生物质燃烧过程氮和硫的迁移、转化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,直接燃烧发电是最为成熟和应用最广的生物质能源化利用技术。然而,尽管生物质中的氮和硫元素含量要低于燃煤等化石燃料中的值,但是随着环保法规的日益严格,其热化学转化利用过程中的氮氧化物和硫氧化物排放依然不容忽视。本文依托十二五国家科技支撑计划项目“先进生物质发电技术示范”,以开发先进的高效、低污染生物质燃烧发电技术为目的,采用热重红外联用分析仪、固定床反应装置和0.5MW循环流化床燃烧系统对生物质燃烧过程氮和硫的迁移、转化机理进行了系统的研究。本文主要研究内容和结论如下:
     (1)选取国内具有代表性的几种农业废弃生物质(稻草、麦秆、玉米杆、甘蔗叶桉树皮)为研究对象,对生物质热解过程中氮的析出特性进行了系统的研究。在低温热解条件下(250℃),生物质中的氮便开始有明显的析出,并且氮的析出大部分发生在400℃以前,当热解温度达到900℃时,生物质燃料中的氮仅有不到30%残留在焦炭中。NH3和HCN是热解过程中最主要的气相含氮前驱物,且二者显示出不同的析出特性。慢速热解条件下,稻草在低温阶段(<500℃)的主要含氮气体为NH3,而在高温阶段,NH3基本停止析出,HCN仍然有较为明显的生成。快速热解条件下,特别是在高温条件下,HCN的生成量要明显高于NH3的值,鉴于HCN是生成N2O的重要前驱体,推测生物质燃烧过程的N2O排放从理论上不容忽视。
     (2)采用氨基酸作为含氮前驱物制备了生物质模型焦炭化合物,并分析和研究了焦炭中的含氮结构。试验结果表明,氨基酸和纤维素混合热解过程发生了强烈的耦合反应。通过对生物质模型焦炭化合物的XPS分析发现,不论是在含氮官能团的种类,还是含氮官能团各自所占的比例方面,生物质焦都具有与低阶煤焦类似的特性。
     (3)在条件可控的固定床反应装置上研究了对生物质燃烧过程中NO和N2O的生成特性。虽然生物质燃烧过程中燃料氮中的很大一部分转化为NO,但同时也有相当程度的N2O生成率。氮氧化物的生成大部分来源于挥发份氮,因此,生物质燃料具备良好的炉内脱硝潜力。在700℃~900℃的温度范围内,燃料氮向NO的转化率先升高,在达到750℃后呈微弱的降低趋势,而其对N2O的转化率则是一直降低。NO和N2O的生成率均随着氧浓度的增加而呈现出增加趋势,并且在高温条件下,上述增加的趋势变的更为明显。
     (4)相比煤焦,生物质焦具有良好的还原NO活性,这对实际燃烧过程中降低NO排放具有重要的意义。研究结果表明,生物质焦炭对NO的还原作用很大程度上受到焦炭物理化学性质和反应条件的影响。随着焦炭制备温度的升高,其对NO的还原作用逐渐下降,而反应温度的升高则会明显导致焦炭还原NO的能力增强。
     (5)以稻草为对象,深入研究了生物质燃烧过程中硫的迁移、转化机理。试验结果表明,稻草热解过程硫的析出主要发生在低温阶段(<400℃),且主要源于有机硫的分解。稻草焦具有很强的吸附SO2的能力,且吸附的硫主要与焦炭中的碳结构结合形成较为稳定的有机硫结构,而不是直接与K、Ca等元素反应生成无机盐类。而在焦炭后续的燃烧过程中,大部分吸附在有机碳结构上的硫能转变为无机硫酸盐的形式固存在灰相中,而这一过程主要受控于焦炭中能参与硫酸盐化反应的K、Ca等无机元素的含量。
     (6)循环流化床炉内良好的气固相接触条件大大强化了燃烧过程的自固硫作用。在本文的低温燃烧模式下(<800℃),能够实现生物质燃烧SO2的零排放。提高过量空气系数能大幅度的降低CO排放,但却导致NO浓度的增加。过量空气系数对N20没有明显的影响。提高床层温度会导致NO排放的而增加,但同时却降低了N20浓度。在高温工况下,空气分级燃烧能够很大程度上的降低NO浓度,但二次风比例存在一个最佳值。在低温工况下,空气分级燃烧反而增加了NO的排放浓度。
Among various biomass utilization technologies, combustion for electricity is the most developed and widely applied because of its low costs and high reliability. However, although the nitrogen and sulfur contents in biomass fuels are relatively lower compared to coal and other fossil fuels, the nitrogen oxides and sulfur oxides during thermo-chemical conversion processes still can not be ignored with increasingly stringent environmental regulations. Funded by National Key Technology R&D Program of China (2012BAA09B01), the nitrogen and sulfur conversion mechanism during biomass combustion were systematic investigated in the present study. The main contents and conclusions in current dissertation are as follows:
     (1) Five domestic representative agricultural wastes (rice straw, wheat straw, corn stalk, sugarcane leave, eucalyptus bark) were selected for this study, to investigate the nitrogen transformation characteristics during biomass pyrolysis process. The results showed that, most part of nitrogen was released in the lower temperature range (<400℃), and there was no more than30%of fuel-N retained in the char when the the pyrolysis temperature of900℃. NH3and HCN are the main N-containing species from slow pyrolysis of rice straw. Howerver, HCN yield is much higher than that of NH3during fast pyrolysis.
