绵羊瘤胃环境木聚糖酶和植酸酶转录水平基因多样性分析和几个新颖木聚糖酶和植酸酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳元素和磷元素是生物体维持正常生命活动的必需元素,植食性动物体内的这些元素主要从植物中摄取。植物中的碳和磷主要是以木质纤维素和植酸的形式存在,但是它们很难被单胃动物直接利用,而反刍动物则可以有效利用植物中的木质纤维素和植酸。这主要是因为反刍动物的瘤胃是一个天然的高效生物反应器,它富含的大量真菌、细菌和原虫等微生物可以分泌多种降解酶。目前人们采用宏基因组测序等方法对瘤胃环境微生物及其降解酶进行了很多研究,已经发现大量的糖苷水解酶和其他有价值的酶类,但是目前对瘤胃环境中发挥作用降解酶的研究还很少。本文旨在研究饲喂周期内反刍动物瘤胃环境GH10木聚糖酶和CP植酸酶的转录水平基因多样性及其转录变化情况,发掘出具有潜在应用价值的GH10木聚糖酶和CP植酸酶,并为进一步开发瘤胃环境基因资源提供有利的理论依据,
     本文以绵羊瘤胃为研究对象,对饲喂周期内瘤胃环境的pH、细菌数量和相关酶活性的变化进行监测,结果表明瘤胃环境的pH和木聚糖酶活性的变化趋势大体一致,饲喂后开始下降,4小时降至最低点,然后开始缓慢上升,饲喂后24小时达到饲喂前水平;微生物数量的变化趋势稍有不同,呈现在饲喂后12小时达到最高,然后开始缓慢下降,饲喂后24小时达到饲喂前水平的变化趋势,这些参数的变化说明了瘤胃环境在饲喂周期内具有一定的动态性。
     根据瘤胃环境的变化趋势,构建糖苷水解酶第十家族(GH10)木聚糖酶在4个(饲喂后0、4、9和16小时)cDNA和1个(饲喂后16小时)DNA基因片段克隆库,共获得44条不同的GH10木聚糖酶基因片段,它们与已知的GH10木聚糖酶序列一致性在56–90%之间。通过比较饲喂后16小时cDNA和DNA基因片段克隆库的木聚糖酶基因,结果发现只有9个基因是两个克隆库的共有基因,表明基因水平和转录水平的GH10木聚糖酶基因组成存在很大差异,说明转录水平的研究方法更能有效的发掘出真正发挥功能的GH10木聚糖酶基因。然后通过比较饲喂后不同时间点cDNA克隆库的木聚糖酶基因,结果发现只有6个基因是4个cDNA克隆库的共有基因,说明在饲喂周期内随着时间的推移,得到转录的木聚糖酶基因组成也存在非常显著的变化;进一步采用qPCR定量方法对这6个共有木聚糖酶基因进行绝对定量分析,结果表明在基因水平上它们的变化趋势基本一致,但是在转录水平上这些共有基因则呈现多样的变化趋势,从而反映了瘤胃环境木聚糖酶的转录具有复杂的动态性;此外,相关性分析表明木聚糖酶的转录与环境因素(pH、细菌数量和木聚糖酶活性)呈显著相关性。
     构建瘤胃环境半胱氨酸植酸酶(CP)的4个(饲喂后0、4、9和16小时)cDNA和1个(饲喂后9小时)的DNA基因片段克隆库,共获得46条不同的CP植酸酶序列,这些序列与已知CP植酸酶序列的一致性在40–96%之间。通过比较饲喂后9小时cDNA克隆库和DNA克隆库的CP植酸酶基因,结果发现两个克隆库的基因组成有很大差异,说明采用cDNA克隆库的方法可以更好地发掘功能性基因。同时,对4个时间点cDNA克隆库的植酸酶基因进行比较,结果表明同GH10木聚糖酶一样,饲喂周期内CP植酸酶的基因组成差异很大,并且不同基因的转录趋势呈现多样性。
     根据已获得的大量GH10木聚糖酶和CP植酸酶基因片段,从瘤胃环境中直接克隆得到10个新颖的GH10木聚糖酶基因和4个CP植酸酶基因,其中木聚糖酶XynB和XynC在大肠杆菌中进行表达纯化后,具有明显的木聚糖酶活性,以榉木木聚糖为底物的比活力分别为73.9U/mg和142.3U/mg。二者的酶学性质相近,其最适pH都是6.0;具有很好的pH稳定性,在pH5.0–8.0和39°C条件下处理1个小时后剩余80%的相对酶活;最适温度都是40°C,在20°C还有60%的相对酶活;在40°C和最适pH条件下处理1个小时后可以分别剩余90%和86%的酶活。这两个酶的基本酶学性质跟瘤胃的生理环境(39°C,pH5.0–7.0)非常相近,推测瘤胃环境来源的木聚糖酶与瘤胃环境存在一种相互适应相互选择的关系。
     木聚糖酶XynA是转录水平上的高丰度基因,由407个氨基酸组成,包括一个信号肽(24aa),一个GH10木聚糖酶结构域和其C端的一段富含脯氨酸的序列(60aa)。序列比对分析表明该C端序列没有同源序列。为了探索该C端序列的功能,将XynA和XynA-Tr (C端序列截短酶)分别在大肠杆菌中进行表达,结果表明该C端序列可以提高酶的最适温度(从45°C升至50°C),和扩宽pH的作用范围(从pH5.5–6.5扩展至pH5.0–7.5);最特别的是,它可以显著提高木聚糖酶的比活(1135U mg~(–1)v.s.97U mg~(–1))和催化效率(133.5ml s~(–1)mg~(–1)v.s.7.3ml s~(–1)mg~(–1))。圆二色谱仪比较二者结构差异的结果表明XynA的二级结构具有更多的α螺旋。等温滴定量微热仪测定二者与低聚寡糖亲和力的结果表明XynA与低聚寡糖有更高的亲和力,从而揭示了该C端序列提高催化效率的原因。此外,将该C端序列与另一个木聚糖酶XynB进行融合表达,结果发现它也可以提高木聚糖酶XynB的最适温度和催化效率,说明这段序列具有通用性,可以为今后改造其他木聚糖酶提供了思路。
     本论文通过对瘤胃环境GH10木聚糖酶和CP植酸酶的转录水平基因多样性的研究,获得了大量新颖的功能性基因资源。通过对饲喂周期内不同时间点GH10木聚糖酶和CP植酸酶基因组成的比较,表明了瘤胃环境GH10木聚糖酶和CP植酸酶基因呈现多样的转录变化趋势,从分子水平揭示了瘤胃环境降解酶的动态性和复杂性,为瘤胃环境微生物资源的开发提供有利依据。通过对代表性基因的结构与功能的研究,一方面证实了基因的功能性,另一方面为进一步改造木聚糖酶的相关性能提供了新的思路。
Carbon and phosphorus are essential elements to living organisms. Herbivorous animals obtainthese elements from plant-based feed, of which lingocellulose and phytase represent the main storedforms of carbon and phosphorus, although these can not be digested by monogastric animals. Ruminantanimals harbor varieties of microorganisms in the rumen that secrete different enzymes and have theability to easily utilize these substrates. Currently, metagenomic sequencing method has been used tostudy ruminal micro-organisms leading to the identification of a great variety of glycoside hydrolasesand other enzymes. To date, there is scant information on ruminal enzymes at the transcriptional level.This study analyzes the genetic composition and expression characteristics of ruminal xylanase andphytases during the feeding cycles of ruminants in order to identify the functional genes and to providemore information on the ruminal environment.
