钢管混凝土拱桥拱肋线形的设计优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢管混凝土系杆拱桥是一种新颖的结构体系,由于其独特的受力性能和较大的跨越能力,使之在现代桥梁建设中具有很好的优势。随着跨径的增大,其拱肋轴线在施工过程中的变形也将随之加大,拱肋在成桥后其材料的受压性能不能充分得到发挥。为了使成桥后的拱轴线形更加合理,本文以湖北省鄂州市南浦虹桥为依托,运用ANSYS有限元软件对拱桥的预拱度进行优化分析,同时利用MATLAB语言的优化工具箱对拱轴线进行优化,可供实际工程设计参考。
     本文主要从以下几个方面进行研究:
     1.介绍了钢管混凝土拱桥的工作机理、发展过程及研究现状,并详细分析比较了几种常用拱轴线的线型。
     2.基于预拱度的设计原理,分析了钢管混凝土拱桥拱肋预拱度设置方法及影响因素,并以实际工程中的钢管混凝土拱桥为例,比较了各种设置方法的具体适用情况。
     3.以实际工程为背景,运用ANSYS有限元软件,建立了钢管混凝土拱桥模型,并对其进行施工模拟。
     4.本文按照拱桥系杆的施工加载顺序,利用空间有限元软件对钢管混凝土拱桥在自重作用下的预拱度进行了优化。经分析比较,优化后的拱轴线受力比较均匀且与压力线偏离不大,其最大偏离量与优化前的最大偏离量相比减小了41.2%。研究表明,运用ANSYS有限元软件对钢管混凝土拱桥的拱轴线形进行优化是可行的,其优化效果较好。
     5.本文利用三次样条函数来逼近合理拱轴线,基于MATLAB语言对钢管混凝土拱桥拱轴线进行优化,优化后的结点最大偏离量比优化前的最大偏离量减小了25.0%,效果比较明显。分析表明,该方法只需编写比较简单的程序代码,即可简便求出设计变量的最优解,且结果可靠,计算效率高。
     本文的研究成果对钢管混凝土拱桥预拱度的设置和拱轴线优化具有一定的实际工程意义和参考价值。
Tied concrete-filled steel tubular arch bridges, as a novel structural system, the tied concrete-filled steel tubular arch bridge has special mechanical behavior and long-span ability, which occupies a competitive position in field of modem bridges. With the span increasing, the arch axial deformation during course of construction is also increasing, the capability in compression of arch material isn't made use of well. In order to approach the logical arch axis after the bridge finished, on the basis of Nan-pu-hong Bridge in Ezhou city, Hubei province, the pre-arch is optimized by Ansys and the axial cord of arch is optimized by Matlab optimization tool box based on the actual project, which is referenced for designing this type of structure.
     Main ideas of this paper will expound are as follows:
     1. The structure characteristic, development process, the research's actuality about tied concrete-filled steel tubular arch bridges, and the several common axial cords of arch are minutely analyzed and contrasted.
     2. Based on the design principle of pre-arch, the setting methods and the factors considered in actual setting of concrete-filled steel tubular arch bridge are introduced, and the scope of application of the setting methods has been contrasted based on the actual concrete-filled steel tubular arch bridge.
     3. The analysis model of finite element method of concrete-filled steel tubular arch bridge is established in this paper by using ANSYS based on the actual project, and the courses when the bridge is constructed are simulated.
     4. Cording to the actual bridge's construction loading of tied rod, the pre-arch under gravity force is optimized by space finite-element-method software. The axial cord of arch optimized approaches pressure line, the biggest value off axial cord of arch is lower 41.2 percent than before. The result shows it is suitable to optimize the axial cord of arch by Ansys.
     5. Cubic spline function is adopted to as approximate the logical arch axis, the axial cord of arch is optimized by Matlab optimization tool box, The result shows that the biggest value off axial cord of arch after it optimized is lower 25.0 percent than before. The optimum solution will be done by compiling simple program with this method, thus, the result is fail-safe, and the computation is efficient.
     The researching achievements are some significant and valuable to the setting of pre-arch and optimization of axial cord on concrete-filled steel tubular arch bridge in this paper in practice.
引文
[1] 李勇,陈宜言.钢—混凝土组合桥梁设计与应用[M].北京:科学出版社,2002.
    [2] 蔡绍怀.现代钢管混凝土结构[M].北京:人民交通出版社,2003.
    [3] 陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [4] 严志刚,盛洪飞.钢管混凝土拱桥的发展优势[J].东北公路,2002,25(1).
    [5] 马怀忠,王天贤.钢—混凝土组合结构[M].北京:中国建材工业出版社,2006.
    [6] 陈宝春.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [7] 花迎春,张劲泉.卡尔曼滤波法应用于悬索桥施工控制[J].公路交通科技,1999(2).
    [8] 林元培.斜拉桥[M].北京:人民交通出版社,1997.
    [9] 孙华斌,李树东,盛勇.卡尔曼滤波法在系杆拱吊杆张拉施工中的应用[J].西安公路交通大学学报,2000,20(2).
    [10] 金鹏.对偶规划法在钢管混凝土拱结构优化设计中的应用[J].建筑结构学报,2001,22(6).