     (2) Biomass model char samples was prepared by using amino acid as N precusors. It was found that strong coupling reactions occurred during co-pyrolysis of amino acids and cellulose. Morover, through XPS analysis, it was found that the model char samples have similar characteristics compared to low-grade coal char, concerning the type of nitrogen-containing functional group.
     (3) The NO and N2O formation characteristics during biomass combustion were investigated in a well-controlled fixed bed system. It showed that there was still considerable degree of N2O conversion for biomass fuels, although NO was formed in much larger amount. Most part of NO and N2O yields were formed during devolatilization stage for biomass fuels, therefore, it can be expected to achieve ultra-low emissions of nitrogen oxides by optimizing the supply of air and fuel during biomass combustion in actual boilers. In the temperature range of700℃-900℃, the fuel-N conversion to NO increased first and then reduced slightly, while the conversion to N2O showed a continuous decreasing trend. The fuel-N conversion to NO and N2O shows a general increase trend with the increase of inlet oxygen concentration, and this phenomenon seems more obvious at higher temperatures.
     (4) Compared to coal char, biomass char has excellent capability for NO reduction, which is largely influenced by char properties and reaction conditions. Chars made at lower pyrolysis temperature showed higher reactivity with NO. Moreover, the NO reduction was proportionally higher with increasing reaction temperature.
     (5) The sulfur transfonnation characteristics during rice straw combustion was deeply studied. It was found that most part of fuel-S is released in the lower temperature range (<400℃), which mainly caused by decompsition of organic sulfur. SO2can be largely captured by char in the temperature range of700-900℃. And most part of the captured sulfur was incorporated with organic char matrix rather than directly retained by inherent alkali and alkaline-earth matters in the form of inorganic salts. During char combustion, substantial amounts of the captured sulfur could be retained in the ash, which was mainly limited by the alkali and alkali-earth matters available.
     (6) Within the CFB combustor, the excellent gas-solid contact would greatly enhance the self-desulfurization effect during biomass combustion. And there was nearly no SO2emission when the combustion temperature was controlled below800℃. Increase the excess air ratio would greatly reduce CO emission, but lead to higher NO concentration, while there is no clear effect on N2O emission. Raise the bed temperature would increase NO emission, but at the same time reduce N2O concentration. In high temperature condition, air-staging combustion is conducive for NO reduction, but there exists an optimized secondary air ratio. However, in the low temperature condition, air-staging combustion increase NO emission on the contrary.
引文
[1]谢克昌,李忠.煤基燃料的制备与应用.化工学报,2004,55(9):1393-1399.
    [2]Demirbas, A. Combustion characteristics of different biomass fuels. Progress in energy and combustion science,2004,30(2):219-230.
    [3]Werther, J., M. Saenger, E.U. Hartge, T. Ogada, Z. Siagi. Combustion of agricultural residues. Progress in energy and combustion science,2000,26(1):1-27.
    [4]吴创之,马隆龙.生物质能现代化利用技术.2003:化学工业出版社.
    [5]袁振宏,吴创之,马隆龙.生物质能利用原理与技术.2005:化学工业出版社.
    [6]骆仲泱,周劲松,王树荣,余春江,方梦祥,岑可法.中国生物质能利用技术评价.中国能源,2004,26(9):3942.
    [7]Yin, C, L.A. Rosendahl, S.K. Kaer. Grate-firing of biomass for heat and power production. Progress in energy and combustion science,2008,34(6):725-754.
    [8]秦建光,秸秆类生物质流态化燃烧特性研究.2009,浙江大学.
    [9]刘荣厚,牛卫生,张大雷.生物质热化学转换技术.2005:化学工业出版社.
    [10]Yu, C, J. Qin, H. Nie, M. Fang, Z. Luo. Experimental research on agglomeration in straw-fired fluidized beds. Applied Energy,2011,88(12):4534-4543.