     The rumen of Small Tail Han sheep was selected as the excellent microorganism source to studythe ruminal xylanases of glycoside hydrolase (GH) family10and cysteine phytases. DNA and cDNAlibraries of xylanase and phytase during a feeding cycle were constructed, and their diversity at thetranscriptional level was studied. Analysis of the rumen pH, bacterial population, and enzymatic activityduring a feeding cycle indicated that rumen pH and xylanase activity showed similar trends. The valuesdecreased with feeding for4h, then increased up to the initial level. The trend of bacterial populationwas different, showing the highest at12h and reduced then to the initial level. The results reveal thatthe rumen environment is dynamic with regular changes during feeding cycles.
     According to the changing rule of rumen environment, four cDNA libraries at0h,4h,9h and16hand one DNA library at16h of GH10xylanases were constructed, and44distinct gene fragments withidentities of <95%were identified. Genes in the DNA and cDNA libraries at16h showed significantdivergence with only nine genes identical. The result indicated that evaluating functional genes at thetranscription level is a more reliable indicator for understanding fluctuations than that of genomic level.Comparison of the relative abundance of xylanase genes indicated that six xylanase genes were detectedat all time points of the feeding cycle and showed a complex trend of gene expression over24h. Furtherquantitative analysis with qPCR indicated that these six representative genes showed similar trends atthe genomic level but varied at transcriptional level. These results reveal that xylanases have complexdynamics of expression in the rumen. Correlation analysis indicated that the rumen is a dynamicecosystem where the transcript profiles of xylanase genes are closely related to ruminal conditions,especially rumen pH and bacterial population.
     Using the same strategy, four cDNA libraries at0h,4h,9h and16h and one DNA library at9hof cysteine phytases were constructed, and a total of46unique fragments (<95%identities) of cysteinephytase genes were retrieved at both genomic and transcriptional levels. Most of these fragments hadlow identities (30–70%) with known sequences. Comparison of the cDNA and DNA libraries at9hindicated that the constitution and abundance of cysteine phytase genes were divergent, and morefunctional genes were identified at the transcriptional level. Furthermore, comparative analysis of thecysteine phytase during the feeding cycle shows the complex dynamic expression of phytase in therumen.
     Of the large number of novel gene fragments retrieved from the sheep rumen, ten full-length xylanase genes and four phytase genes were cloned, and three of them were chosen for further studies.Recombinant XynB and XynC were produced in Escherichia coli and had similar enzymatic properties.With beechwood xylan as the substrate, XynB and XynC showed the specific activities of73.9U/mgand142.3U/mg, respectively. Both enzymes showed the maximal activity at pH6.0. The enzymes werestable between pH5.0and8.0, retaining more than80%of their initial activity after incubation at39°Cfor1h. The optimal temperature for enzymatic activity was40°C, and the enzymes exhibitedapproximately60%relative activity at20°C. Recombinant XynB and XynC were thermostable at40°C,retaining90%and86%of their relative activities after incubation for1h, respectively. These enzymecharacteristics are similar to the physiological conditions of rumen (39°C and pH5.0–7.0), revealingthat ruminal xylanases and rumen may adapt to each other in a mutual selection style.
     XynA was the most predominant gene at the transcriptional level and encoded a407-residuepolypeptide. It consisted of a signal peptide of24amino acids, a catalytic motif of GH10, and aproline-rich C-terminal sequence of60amino acids without homolog. To determine its function, matureXynA and its C terminus-truncated mutant derivative XynA-Tr were both expressed in E. coli. TheC-terminal oligopeptide had significant effects on the function and structure of XynA. Its presenceincreased the temperature optimum (from45C to50C) and broadened the ranges of temperature andpH optima (from40–50C to40–60C and from pH5.5–6.5to pH5.0–7.5). It also improved thespecific activity (1135U mg~(–1)v.s.97U mg~(–1)) and catalytic efficiency (133.5ml s~(–1)mg~(–1)v.s.7.3mls~(–1)mg~(–1)). Analysis of the secondary structures with circular dichroism spectroscopy indicated that XynAhad more α-helical components. Binding analysis with isothermal titration calorimetry showed thatXynA had greater binding capacity to xylooligosaccharides, which was essential to the improvement ofcatalytic efficiency. Similar results were obtained when fused the C-terminal sequence to anotherxylanase (XynB) of the same source and same family. This result suggested the C-terminal oligopeptideis versatile to other xylanases and reveals an engineering strategy to improve the enzyme catalyticperformance.
     In summary, this study has identified a large amount of functional genes in the rumen of Small TailHan sheep based on the transcriptional analysis of ruminal GH10xylanases and cysteine phytasesduring a feeding cycle. The changes in xylanase and phytase genes are revealed by comparing theconstitution and abundance of genes between the genomic and transcriptional levels. By analyzing thecomplexity and dynamics of ruminal enzymes at the molecular level, this study provides valuableinformation for the exploitation of the microbial source in the rumen. Characterization of therepresentative xylanase (XynA, XynB and XynC) not only verifies the functions of these genes, but alsoprovides a strategy for xylanase improvement based on the study of the relation between structure andfunction.
引文
1.罗会颖,黄火清,柏映国,等.增加植酸酶基因appA-m的拷贝提高其在巴斯德毕赤酵母的表达量.生物工程学报.2006,22:528–533.
    2.罗会颖,姚斌,袁铁铮,等.来源于Escherichia coli的高比活植酸酶基因的高效表达.生物工程学报.2004,20:78–84.
    3.曾虹,姚斌,任泽林.中性植酸酶NPHYA的酶学性质及其在鲤鱼饲料中的应用效果.水生生物学报.2002,26:67–74.
    4. Abe, A., Tonozuka, T., Sakano, Y., et al. Complex structures of Thermoactinomyces vulgaris R-47α-amylase with malto-oligosaccharides demonstrate the role of domain N acting as astarch-binding domain. Journal of Molecular Biology.2004,335:811–822.
    5. Annison, G. Commercial enzyme supplementation of wheatbased diets raises ileal glycanaseactivities and improves apparent metabolisable energy, starch and pentosan digestibilities inbroiler chickens. Animal Feed Science and Technology.1992,38:105–121.
    6. Antrim, R.L., Mitchinson, C., Solheim, L.P. Method for liquefying starch.1998, United StatesPatent US5,756,714.
    7. Arantes, V., Saddler, J.N. Cellulose accessibility limits the effectiveness of minimum cellulaseloading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnology forBiofuels.2011,4:1–17.
    8. Asryants, R., Duszenkova, I., Nagradova, N. Determination of sepharose-bound protein withcoomassie brilliant blue G-250. Analytical Biochemistry.1985,151:571–574.
    9. Baar, C., Eppinger, M., Raddatz, G., et al. Complete genome sequence and analysis of Wolinellasuccinogenes. Proceedings of the National Academy of Sciences.2003,100:11690–11695.
    10. Beer, M.U., Wood, P.J., Weisz, J. Molecular weight distribution and (1→3)(1→4)-β-D-glucancontent of consecutive extracts of various oat and barley cultivars. Cereal Chemistry.1997,74:476–480.
    11. Bera-Maillet, C., Mosoni, P., Kwasiborski, A., et al. Development of a RT-qPCR method for thequantification of Fibrobacter succinogenes S85glycoside hydrolase transcripts in the rumencontent of gnotobiotic and conventional sheep. J Microbiol Methods.2009,77:8–16.