    [11] 吴京,刘荣桂,苏军.对偶规划法在钢管混凝土拱桥结构优化设计中的应用[J].工程力学,1999,16(4).
    [12] 陈江华,钟善桐.钢管混凝土拱桥受力分析及截面优化设计[J].哈尔滨建筑大学学报,1995(5).
    [13] 潘朝慧.利用ANSYS实现拱轴系数m的优化设计[J].城市道路与防洪,2005(4).
    [14] 魏德敏.拱的非线形理论及其应用[M].北京:科技出版社,2004.
    [15] 顾安邦.桥梁工程(下)[M].北京:人民交通出版社,2000.
    [16] 韩林海.钢管混凝十结构[M].北京:科学出版社,2000.
    [17] 范立础.桥梁工程(上、下)[M].北京:人民交通出版社,1993.
    [18] 刘祖祥.钢管混凝土拱桥拱轴线线型的探讨(技术交流): 交通标准化·总122期.
    [19] 梁鹏.钢管混凝土拱桥拱肋预拱度的研究[D].武汉理工大学硕士论文,2004.
    [20] 蒋启平.三次样条插值确定合理拱轴线的方法探讨[J].武汉理工大学学报,2001(1).
    [21] 中华人民共和国交通部部标准.公路桥涵设计通用规范(JTJ 021-89)[S].北京:人民交通出版社,1989.
    [22] 中华人民共和国交通部部标准.公路砖石及混凝土桥涵设计规范(JYJ 022-85)[S].北京:人民交通出版社,1985.
    [23] 中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS 28:90)[S].北 京:中国计划出版社,1990.
    [24] 柏松平.拱桥预拱度的设置[J].云南公路科技,1994.
    [25] 马亮,王天鹏.现行几种预拱度设置方法的比较[J].北方交通,2006(7).
    [26] 小飒工作室.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社,2004.
    [27] 博弈创作室.APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004.
    [28] 张建民,郑皆连,秦荣.大跨度钢管混凝土拱桥吊装过程的优化计算方法[J].桥梁建设,2002(1).
    [29] 袁海庆,蒋沧如.有限单元法的理论与工程应用[M].武汉:武汉工业大学出版社,1997.
    [30] 张立明.AIgor、Ansys在桥梁工程中的应用方法与实例[M].北京:人民交通出版社,2003.
    [31] 刘涛、杨凤鹏.精通ANSYS[M].北京:清华大学出版社,2002.
    [32] 石博强,腾贵法.MATLAB数学计算范例教程[M].北京:中国铁道出版社,2004.
    [33]Edward B.Magrab等.Matlab原理与工程应用[M].北京:电子工业出版社,2002.
    [34] 王的睿,郭卫.用MATLAB优化工具箱求解机械最优化问题[J].煤矿机械,2000(7).
    [35] 李剑.钢管劲性骨架拱桥施工前期主拱肋结构优化设计[D].大连理工大学硕士论文,2005.
    [36] 刘洋.下承式钢管混凝土刚架系杆拱桥施工阶段主墩变位的研究[D].武汉理工大学硕士论文,2004.
    [37] S.GArzoumanidis, M.P.Bieniek. Finite Element Analysis of Suspension Bridges. Computer. Structure, 1985,Vol.21,No.6.
    [38] N.J.Gardef, E.R.Jacobson. Structural Behavior of Concrete Filled Steel Tubes. ACI Journal of Structure Division, 1967, 64(3).
    [39] R.B.Knowles, R. Park. Strength of Concrete Filled Steel Tubular Columns. Journal of Structural Division, ASCE, 1969, 95(12).
    [40] R.W. Furlong. Design of Steel-Encased Concrete Beam-Columns. Journal of Structure Division,ASCE,1968,94(1).
    [41] Rao.s.s. The finite Element Method in Engineering, Pergamon, Oxford, U.K., 1982.
    [42] M.Shams,M.A.Saadeghvaziri. State of the Art of Concrete Filled Steel Tubular Columns. ACI Structure Journal, 1337,94(5).
    [43] Paola Ronca, Cohn M Z. Limit analysis of reinforced concrete arch bridges. J.Struct Divis. ASCE,1979,106(ST10).
    [44] Calbouh P R, DaDeppo D A. Nonline Finite Element Analysis of Clamped Arches. J.of Structure Engineering, 1983,109;(3).
    [45] F.Seki, S.Tanaka. Construction Control System for Cable-stayedBridge. IABSE Symp. Leninggrad, Sept. 1991.
    [46] Sakai, A.Isoe, A.Umeda, YMizukami.New Development of Construction Control System in Cable-stayed Bridge. IABSE Symp.Leninggrad,Sept. 1991.
    [47] Zienkiewicz,O.C., The Finite Element Method, 3rded. Mc-Graw-Hill, 1977.
    [48] Pietnuszczak,St.& Z.Mroz, Finite Element Analysis of Deformation of Strain-Softening Materials,Int.J.forNum.Methods in Eng.,vol.l7,1981.
    [49] Boris Androic. Deformations Observed on Systems of Long Space Trusses. International Journal of Space Structures 7:3.
    [50] H.Tanaka, M.Kamei. Cable Tension Adjustment by Structural System Identification. Int. Conf. on Cable-stayed Bridges. Bangkok, 1987(11).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700