi. Enzyme Microb Technol., 1983, 5:377–389.
    54. Huaxin Chen, Ju Chu, Siliang Zhang, Yingping Zhuang, Jiangchao Qian, Yonghong Wang, Xiaoqing Hu. Intracellular expression of Vitreoscilla hemoglobin improves S-adenosylmethioni- ne production in a recombinant Pichia pastoris. Appl Microbiol Biotechnol , 2007, 74:1205–1212.
    55. Huebel F, Beck E. Maize root phytase. Purification, characterization, and localization of enzyme activity and its putative substrate. Plant Physiol, 1996, 112:1429–1436.
    56. Hurrell, R.F., Reddy, M.B., Juillerat, M.A., Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. American Journal ofClinical Nutrition, 2003, 77(5):1213-1219.
    57. Inan M, Aryasomayajula D, Sinha J, et al. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng, 2006, 93 ( 4 ) : 771-778.
    58. Inan M, Fanders SA, Zhang W, Hotez PJ, Zhan B, Meagher MM. Saturation of the secretory pathway by overexpression of a hookworm (Necator americanus) Protein (Na-ASP1). Methods Mol Biol. 2007, 389:65-76.
    59. Jog, S.P., Garchow, B.G., Mehta, B.D., Murthy, P.P.N..Alkaline phytase from lily pollen: Investigation of biochemicalproperties. Archives of Biochemistry and Biophysics, 2005, 440(2):133-140.
    60. Jyh-Ming Wu, Tsu-An Hsu, Cheng-Kang Lee. Expression of the gene coding for bacterial hemo- globin improves β-galactosidase production in a recombinant Pichia pastoris. Biotechnology Letters, 2003, 25: 1457-1462.
    61. Kalidas C, Joshi L, Batt C. Characterization of glycosylated variants of beta-lactoglobulin expressed in Pichia pastoris. Protein Eng. 2001, 14(3):201-7.
    62. Kallio, P.T. and J.E.Bailey. Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis. Biotechnol. Prog. , 1996, 12(1): 31-39.
    63. Kang DG, Kim JYH, Cha HJ. Enhanced detoxification of organophosphates using recombinant Escherichia coli with coexpression of organophosphorus hydrolase and bacterial hemoglobin.Biotechnol. Lett. 2002, 24: 879–883.
    64. Kato M, Fuchimoto J, Tanino T, Kondo A, Fukuda H, Ueda M. Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Appl Microbiol Biotechnol. 2007, 75(3):549-55.
    65. Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ. Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett, 2003, 25:1231–1234.
    66. Kobayashi K, Kuwae S, Ohya T, Ohda T, Ohyama M, Tomomitsu K. Addition of oleic acid increases expression of recombinant human serum albumin by the AOX2 promoter in Pichia pastoris. J Biosci Bioeng. 2000, 89(5):479-84.
    67. Koller A, Valesco J, Subramani S. The CUP1 promoter of Saccharomyces cerevisiae is inducible by copper in Pichia pastoris. Yeast. 2000, 16(7):651-6.
    68. Kurjan J, Herskowitz I. Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. 1982, 30(3):933-43.
    69. Lin Cereghino GP, Lin Cereghino J, Sunga AJ, Johnson MA, Lim M, Gleeson MA, Cregg JM. New selectable marker/auxotrophic host strain combinations for molecular genetic manipulation of Pichia pastoris. Gene. 2001, 263(1-2):159-69.
    70. Liu H, Tan X, Russell KA, Veenhuis M, Cregg JM. PER3, a gene required for peroxisome biogenesis in Pichia pastoris, encodes a peroxisomal membrane protein involved in protein import. J Biol Chem. 1995, 270(18):10940-51.
    71. Lodish HF, Kong N, Snider M, Strous GJX Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature. 1983, 304(5921):80–83.
    72. LOEVEN M C.Biosynthetic Production of Type ⅡFish Antifreeze Protein : Fermentation by Pichia Pastris[J ] . Appl Microbiol Bitechnol , 1997, (48):480 - 486.
    73. Lyles MM, Gilbert HF. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry. 1991, 30(3):613–619.
    74. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005, 22(4):249-70.
    75. Maugenest S, Martinez I, Godin B, Perez P, Lescure AM. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol Biol, 1999, 39:503–514.
    76. Mayer AF, Hellmuth K, Schlieker H, Lopez-Ulibarri R, Oertel S, Dahlems U, Strasser AWM, van Loon APGM. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng. 1999: 63:373–381.