    12. Berka, R.M., Rey, M.W., Brown, K.M., et al. Molecular characterization and expression of aphytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied andEnvironmental Microbiology.1998,64:4423–4427.
    13. Berridge, M.J., Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signaltransduction. Nature.1984,312:315–321.
    14. Berrin, J.G., Juge, N. Factors affecting xylanase functionality in the degradation of arabinoxylans.Biotechnology Letters.2008,30:1139–1150.
    15. Biely, P., Vr anská, M., Tenkanen, M., et al. Endo-β-1,4-xylanase families: differences incatalytic properties. Journal of Biotechnology.1997,57:151–166.
    16. Bitar, K., Reinhold, J.G. Phytase and alkaline phosphatase activities in intestinal mucosae of rat,chicken, calf, and man. Biochimica et Biophysica Acta (BBA)-Enzymology.1972,268:442–452.
    17. Black, G., Hazlewood, G., Millward-Sadler, S., et al. A modular xylanase containing a novelnon-catalytic xylan-specific binding domain. Biochemical Journal.1995,307:191–195..
    18. Black, G., Rixon, J.E., Clarke, J.H., et al. Evidence that linker sequences and cellulose-bindingdomains enhance the activity of hemicellulases against complex substrates. Biochemical Journal.1996,319:515–520.
    19. Blake, A.W., McCartney, L., Flint, J.E., et al. Understanding the biological rationale for thediversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. Journal ofBiological Chemistry.2006,281:29321–29329.
    20. Bonnin, E., Le Goff, A., Saulnier, L., et al. Preliminary characterisation of endogenous wheatarabinoxylan-degrading enzymic extracts. Journal of Cereal Science.1998,28:53–62.
    21. Boraston, A.B., Ficko-Blean, E., Healey, M. Carbohydrate recognition by a large sialidase toxinfrom Clostridium perfringens. Biochemistry.2007,46:11352–11360.
    22. Brulc, J.M., Antonopoulos, D.A., Miller, M.E., et al. Gene-centric metagenomics of thefiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases.Proceedings of the National Academy of Sciences.2009,106:1948–1953.
    23. Brutus, A., Villard, C., Durand, A., et al. The inhibition specificity of recombinant Penicilliumfuniculosum xylanase B towards wheat proteinaceous inhibitors. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics.2004,1701:121–128.
    24. Buchert, J., Tenkanen, M., Kantelinen, A., et al. Application of xylanases in the pulp and paperindustry. Bioresource Technology.1994,50:65–72.
    25. Cantarel, B.L., Coutinho, P.M., Rancurel, C., et al. The Carbohydrate-Active EnZymes database(CAZy): an expert resource for glycogenomics. Nucleic Acids Research.2009,37:233–238.
    26. Carro, M., Valdés, C., Ranilla, M., et al. Effect of forage to concentrate ratio in the diet onruminal fermentation and digesta flow kinetics in sheep offered food at a fixed and restricted levelof intake. Animal Science.2000,70:127–134.
    27. Chadha, B., Harmeet, G., Mandeep, M., et al. Phytase production by the thermophilic fungusRhizomucor pusillus. World Journal of Microbiology and Biotechnology.2004,20:105–109.
    28. Charnock, S.J., Lakey, J.H., Virden, R., et al. Key residues in subsite F play a critical role in theactivity of Pseudomonas fluorescens subspecies cellulosa xylanase A againstxylooligosaccharides but not against highly polymeric substrates such as xylan. Journal ofBiological Chemistry.1997,272:2942–2951.
    29. Cheng, C., Lim, B.L. Beta-propeller phytases in the aquatic environment. Archives ofMicrobiology.2006,185:1–13.
    30. Cho, J.S., Lee, C.W., Kang, S.H., et al. Purification and characterization of a phytase fromPseudomonas syringae MOK1. Current Microbiology.2003,47:290–294.
    31. Choi, Y.M., Suh, H.J., Kim, J.M. Purification and properties of extracellular phytase fromBacillus sp. KHU-10. Journal of Protein Chemistry.2001,20:287–292.
    32. Christophersen, C., Andersen, E., Jakobsen, T.S., et al. Xylanases in wheat separation. Starch.1997,49:5–12.
    33. Chu, H.M., Guo, R.T., Lin, T.W., et al. Structures of Selenomonas ruminantium Phytase incomplex with persulfated phytate: DSP phytase fold and mechanism for sequential substratehydrolysis. Structure.2004,12:2015–2024.
    34. Claassen, P., Van Lier, J., Contreras, A.L., et al. Utilisation of biomass for the supply of energycarriers. Applied Microbiology and Biotechnology.1999,52:741–755.
    35. Collins, T., Gerday, C., Feller, G. Xylanases, xylanase families and extremophilic xylanases.FEMS Microbiol Reviews.2005,29:3–23.
    36. Collins, T., Meuwis, M.A., Stals, I., et al. A novel family8xylanase, functional andphysicochemical characterization. Journal of Biological Chemistry.2002,277:35133–35139.
    37. Correia, M.A., Mazumder, K., Brás, J.L., et al. Structure and function of an arabinoxylan-specificxylanase. Journal of Biological Chemistry.2011,286:22510–22520.
    38. Cosgrove, D. The chemistry and biochemistry of inositol phosphates. Review of Pure andApplied Chemistry.1966,16:209–224.
    39. Cosgrove, D.J., Irving, G. Inositol phosphates: their chemistry, biochemistry and physiology.Elsevier Scientific Publishing Company, Amsterdam.1980.
    40. Courtin, C.M., Roelants, A., Delcour, J.A. Fractionation-reconstitution experiments provideinsight into the role of endoxylanases in bread-making. Journal of Agricultural and FoodChemistry.1999,47:1870–1877.
    41. Coutinho, P.M., Henrissat, B., Recent advances in carbohydrate bioengineering:carbohydrate-active enzymes: an integrated database approach, The Royal Society of Chemistry,Cambridge.1999,3–12.
    42. Couturier, M., Haon, M., Coutinho, P.M., et al. Podospora anserina hemicellulases potentiate theTrichoderma reesei secretome for saccharification of lignocellulosic biomass. Applied andEnvironmental Microbiology.2011,77:237–246.
    43. Cromwell, G., Stahly, T., Coffey, R., et al. Efficacy of phytase in improving the bioavailability ofphosphorus in soybean meal and corn-soybean meal diets for pigs. Journal of Animal Science.1993,71:1831–1840.
    44. Crosby, B., Collier, B., Thomas, D., et al. Cloning and expression in Escherichia coli of cellulasegenes from Bacteroides succinogenes. In "Fifth Canadian Bioenergy R and D Seminar".1984,573–576.
    45. Dasgupta, S., Dasgupta, D., Sen, M., et al. Interaction of myoinositoltrisphosphate-phytasecomplex with the receptor for intracellular Ca2+mobilization in plants. Biochemistry.1996,35:4994–5001.
    46. Decelle, B., Tsang, A., Storms, R.K. Cloning, functional expression and characterization of threePhanerochaete chrysosporium endo-1,4-β-xylanases. Current Genetics.2004,46:166–175.
    47. Denman, S.E., McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobicfungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology.2006,58:572–582.
    48. Dodd, D., Mackie, R.I., Cann, I.K. Xylan degradation, a metabolic property shared by rumen andhuman colonic Bacteroidetes. Mol Microbiol.2011,79:292–304.
    49. Dvo áková, J., Kopecky, J., Havlí ek, V., et al. Formation ofmyo-inositol phosphates byAspergillus niger3-phytase. Folia Microbiologica.2000,45:128–132.
    50. Ebringerová, A., Hromádková, Z., Heinze, T., Hemicellulose. Polysaccharides1: structure,characterization and use. Advances in Polymer Science.2005,186:1–67.
    51. Flanagan, J., Cassady, A., Schenk, G., et al. Identification and molecular modeling of a novel,plant-like, human purple acid phosphatase. Gene.2006,377:12–20.
    52. Fooks, L.J., Gibson, G.R. In vitro investigations of the effect of probiotics and prebiotics onselected human intestinal pathogens. FEMS Microbiology Ecology.2002,39:67–75.
    53. Forsberg, C., Forano, E., Chesson, A. Microbial adherence to the plant cell wall and enzymatichydrolysis. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction.2000:79–97.
    54. Fredrikson, M., Biot, P., Alminger, M.L., et al. Production process for high-quality pea-proteinisolate with low content of oligosaccharides and phytate. Journal of Agricultural and FoodChemistry.2001,49:1208–1212.
    55. Fukumori, F., Sashihara, N., Kudo, T., et al. Nucleotide sequences of two cellulase genes fromalkalophilic Bacillus sp. strain N-4and their strong homology. Journal of Bacteriology.1986,168:479–485.
    56. Garchow, B.G., Jog, S.P., Mehta, B.D., et al. Alkaline phytase from Lilium longiflorum:Purification and structural characterization. Protein Expression and Purification.2006,46:221–232.
    57. Gilbert, H., Hall, J., Hazlewood, G., et al. The N-terminal region of an endoglucanase fromPseudomonas fluorescens subspecies cellulosa constitutes a cellulose-binding domain that isdistinct from the catalytic centre. Molecular Microbiology.1990,4:759–767.
    58. Gilbert, N. Environment: the disappearing nutrient. Nature.2009,461:716–718.
    59. Gilkes, N., Henrissat, B., Kilburn, D., et al. Domains in microbial β-1,4-glycanases: sequenceconservation, function, and enzyme families. Microbiological Reviews.1991,55:303–315.
    60. Giorda, R., Ohmachi, T., Shaw, D.R., et al. A shared internal threonine-glutamicacid-threonine-proline repeat defines a family of Dictyostelium discoideum spore germinationspecific proteins. Biochemistry.1990,29:7264–7269.
    61. Giraud, E., Cuny, G. Molecular characterization of the α-amylase genes of Lactobacillusplantarum A6and Lactobacillus amylovorus reveals an unusual3′end structure with directtandem repeats and suggests a common evolutionary origin. Gene.1997,198:149–157.
    62. Gosalbes, M.J., Pérez-González, J.A., Gonzalez, R., et al. Two β-glycanase genes are clustered inBacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding axylanase and an endo-β-(1,3)-(1,4)-glucanase. Journal of Bacteriology.1991,173:7705–7710.
    63. Greiner, R. Purification and characterization of three phytases from germinated lupine seeds.Journal of Agricultural and Food Chemistry.2002,50:6858–6864.
    64. Greiner, R., Konietzny, U. Construction of a bioreactor to produce special breakdown products ofphytate. Journal of Biotechnology.1996,48:153–159.
    65. Greiner, R., Konietzny, U., Jany, K.D. Purification and characterization of two phytases fromEscherichia coli. Archives of Biochemistry and Biophysics.1993,303:107–113.
    66. Guais, O., Borderies, G., Pichereaux, C., et al. Proteomics analysis of “Rovabio Excel”, asecreted protein cocktail from the filamentous fungus Penicillium funiculosum grown underindustrial process fermentation. Journal of Industrial Microbiology and Biotechnology.2008,35:1659–1668.
    67. Guedon, E., Desvaux, M., Petitdemange, H. Improvement of cellulolytic properties ofClostridium cellulolyticum by metabolic engineering. Applied and Environmental Microbiology.2002,68:53–58.
    68. Gulati, H., Chadha, B., Saini, H. Production and characterization of thermostable alkaline phytasefrom Bacillus laevolacticus isolated from rhizosphere soil. Journal of Industrial Microbiology andBiotechnology.2007,34:91–98.
    69. Haegeman, A., Vanholme, B., Gheysen, G. Characterization of a putative endoxylanase in themigratory plant-parasitic nematode Radopholus similis. Molecular Plant Pathology.2009,10:389–401.
    70. Hall, J., Gilbert, H.J. The nucleotide sequence of a carboxymethylcellulase gene fromPseudomonas fluorescens subsp. cellulosa. Molecular and General Genetics MGG.1988,213:112–117.
    71. Hall, J., Hazlewood, G., Huskisson, N., et al. Conserved serine-rich sequences in xylanase andcellulase from Pseudomonas fluorescens subspecies cellulosa: internal signal sequence andunusual protein processing. Molecular Microbiology.1989,3:1211–1219.
    72. Han, M.K., Park, D.S., Lee, J.S., et al. Novel GH10xylanase, with a fibronectin type3domain,from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Applied andEnvironmental Microbiology.2009,75:7275–7279.
    73. Han, Y., Wilson, D.B., Lei, X. Expression of an Aspergillus nigerphytase gene (phyA) inSaccharomyces cerevisiae. Applied and Environmental Microbiology.1999,65:1915–1918.
    74. Haros, M., Bielecka, M., Sanz, Y. Phytase activity as a novel metabolic feature inBifidobacterium. FEMS Microbiology Letters.2005,247:231–239.
    75. Haros, M., Rosell, C.M., Benedito, C. Fungal phytase as a potential breadmaking additive.European Food Research and Technology.2001,213:317–322.
    76. Harris, G.W., Jenkins, J.A., Connerton, I., et al. Structure of the catalytic core of the family Fxylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites.Structure.1994,2:1107–1116.
    77. Hegeman, C.E., Grabau, E.A. A novel phytase with sequence similarity to purple acidphosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology.2001,126:1598–1608.
    78. Henrissat, B., Davies, G. Structural and sequence-based classification of glycoside hydrolases.Current Opinion in Structural Biology.1997,7:637–644.
    79. Hess, M., Sczyrba, A., Egan, R., et al. Metagenomic discovery of biomass-degrading genes andgenomes from cow rumen. Science.2011,331:463–467.
    80. Hong, S.H., Kim, J.S., Lee, S.Y., et al. The genome sequence of the capnophilic rumen bacteriumMannheimia succiniciproducens. Nature Biotechnology.2004,22:1275–1281.
    81. Hu, H., Wise, A., Henderson, C. Hydrolysis of phytate and inositol tri-, tetra-, andpenta-phosphates by the intestinal mucosa of the pig. Nutrition research.1996,16:781–787.
    82. Huang, H., Luo, H., Yang, P., et al. A novel phytase with preferable characteristics from Yersiniaintermedia. Biochemical and Biophysical Research Communications.2006,350:884–889.
    83. Huang, H., Shi, P., Wang, Y., et al. Diversity of beta-propeller phytase genes in the intestinalcontents of grass carp provides insight into the release of major phosphorus from phytate innature. Applied and Environmental Microbiology.2009,75:1508–1516.
    84. Huang, H., Zhang, R., Fu, D., et al. Diversity, abundance and characterization of ruminal cysteinephytases suggest their important role in phytate degradation. Environmental Microbiology.2011,13:747–757.
    85. Hungate, R.E. Studies on cellulose fermentation I. The culture and physiology of an anaerobiccellulose-digesting bacterium. Journal of Bacteriology.1944,48:499–513.