    77. McCollum, E.V., Hart, E.B.. On the occurrence of a phytin-splitting enzyme in animal tissues. Journal of Biological Chemistry, 1908, 4(6):497-500.
    78. McGrew JT, Leiske D, Dell B, Klinke R, Krasts D, Wee SF, Abbott N, Armitage R, Harrington K. Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants. Gene. 1997, 187(2):193-200.
    79. Menendez J, Valdes I, Cabrera N. The ICL1 gene of Pichia pastoris, transcriptional regulation and use of its promoter. Yeast. 2003, 20(13):1097-108.
    80. Mergler M, Wolf K, Zimmermann M. Development of a bisphenol A-adsorbing yeast by surfacedisplay of the Kluyveromyces yellow enzyme on Pichia pastoris. Appl Microbiol Biotechnol. 2004, 63(4):418-21.
    81. Michael J D. Over Expression in Pichia Pastoris and Crystallization of an Elicitor Protein Secreted by the Phytopathogenic Fungus[J ]. Protein expression and Purification, 1996, (8): 254 - 261.
    82. Michell RH. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta, 1975, 415(1):47–81.
    83. Moir DT, Dumais DR. Glycosylation and secretion of human alpha-1-antitrypsin by yeast. Gene. 1987; 56(2-3): 209-17.
    84. Montesino R , Garcia R , Quintero O et al. Variation in N-linked oligosaccharide structures on heterologous proteins secreted by the methylotrophic yeast Pichia pastoris [J ] . Protein Expr Purif , 1998 ,14 (2) :197-207.
    85. Mullaney EJ, Daly CB, Kim T, Porres JM, Lei XG, Sethumadhavan K, Ullah AH. Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun. 2002, 297(4):1016-20.
    86. Mullaney, E.J., Ullah, A.H.. The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 2003, 312(1):179-184.
    87. Nagai Y, Funahashi S , Phytase (myo-inositol hexaphosphate phosphohydrolase) from wheat bran. Agric Biol Chem, 1962, 26:794–803.
    88. Nahm, K.H.. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Critical Reviews in Environmental Science and Technology, 2002, 32(1):1-16.
    89. Nakamura Y, Fukuhara H, Sano K. Secreted phytase activities of yeasts. Biosci Biotechnol Biochem , 2000, 64:841–844.
    90. Nakano T, Joh T, Tokumoto E, Hayakawa T. Purification and characterization of phytase from bran of Triticum aestivum L.Cv. Nourin #61. Food Sci Technol Res., 1999, 5:18–23.
    91. Nett JH, Gerngross TU. Cloning and disruption of the PpURA5 gene and construction of a set of integration vectors for the stable genetic modification of Pichia pastoris. Yeast.2003, 20(15):1279-90.
    92. Nett JH, Hodel N, Rausch S, Wildt S. Cloning and disruption of the Pichia pastoris ARG1, ARG2, ARG3, HIS1, HIS2, HIS5, HIS6 genes and their use as auxotrophic markers. Yeast. 2005, 22 (4):295-304.
    93. Nout MJR, Rambouts FM. Recent developments in tempe research. A review. J Appl Bacteriol 1990, 69:609–633.
    94. Ohba H, Harano T, Omura T. Intracellular and intramembranous localization of a protein disulfide isomerase in rat liver. J Biochem (Tokyo). 1981, 89(3):889–900.
    95. Paifer E, Margolles E, Cremata J, Montesino R, Herrera L, Delgado JM. Efficient expression and secretion of recombinant alpha amylase in Pichia pastoris using two different signal sequences. Yeast. 1994, 10 (11): 1415-9.
    96. Pasamontes L, Haiker M, Wyss M, Tessier M, Van Loon APGM. Gene cloning, purification, andcharac- terization of a heatstable phytase from the fungus Aspergillus fumigatus. Appl Environ Microbiol., 1997, 63:1696–1700.
    97. Passoth V, Cohn M, Schafer B, Hahn-Hagerdal B, Klinner U. Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast, 2003, 20: 39–51.
    98. Passoth V, Hahn-Hagerdal B. Production of a heterologous endo-1,4-b-xylanase in the yeast Pichia stipitis with an O2-regulated promoter. Enzyme Microb. Technol. 2000, 26: 781–784.