    86. Ingelbrecht, J., Moers, K., Abecassis, J., et al. Influence of arabinoxylans and endoxylanases onpasta processing and quality. Production of high-quality pasta with increased levels of solublefiber. Cereal Chemistry.2001,78:721–729.
    87. Ingram, L., Eddy, C., Mackenzie, K., et al. Genetics of Zymomonas mobilis and ethanolproduction. Development India Microbiology.1989,30:53–69.
    88. Irwin, D., Jung, E.D., Wilson, D.B. Characterization and sequence of a Thermomonospora fuscaxylanase. Applied and Environmental microbiology.1994,60:763–770.
    89. Ito, Y., Tomita, T., Roy, N., et al. Cloning, expression, and cell surface localization ofPaenibacillus sp. strain W-61xylanase5, a multidomain xylanase. Applied and EnvironmentalMicrobiology.2003,69:6969–6978.
    90. Izumi, Y., Kojo, A. Long-chain xylooligosaccharide compositions with intestinalfunction-improving and hypolipemic activities, and their manufacture. Japanese Patent.2003, JP2003048901.
    91. Jami, E., Mizrahi, I. Composition and similarity of bovine rumen microbiota across individualanimals. PloS ONE.2012,5:e33306.
    92. J nis, J., Hakanp, J., Hakulinen, N., et al. Determination of thioxylo-oligosaccharide binding tofamily11xylanases using electrospray ionization Fourier transform ion cyclotron resonance massspectrometry and X-ray crystallography. FEBS Journal.2005,272:2317–2333.
    93. Janssen, P.H., Kirs, M. Structure of the archaeal community of the rumen. Applied andEnvironmental Microbiology.2008,74:3619–3625.
    94. Jondreville, C., Hayler, R., Feuerstein, D. Replacement of zinc sulphate by microbial phytase forpiglets given a maize-soya-bean meal diet. Animal Science.2005,81:77–83.
    95. Juge, N., Le Gal-Coeffet, M.F., Furniss, C.S., et al. The starch binding domain of glucoamylasefrom Aspergillus niger: overview of its structure, function, and role in raw-starch hydrolysis.Biologia, Bratislava.2002,11:239–245.
    96. Jun, H., Qi, M., Ha, J., et al. Fibrobacter succinogenes, a dominant fibrolytic ruminal bacterium:transition to the post genomic era. Asian-Australasian Journal of Animal Sciences.2007,20:802–810.
    97. Kamra, D. Rumen microbial ecosystem. Current Science.2005,89:124–135.
    98. Kataeva, I.A., Seidel, R.D., Shah, A., et al. The fibronectin type3-like repeat from theClostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of cellulose bymodifying its surface. Applied and Environmental Microbiology.2002,68:4292–4300.
    99. Kawazu, T., Nakanishi, Y., Uozumi, N., et al. Cloning and nucleotide sequence of the gene codingfor enzymatically active fragments of the Bacillus polymyxa β-amylase. Journal of Bacteriology.1987,169:1564–1570.
    100. Kay, B.K., Willamson, M.P., Sudol, M. The importance of being proline: the interaction ofproline-rich motifs in signaling proteins with their cognate domains. The FASEB Journal.2000,14:231–241.
    101. Kazumitsu, S., Boseki, I., Norio, S., et al. Production of food and drink. Japanese Patent.1997, JP9248153.
    102. Kebreab, E., Hansen, A.V., Strathe, A.B. Animal production for efficient phosphate utilization:from optimized feed to high efficiency livestock. Current Opinion in Biotechnology.2012,23:872–877.
    103. Kellett, L.E., Poole, D.M., Ferreira, L., et al. Xylanase B and an arabinofuranosidase fromPseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and areencoded by adjacent genes. Biochemical Journal.1990,272:369.
    104. Kelly, W.J., Leahy, S.C., Altermann, E., et al. The glycobiome of the rumen bacteriumButyrivibrio proteoclasticus B316T highlights adaptation to a polysaccharide-rich environment.PloS ONE.2010,5:e11942.
    105. Kerovuo, J., Lauraeus, M., Nurminen, P., et al. Isolation, characterization, molecular gene cloning,and sequencing of a novel phytase from Bacillus subtilis. Applied and EnvironmentalMicrobiology.1998,64:2079–2085.
    106. Kerovuo, J., Rouvinen, J., Hatzack, F. Analysis of myo-inositol hexakisphosphate hydrolysis byBacillus phytase: indication of a novel reaction mechanism. Biochemical Journal.2000,352:623–628.
    107. Khafipour, E., Li, S., Plaizier, J.C., et al. Rumen microbiome composition determined using twonutritional models of subacute ruminal acidosis. Applied and Environmental Microbiology.2009,75:7115–7124.
    108. Khandeparker, R., Numan, M.T. Bifunctional xylanases and their potential use in biotechnology.Journal of Industrial Microbiology and Biotechnology.2008,35:635–644.
    109. Kim, H.W., Kim, Y.O., Lee, J.H., et al. Isolation and characterization of a phytase with improvedproperties from Citrobacter braakii. Biotechnology Letters.2003,25:1231–1234.
    110. Kittelmann, S., Janssen, P.H. Characterization of rumen ciliate community composition indomestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clonelibraries. FEMS Microbiology Ecology.2011,75:468–481.
    111. Kleywegt, G.J., Zou, J.Y., Divne, C., et al. The crystal structure of the catalytic core domain ofendoglucanase I from Trichoderma reesei at3.6resolution, and a comparison with relatedenzymes. Journal of Molecular Biology.1997,272:383–397.
    112. Kocherginskaya, S.A., Aminov, R.I., White, B.A. Analysis of the rumen bacterial diversity undertwo different diet conditions using denaturing gradient gel electrophoresis, random sequencing,and statistical ecology approaches. Anaerobe.2001,7:119–134.
    113. Kormelink, F., Voragen, A. Degradation of different [(glucurono) arabino] xylans by acombination of purified xylan-degrading enzymes. Applied Microbiology and Biotechnology.1993,38:688–695.
    114. Kostrewa, D., Grüninger-Leitch, F., D'Arcy, A., et al. Crystal structure of phytase fromAspergillus ficuum at2.5resolution. Nature Structural Biology.1997,4:185–190.
    115. Krause, D.O., Denman, S.E., Mackie, R.I., et al. Opportunities to improve fiber degradation inthe rumen: microbiology, ecology, and genomics. FEMS Microbiology Reviews.2003,27:663–693.
    116. Krishna, C., Nokes, S. Predicting vegetative inoculum performance to maximize phytaseproduction in solid-state fermentation using response surface methodology. Journal of IndustrialMicrobiology and Biotechnology.2001,26:161–170.
    117. Kuang, R., Chan, K.H., Yeung, E., et al. Molecular and biochemical characterization of AtPAP15,a purple acid phosphatase with phytase activity, in Arabidopsis. Plant Physiology.2009,151:199–209.
    118. Kulkarni, N., Shendye, A., Rao, M. Molecular and biotechnological aspects of xylanases. FEMSMicrobiology Reviews.1999,23:411–456.
    119. Kvist, S., Carlsson, T., Lawther, J.M., et al. Process for the fractionation of cereal brans.2010,United States Patent US7,709,033B2.
    120. Lassen, S.F., Breinholt, J., stergaard, P.R., et al. Expression, gene cloning, and characterizationof five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, aCeriporia sp., and Trametes pubescens. Applied and Environmental Microbiology.2001,67:4701–4707.
    121. Lee, C.C., Wong, D.W., Robertson, G.H. Cloning and characterization of the Xyn11A gene fromLentinula edodes. The Protein Journal.2005,24:21–26.
    122. Lei, X., Ku, P., Miller, E., et al. Calcium level affects the efficacy of supplemental microbialphytase in corn-soybean meal diets of weanling pigs. Journal of Animal Science.1994,72:139–143.
    123. Lei, X., Ku, P.K., Miller, E.R., et al. Supplemental microbial phytase improves bioavailability ofdietary zinc to weanling pigs. The Journal of Nutrition.1993,123:1117–1123.
    124. Lei, X.G., Weaver, J.D., Mullaney, E., et al. Phytase, a new life for an “old” enzyme. AnnualReview of Animal Biosciences.2013,1:283–309.
    125. Li, N., Shi, P., Yang, P., et al. A xylanase with high pH stability from Streptomyces sp. S27and itscarbohydrate-binding module with/without linker-region-truncated versions. AppliedMicrobiology and Biotechnology.2009a,83:99–107.
    126. Li, W., Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein ornucleotide sequences. Bioinformatics.2006,22:1658–1659.
    127. Li, X., Liu, Z., Chi, Z., et al. Molecular cloning, characterization, and expression of the phytasegene from marine yeast Kodamaea ohmeri BG3. Mycological Research.2009b,113:24–32.
    128. Li, Z., Huang, H., Yang, P., et al. The tandemly repeated domains of a β-propeller phytase actsynergistically to increase catalytic efficiency. FEBS Journal.2011,278:3032–3040.
    129. Lim, B.L., Yeung, P., Cheng, C., et al. Distribution and diversity of phytate-mineralizing bacteria.The ISME Journal.2007,1:321–330.
    130. Lim, D., Golovan, S., Forsberg, C.W., et al. Crystal structures of Escherichia coli phytase and itscomplex with phytate. Nature Structural and Molecular Biology.2000,7:108–113.
    131. Linder, M., Teeri, T.T. The roles and function of cellulose-binding domains. Journal ofBiotechnology.1997,57:15–28.
    132. Lindqvist, Y., Schneider, G., Vihko, P. Crystal structures of rat acid phosphatase complexed withthe transition-state analogs vanadate and molybdate. European Journal of Biochemistry.1994,221:139–142.
    133. Liu, J.R., Duan, C.H., Zhao, X., et al. Cloning of a rumen fungal xylanase gene and purificationof the recombinant enzyme via artificial oil bodies. Applied Microbiology and Biotechnology.2008,79:225–233.
    134. Liu, L., Sun, X., Yan, P., et al. Non-structured amino-acid impact on GH11differs from GH10xylanase. PLoS ONE.2012,7:e45762.
    135. Liu, Q., Huang, Q., Lei, X.G., et al. Crystallographic snapshots of Aspergillus fumigatus phytase,revealing its enzymatic dynamics. Structure.2004,12:1575–1583.
    136. Liu, Y.G., Whittier, R.F. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragments from P1and YAC clones for chromosome walking. Genomics.1995,25:674–681.
    137. Longland, A.C., Theodorou, M.K., Sanderson, R., et al. Non-starch polysaccharide compositionand in vitro fermentability of tropical forage legumes varying in phenolic content. Animal FeedScience and Technology.1995,55:161–177.
    138. Lozupone, C.A., Knight, R. Species divergence and the measurement of microbial diversity.FEMS Microbiology Reviews.2008,32:557–578.
    139. Maheswari, M.U., Chandra, T. Production and potential applications of a xylanase from a newstrain of Streptomyces cuspidosporus. World Journal of Microbiology and Biotechnology.2000,16:257–263.
    140. Marden J, Bayourthe C, Enjalbert F, Moncoulon R. A new device for measuring kinetics ofruminal pH and redox potential in dairy cattle. Journal of Dairy Science.2005,88:277–281.
    141. Marx, H., Graf, A.B., Tatto, N.E., et al. Genome sequence of the ruminal bacterium Megasphaeraelsdenii. Journal of Bacteriology.2011,193:5578–5579.
    142. Mathieu F, Jouany J, Sénaud J, Mercier, M. The effect of Saccharomyces cerevisiae andAspergillus oryzae on fermentations in the rumen of faunated and defaunated sheep; protozoaland probiotic interactions. Reproduction Nutrition Development.1996,36:271–287.
    143. Mathlouthi, N., Lalles, J., Lepercq, P., et al. Xylanase and β-glucanase supplementation improveconjugated bile acid fraction in intestinal contents and increase villus size of small intestine wallin broiler chickens fed a rye-based diet. Journal of Animal Science.2002,80:2773–2779.
    144. McCollum, E., Hart, E. On the occurrence of a phytin-splitting enzyme in animal tissues. Journalof Biological Chemistry.1908,4:497–500.
    145. McSweeney, C., Denman, S., Wright, A., et al. Application of recent DNA/RNA-basedtechniques in rumen ecology. Asian-Australasian Journal of Animal Sciences.2007,20:283–294.
    146. Meinke, A., Braun, C., Gilkes, N., et al. Unusual sequence organization in CenB, an invertingendoglucanase from Cellulomonas fimi. Journal of Bacteriology.1991,173:308–314.
    147. Michell, R.H. Inositol phospholipids and cell surface receptor function. Biochimica et BiophysicaActa.1975,415:81–87.
    148. Michelland, R., Monteils, V., Zened, A., et al. Spatial and temporal variations of the bacterialcommunity in the bovine digestive tract. Journal of Applied Microbiology.2009,107:1642–1650.
    149. Miller, G.L., Blum, R., Glennon, W.E., et al. Measurement of carboxymethylcellulase activity.Analytical Biochemistry.1960,1:127–132.
    150. Miller, M.E.B., Antonopoulos, D.A., Rincon, M.T., et al. Diversity and strain specificity of plantcell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.PloS ONE.2009,4:e6650.
    151. Millward-Sadler, S., Davidson, K., Hazlewood, G., et al. Novel cellulose-binding domains, NodBhomologues and conserved modular architecture in xylanases from the aerobic soil bacteriaPseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus. Biochemical Journal.1995,312:39–48.
    152. Mitchell, D.B., Vogel, K., Weimann, B.J., et al. The phytase subfamily of histidine acidphosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus andMyceliophthora thermophila. Microbiology.1997,143:245–252.
    153. Modler, H.W. Bifidogenic factors–sources, metabolism and applications. International DairyJournal.1994,4:383–407.
    154. Morgavi, D.P., Kelly, W.J., Janssen, P.H., et al. Rumen microbial (meta)genomics and itsapplication to ruminant production. Animal.2013,7:184–201.
    155. Moser, F., Irwin, D., Chen, S., et al. Regulation and characterization of Thermobifida fuscacarbohydrate-binding module proteins E7and E8. Biotechnology and Bioengineering.2008,100:1066–1077.
    156. Mueller-Harvey, I., Hartley, R.D., Harris, P.J., et al. Linkage of p-coumaroyl and feruloyl groupsto cell-wall polysaccharides of barley straw. Carbohydrate Research.1986,148:71–85.
    157. Nampoothiri, K.M., Tomes, G.J., Roopesh, K., et al. Thermostable phytase production byThermoascus aurantiacus in submerged fermentation. Applied Biochemistry and Biotechnology.2004,118:205–214.
    158. Nelson, T., Shieh, T., Wodzinski, R., et al. The availability of phytate phosphorus in soybean mealbefore and after treatment with a mold phytase. Poultry Science.1968,47:1842–1848.