    99. Passoth V, Schaefer,B., Liebel,B., Weierstall,T., Klinner,U.. Molecular cloning of alcohol dehydrogenase genes of the yeast Pichia stipitis and identification of the fermentative ADH.Yeast, 1998, 14(14): 1311-1325.
    100. Quan CS, Tian WJ, Fan SD, Kikuchi YI. Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. J Biosci Bioeng, 2004, 97:260–266.
    101. Raemaekers RJ, de Muro L, Gatehouse JA, Fordham-Skelton AP. Functional phytohemagglutinin (PHA) and Galanthus nivalis agglutinin (GNA) expressed in Pichia pastoris correct N-terminal processing and secretion of heterologous proteins expressed using the PHA-E signal peptide. Eur J Biochem. 1999, 265(1):394-403.
    102. Ragon M, Neugnot-Roux V, Chemardin P, Moulin G, Boze H. Molecular gene cloning and overexpression of the phytase from Debaryomyces castellii CBS 2923. Protein Expr Purif. 2008, 58(2):275-83.
    103. Rapoport S, Leva E, Guest GM. Phytase in plasma and erythrocytes of vertebrates. J Biol Chem , 1941, 139: 621–632.
    104. Rehms H, Barz W. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi. Appl Microbiol Biotechnol. 1995, 44(1–2):47–52.
    105. Resina D, Serrano A, Valero F, Ferrer P. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol, 2004, 109(1-2) : 103~113.
    106. Revy, P.S., Jondreville, C., Dourmad, J.Y., Nys, Y.. Assessment of dietary zinc requirement of weaned piglets fed diets with or without microbial phytase. Journal of Animal Physiology and Animal Nutrition, , 2006, 90(1-2): 50- 59.
    107. Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology(NY). 1994, 12: 381-384.
    108. Rodriguez E, Han Y, Lei XG. Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/ phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun. 1999: 257:117–123.
    109. Rodriguez E, Wood ZA, Karplus PA, Lei XG. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch Biochem Biophys. 2000, 382(1):105-12.
    110. Romanos MA, Scorer CA, Clare JJ. Foreign gene expression in yeast: a review. Yeast, 1992, 8:423-88.
    111. Sajidan A, Farouk A, Greiner R, Jungblut P, Mueller EC, Borriss R. Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appl Microbiol Biotechnol, 2004, 65:110–118.
    112. Samanta S, Dalal B, Biswas S, Biswas BB. Myoinositol trisphosphate–phytase complex as an elicitor in calcium mobilization in plants. Biochem Biophys Res Commun. 1993, 191(2):427–434
    113. Sambrook J , Fritsch EF , Maniatis T. Molecular Cloning. A laboratory manual . 2nd . New York : Cold Spring Harbor Laboratory Press . 1989.
    114. Sandberg, A.S., Hulthen, L.R., Turk, M.. Dietary Aspergillus niger phytase increases iron absorption in humans.Journal of Nutrition, 1996, 126(2):476-480.
    115. Sano K, Fukuhara H, Nakamura Y. Phytase of the yeast Arxula adeninivorans. Biotechnol Lett, 1999, 21: 33–38.
    116. Schreuder M P , Brekelmans S , van den Ende H , et al . Targeting of a heterologous protein to the cell wall of S accharomyces cerevisiae. Yeast , 1993 , 9 (4) : 399~409.
    117. Schreuder MP, Brekelmans S, van den Ende H, Klis FM. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast. 1993, 9(4):399-409.
    118. Sears IB, O'Connor J, Rossanese OW, Glick BS. A versatile set of vectors for constitutive and regulated gene expression in Pichia pastoris. Yeast. 1998, 14(8):783-90.
    119. Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P. Purification and properties of the phytase from Schwanniomyces castellii. J Ferment Bioeng., 1992, 74:7–11.
    120. Shalom G, Pratten J, Wilson M, Nair SP. Cloning, heterologous gene expression and biochemical characterization of the alpha-1,3-glucanase from the filamentous fungus Penicillium purpurogenum. 2008, 8.
    121. Shusta, E.V., Raines, R.T., Pluckthun, Wittrup, D. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Biotechnol., 1998, 16: 773-777.
    122. Smith JD, Tang BC, Robinson AS. Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng. 2004, 85(3):340–350.
    123. Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene. 1997, 190(1): 55-62.
    124. Sreekrishna K, Nelles L, Potenz R, Cruze J, Mazzaferro P, Fish W, Fuke M, Holden K, Phelps D, Wood P, et al. High-level expression, purification, and characterization of recombinant human tumor necrosis factor synthesized in the methylotrophic yeast Pichia pastoris. Biochemistry. 1989, 28(9) :4117-25.
    125. Sreekrishna K, Tschopp JF, Fuke M. Invertase gene (SUC2) of Saccharomyces cerevisiae as a dominant marker for transformation of Pichia pastoris. Gene. 1987, 59(1): 115-25.
    126. Suzuki, U., Yoshimura, K., Takaishi, M.. About the enzyme “phytase”, which splits “anhydro-oxy- methyl- enediphosphoric acid”. Bulletin of the College of Agriculture, Tokyo Imperial University, 1907, 7: 503-512 .
    127. Tambe SM, Kaklij GS, Kelkar SM, Parekh LJ. Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. J Ferment Bioeng, 1994, 77:23–27.
    128. Tojo N, Miyagi I, Miura M, Ohi H. Recombinant human fibrinogen expressed in the yeast Pichia pastoris was assembled and biologically active. Protein Expr Purif. 2008, 59(2):289-96.
    129. Tsai PS, Hatzimanikatis V, Bailey JE. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol Bioeng. 1995, 49:139–150.
    130. Tschopp JF, Brust PF, Cregg JM, Stillman CA, Gingeras TR. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 1987, 15(9): 3859–3876.
    131. Tye AJ, Siu FKY, Leung TYC, Lim BL. Molecular cloning and the biochemical characterization of two novel phytases from B.subtilis 168 and B. licheniformis. Appl Microbiol Biotechnol, 2002, 59:190–197.
    132. Urbatsch I L , Wilke Mounts S , Gimi K,et al. Purification and characterization of N-glycosylation mutant mouse and human P-glycoproteins expressed in Pichia pastoris cells [ J ] . Arch Biochem Biophys , 2001 ,388, 171-7.
    133. Vad R, Nafstad E, Dahl LA, Gabrielsen OS. Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. Journal of Biotechnology, 2005, 116(3): 251-260.
    134. van Etten, R.L., Davidson, R., Stevis, P.E., MacArthur, H., Moore, D.L.. Covalent structure, disulfide bonding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. Journal ofBiological Chemistry, 1991, 266(4): 2313-2319.
    135. Vassileva A, Chugh DA, Swaminathan S, Khanna N. Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr Purif. 2001, 21(1):71-80.
    136. Veenhuis M ,Van Dijken , J P , et al. The significance of peroxisomes in the metabolism of one-carbon compounds in yeast [J ] . Adv Microb Physiol , 1983, 24 :1-82.
    137. Vohra A, Satyanarayana T. Phytase production by the yeast, Pichia anomala. Biotechnol Lett., 2001, 23: 551–554.
    138. Vohra A, Satyanarayana T. Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World J Microbiol Biotechnol., 2002, 18:687–691.
    139. Wang H, Wang Q, Zhang F, Huang Y, Ji Y, Hou Y. Protein expression and purification of human Zbtb7A in Pichia pastoris via gene codon optimization and synthesis. Protein Expr Purif. 2008, 30.
    140. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997, 186(1):37-44.
    141. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the Pichia pastoris glyceraldehyde- 3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997, 186(1):37-44.
    142. Weiss HM, Haase W, Michel H, Reil?nder H. Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett.1995, 377(3):451-6.
    143. Wei Zhang, Hong liang Zhao, Chong Xue, Xiang hua Xiong, Xue qin Yao, Xian yu Li. Enhanced secretion of heterologous proteins in Pichia pastoris following overexpression of Saccharomyces cerevisiae chaperone proteins. Biotechnol. Prog. 2006, 22: 1090-1095.
    144. Yip W, Wang L, Cheng C, Wu W, Lung S, Lim BL. The introduction of a phytase gene from Bacillus subtilis improved the growth performance of transgenic tobacco. Biochem Biophys Res Commun. 2003 ,310:1148–1154.
    145. Yoshimasu MA, Ahn JK, Tanaka T, Yada RY. Soluble expression and purification of porcine pepsinogen from Pichia pastoris. Protein Expr Purif. 2002, 25(2):229-36.
    146. Zhao X , Huo KK, Li YY. Synonymous codon usage in Pichia pastoris . Chinese Jounal of Biotechnology. 2000, 16 (3): 308–311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700