    159. Niu, D., Zhou, X.X., Yuan, T.Y., et al. Effect of the C-terminal domains and terminal residues ofcatalytic domain on enzymatic activity and thermostability of lichenase from Clostridiumthermocellum. Biotechnology Letters.2010,32:963–967.
    160. Nocker, A., Burr, M., Camper, A.K. Genotypic microbial community profiling: a critical technicalreview. Microbial Ecology.2007,54:276–289.
    161. Ostanin, K., Van Etten, R. Asp304of Escherichia coli acid phosphatase is involved in leavinggroup protonation. Journal of Biological Chemistry.1993,268:20778–20784.
    162. Paes, G., Berrin, J.G., Beaugrand, J. GH11xylanases: Structure/function/properties relationshipsand applications. Biotechnology Advnces.2012,30:564–592.
    163. Palmonari, A., Stevenson, D.M., Mertens, D.R., et al. pH dynamics and bacterial communitycomposition in the rumen of lactating dairy cows. Journal of Dairy Science.2010,93:279–287.
    164. Park, S.C., Oh, B.C., Rhee, M.H., et al. The enzyme activity of a novel phytase from Bacillusamyloliquefaciens DS11and its potential use as a feed pellet. The Journal of General and AppliedMicrobiology.2003,49:129–133.
    165. Pasamontes, L., Haiker, M., Henriquez-Huecas, M., et al. Cloning of the phytases fromEmericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica etBiophysica Acta (BBA)-Gene Structure and Expression.1997a,1353:217–223.
    166. Pasamontes, L., Haiker, M., Wyss, M., et al. Gene cloning, purification, and characterization of aheat-stable phytase from the fungus Aspergillus fumigatus. Applied and EnvironmentalMicrobiology.1997b,63:1696–1700.
    167. Pell, G., Szabo, L., Charnock, S.J., et al. Structural and biochemical analysis of Cellvibriojaponicus xylanase10C: how variation in substrate-binding cleft influences the catalytic profileof family GH10xylanases. Journal of Biological Chemistry.2004,279:11777–11788.
    168. Polizeli, M.L., Rizzatti, A.C., Monti, R., et al. Xylanases from fungi: properties and industrialapplications. Applied Microbiology and Biotechnology.2005,67:577–591.
    169. Pukall, R., Lapidus, A., Nolan, M., et al. Complete genome sequence of Slackiaheliotrinireducens type strain (RHS1T). Standards in Genomic Sciences.2009,1:234–241.
    170. Purushe, J., Fouts, D.E., Morrison, M., et al. Comparative genome analysis of Prevotellaruminicola and Prevotella bryantii: insights into their environmental niche. Microbial Ecology.2010,60:721–729.
    171. Quan, C.S., Fan, S.D., Zhang, L.H., et al. Purification and properties of a phytase from Candidakrusei WZ-001. Journal of Bioscience and Bioengineering.2002,94:419–425.
    172. Raghuvansi, S., Prasad, R., Tripathi, M., et al. Effect of complete feed blocks or grazing andsupplementation of lambs on performance, nutrient utilisation, rumen fermentation and rumenmicrobial enzymes. Animal.2007,1:221–226.
    173. Ragon, M., Hoh, F., Aumelas, A., et al. Structure of Debaryomyces castellii CBS2923phytase.Acta Crystallographica Section F: Structural Biology and Crystallization Communications.2009,65:321–326.
    174. Rajeev Kumar, Wyman, C.E. Cellulase Adsorption and relationship to features of corn stoversolids produced by leading pretreatments. Biotechnology and Bioengineering.2009,103:252–267.
    175. Rao, D., Rao, K., Reddy, V. Cloning and expression of Bacillus phytase gene (phy) in Escherichiacoli and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology.2008,105:1128–1137.
    176. Raun, A., Cheng, E., Burroughs, W. Ruminant Nutrition, Phytate phosphorus hydrolysis andavailability to rumen microorganisms. Journal of Agricultural and Food Chemistry.1956,4:869–871.
    177. Rodriguez, E., Porres, J.M., Han, Y., et al. Different sensitivity of recombinant Aspergillus nigerPhytase (r-PhyA) and Escherichia coli pH2.5acid phosphatase (r-AppA) to trypsin and pepsin inVitro. Archives of Biochemistry and Biophysics.1999,365:262–267.
    178. Rodriguez, E., Wood, Z.A., Karplus, P.A., et al. Site-directed mutagenesis improves catalyticefficiency and thermostability of Escherichia coli pH2.5acid phosphatase/phytase expressed inPichia pastoris. Archives of Biochemistry and Biophysics.2000,382:105–112.
    179. Roehr, M., Kosaric, N., Vardar-Sukan, F., et al. The biotechnology of ethanol: classical and futureapplications. Weinheim:Wiley-VCH;2001.
    180. Saake, B., Kruse, T., Puls, J. Investigation on molar mass, solubility and enzymatic fragmentationof xylans by multi-detected SEC chromatography. Bioresource Technology.2001,80:195–204.
    181. Saha, B.C. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology.2003,30:279–291.
    182. Saito, T., Kohno, M., Tsumura, K., et al. Novel method using phytase for separating soybean.β-conglycinin and glycinin. Bioscience, Biotechnology, and Biochemistry.2001,65:884–887.
    183. Saitou, N., Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetictrees. Molecular Biology and Evolution.1987,4:406–425.
    184. Sajidan, A., Farouk, A., Greiner, R., et al. Molecular and physiological characterisation of a3-phytase from soil bacterium Klebsiella sp. ASR1. Applied Microbiology and Biotechnology.2004,65:110–118.
    185. Samanta, S., Dalal, B., Biswas, S., et al. Myoinositol tris-phosphate-phytase complex as anelicitor in calcium mobilization in plants. Biochemical and Biophysical ResearchCommunications.1993,191:427–434.
    186. Saulnier, L., Sado, P.E., Branlard, G., et al. Wheat arabinoxylans: exploiting variation in amountand composition to develop enhanced varieties. Journal of Cereal Science.2007,46:261–281.
    187. Schenk, G., Guddat, L., Ge, Y., et al. Identification of mammalian-like purple acid phosphatasesin a wide range of plants. Gene.2000,250:117–125.
    188. Schloss, P.D., Handelsman, J. Introducing DOTUR, a computer program for defining operationaltaxonomic units and estimating species richness. Applied and Environmental Microbiology.2005,71:1501–1506.
    189. Schr der, B., Breves, G., Rodehutscord, M. Mechanisms of intestinal phosphorus absorption andavailability of dietary phosphorus in pigs. Dtsch Tierarztl Wochenschr.1996,103:209–14.
    190. Shallom, D., Shoham, Y. Microbial hemicellulases. Current Opinion in Microbiology.2003,6:219–228.
    191. Shin, S., Ha, N.C., Oh, B.C., et al. Enzyme mechanism and catalytic property of β propellerphytase. Structure.2001,9:851–858.
    192. Shoseyov, O., Shani, Z., Levy, I. Carbohydrate binding modules: biochemical properties andnovel applications. Microbiology and Molecular Biology Reviews.2006,70:283–295.
    193. Silva, A.T., Wallace, R., Rskov, E. Use of particle-bound microbial enzyme activity to predict therate and extent of fibre degradation in the rumen. British Journal of Nutrition.1987,57:407–415.
    194. Sj str m, E. Wood chemistry: fundamentals and applications. Academic Press: San Diego,USA,1993.
    195. Skillman, L.C., Toovey, A.F., Williams, A.J., et al. Development and validation of a real-timePCR method to quantify rumen protozoa and examination of variability between entodiniumpopulations in sheep offered a hay-based diet. Applied and environmental microbiology.2006,72:200–206.
    196. Stahl, C., Han, Y., Roneker, K., et al. Phytase improves iron bioavailability for hemoglobinsynthesis in young pigs. Journal of Animal Science.1999,77:2135–2142.
    197. Steinfeld, H., Gerber, P., Wassenaar, T., et al., Livestock’s long shadow: environmental issues andoptions. Food and Agriculture Organization of the United Nations, Rome.2006,414.
    198. Suen, G., Weimer, P.J., Stevenson, D.M., et al. The complete genome sequence of Fibrobactersuccinogenes S85reveals a cellulolytic and metabolic specialist. PloS ONE.2011,6:e18814.
    199. Suzuki, U., Yoshimurs, K., Takaishi, M. Ueber ein Enzym “Phytase” das “Anhydro-oxy-methylendiphosphorsaure” Spaltet. Tokyo Imper Univ Coll Agric Bull1907,7:503–512.
    200. Taeko, I., Koichi, N., Yasushi, N., et al. Food and drink effective in anti-obesity. Japanese Patent.1998, JP10290681.
    201. Tajima, K., Aminov, R., Nagamine, T., et al. Diet-dependent shifts in the bacterial population ofthe rumen revealed with real-time PCR. Applied and Environmental Microbiology.2001,67:2766–2774.
    202. Tamura, K., Dudley, J., Nei, M., et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0. Molecular Biology and Evolution.2007,24:1596–1599.
    203. Toivari, M.H., Aristidou, A., Ruohonen, L., et al. Conversion of xylose to ethanol by recombinantSaccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.Metabolic Engineering.2001,3:236–249.
    204. T rr nen, A., Harkki, A., Rouvinen, J. Three-dimensional structure of endo-1,4-β-xylanase IIfrom Trichoderma reesei: two conformational states in the active site. The Embo Journal.1994,13:2493–2501.
    205. Uchida, H., Arakida, S., Sakamoto, T., et al. Expression of Aspergillus oryzae phytase gene inAspergillus oryzae RIB40niaD(-). Journal of Bioscience and Bioengineering.2006,102:564–567.
    206. Vaaje-Kolstad, G., Horn, S.J., van Aalten, D.M., et al. The non-catalytic chitin-binding proteinCBP21from Serratia marcescens is essential for chitin degradation. Journal of BiologicalChemistry.2005,280:28492–28497.
    207. van Gool, M., van Muiswinkel, G., Hinz, S., et al. Two GH10endo-xylanases fromMyceliophthora thermophila C1with and without cellulose binding module act differentlytowards soluble and insoluble xylans. Bioresource Technology.2012,119:123–132.
    208. Van Petegem, F., Collins, T., Meuwis, M.A., et al. The structure of a cold-adapted family8xylanase at1.3resolution. Structural adaptations to cold and investgation of the active site.Journal of Biological Chemistry.2003,278:7531–7539.
    209. Vardakou, M., Flint, J., Christakopoulos, P., et al. A family10Thermoascus aurantiacussylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants.Journal of Molecular Biology.2005,352:1060–1067.
    210. Vazquez, M., Alonso, J., Dom nguez, H., et al. Xylooligosaccharides: manufacture andapplications. Trends in Food Science and Technology.2000,11:387–393.
    211. Vincent, J.B., Crowder, M.W., Averill, B. Hydrolysis of phosphate monoesters: a biologicalproblem with multiple chemical solutions. Trends in Biochemical Sciences.1992,17:105–110.
    212. Vr anská, M., Kolenová, K., Puchart, V., et al. Mode of action of glycoside hydrolase family5glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS Journal.2007,274:1666–1677.
    213. Waldron, K., Faulds, C. Cell wall polysaccharides: composition and structure, in: J. Kamerling,G.J. Boons, Y. Lee, A. Suzuki, N. Taniguchi, A.G.J. Voragen (Eds.), ComprehensiveGlycoscience: Analysis of Glycans/Polysaccharide Functional Properties, Amsterdam, ElsevierB.V.,2007, pp.181–201.
    214. Waldroup, P., Kersey, J., Saleh, E., et al. Nonphytate phosphorus requirement and phosphorusexcretion of broiler chicks fed diets composed of normal or high available phosphate corn withand without microbial phytase. Poultry Science.2000,79:1451–1459.
    215. Wang, B., Cheng, B., Feng, H. Enriched arabinoxylan in corn fiber for value-added products.Biotechnology letters.2008,30:275–279.
    216. Wang, G., Luo, H., Meng, K., et al. High genetic diversity and different distributions of glycosylhydrolase family10and11xylanases in the goat rumen. PLoS ONE.2011,6:e16731.
    217. Watanabe, T., Ito, Y., Yamada, T., et al. The roles of the C-terminal domain and type III domainsof chitinase A1from Bacillus circulans WL-12in chitin degradation. Journal of Bacteriology.1994,176:4465–4472.
    218. Wen, T.N., Chen, J.L., Lee, S.H., et al. A truncated Fibrobacter succinogenes1,3-1,4-β-D-glucanase with improved enzymatic activity and thermotolerance. Biochemistry.2005,44:9197–9205.
    219. Whitehead, T.R., Cotta, M.A. Identification of a broad-specificity xylosidase/arabinosidaseimportant for xylooligosaccharide fermentation by the ruminal anaerobe Selenomonasruminantium GA192. Current Microbiology.2001,43:293–298.
    220. Wodzinski, R.J., Ullah, A. Phytase. Advances in Applied Microbiology.1996,42:263–302.
    221. Wyss, M., Brugger, R., Kronenberger, A., et al. Biochemical characterization of fungal phytases(myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Applied andEnvironmental Microbiology.1999,65:367–373.
    222. Wyss, M., Pasamontes, L., Rémy, R., et al. Comparison of the thermostability properties of threeacid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH
    2.5scid phosphatase. Applied and Environmental Microbiology.1998,64:4446–4451.
    223. Xiang, T., Liu, Q., Deacon, A.M., et al. Crystal structure of a heat-resilient phytase fromAspergillus fumigatus, carrying a phosphorylated histidine. Journal of Molecular Biology.2004,339:437–445.
    224. Yanez-Ruiz, D.R., Hart, K., Martin-Garcia, A., et al. Diet composition at weaning affects therumen microbial population and methane emissions by lambs. Animal Production Science.2008,48:186–188.
    225. Yanke, L., Bae, H., Selinger, L., et al. Phytase activity of anaerobic ruminal bacteria.Microbiology.1998,144:1565–1573.
    226. Yanke, L., Selinger, L., Cheng, K. Phytase activity of Selenomonas ruminantium: a preliminarycharacterization. Letters in Applied Microbiology.1999,29:20–25.
    227. Zhang, R., Yang, P., Huang, H., et al. Molecular and biochemical characterization of a newalkaline β-propeller phytase from the insect symbiotic bacterium Janthinobacterium sp. TN115.Applied Microbiology and Biotechnology.2011,92:317–325.
    228. Zinin, N.V., Serkina, A.V., Gelfand, M.S., et al. Gene cloning, expression and characterization ofnovel phytase from Obesumbacterium proteus. FEMS Microbiology Letters.2004,236:283–290.
    229. Zoetendal, E.G., Collier, C.T., Koike, S., et al. Molecular ecological analysis of thegastrointestinal microbiota: a review. The Journal of Nutrition.2004,134:465–472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700