    [11]Yu, C., J. Qin, J. Xu, H. Nie, Z. Luo, K. Cen. Straw combustion in circulating fluidized bed at low-temperature:Transformation and distribution of potassium. The Canadian Journal of Chemical Engineering,2010,88(5):874-880.
    [12]李廉明,余春江,柏继松.中国秸秆直燃发电技术现状.化工进展,2009,29:84-85.
    [13]Sami, M., K. Annamalai, M. Wooldridge. Co-firing of coal and biomass fuel blends. Progress in energy and combustion science,2001,27(2):171-214.
    [14]Pedersen, L.S., H.P. Nielsen, S. Kiil, L.A. Hansen, K. Dam-Johansen, F. Kildsig. J. Christensen, P. Jespersen. Full-scale co-firing of straw and coal. Fuel,1996,75(13):1584-1590.
    [15]Koppejan. J., S. van van Loo. The handbook of biomass combustion and co-firing.2012: Rout ledge.
    [16]Nussbaumer, T. Combustion and co-combustion of biomass:fundamentals, technologies, and primary measures foremission reduction. Energy & fuels,2003,17(6):1510-1521.
    [17]Khan. A., W. De Jong. P. Jansens, H. Spliethoff. Biomass combustion in fluidized bed boilers:Potential problems and remedies. Fuel processing technology,2009,90(1):21-50.
    [18]Permchart, W., V.I. Kouprianov. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels. Bioresource Technology,2004, 92(1):83-91.
    [19]Qian, F., C. Chyang, K. Huang, J. Tso. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor. Bioresource Technology, 2011,102(2):1892-1898.
    [20]Kuprianov, V.I., R. Kaewklum, K. Sirisomboon, P. Arromdee, S. Chakritthakul. Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk. Applied Energy,2010,87(9):2899-2906.
    [21]Tarelho, L.A.C., D.S.F. Neves, M.A.A. Matos. Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor. Biomass and Bioenergy,2011,35(4):1511-1523.
    [22]Zhou, H., A.D. Jensen, P. Glarborg, A. Kavaliauskas. Formation and reduction of nitric oxide in fixed-bed combustion of straw. Fuel,2006,85(5):705-716.
    [23]Sander, B., N. Henriksen, O. Larsen, A. Skriver, C. Ramsgaard-Nielsen, J. Norklit Jensen, K. Staerkind, H. Livbjerg, M. Thellefsen, K. Dam-Johansen. Emissions, corrosion and alkali chemistry in straw-fired combined heat and power plants.in 1st World Conference on Biomass for Energy and Industry.2000.
    [24]Knudsen, J.N., P.A. Jensen, W. Lin, F.J. Frandsen, K. Dam-Johansen. Sulfur transformations during thermal conversion of herbaceous biomass. Energy & fuels,2004,18(3): 810-819.
    [25]Wolf, K.J., A. Smeda, M. Muller, K. Hilpert. Investigations on the influence of additives for SO2 reduction during high alkaline biomass combustion. Energy & fuels,2005,19(3):820-824.
    [26]Jensen, P.A., F. Frandsen, K. Dam-Johansen. HC1 and SO:emissions from full-scale biomass-fired boilers. Proceedings of the Power Production in the 21 st Century:Impacts of Fuel Quality and Operations,2001.
    [27]何念祖,孟赐福.植物营养原理.上海科学技术出版杜2B6-290,1987.
    [28]苟进胜,常建民,任学勇.生物质热解过程中氮元素迁移规律研究进展.科技导报,2012,30(014):70-74.
    [29]Aho,M.J.,J.P. Hamalainen. J.L. Tummavuori. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion. Combustion and Flame,1993,95(1):22-30.
    [30]Hamalainen, J.P., M.J. Aho. Effect of fuel composition on the conversion of volatile solid fuel-N to N2O and NO. Fuel,1995,74(12):1922-1924.
    [31]Leppalahti, J. Formation of NH3 and HCN in slow-heating-rate inert pyrolysis of peat, coal and bark. Fuel,1995,74(9):1363-1368.
    [32]Hansson, K.M., J. Samuelsson, L.E. Amand, C. Tullin. The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone. Fuel,2003,82(18):2163-2172.
    [33]Hansson, K.M., J. Samuelsson, C. Tullin, L.E. Amand. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combustion and Flame,2004,137(3):265-277.
    [34]Ren, Q., C. Zhao. NOx and N2O Precursors from Biomass Pyrolysis:Nitrogen Transformation from Amino Acid. Environmental science & technology,2012,46(7): 4236-4240.
    [35]Ren, Q.,C. Zhao, X. Chen, L. Duan, Y. Li, C. Ma. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose, hemicellulose and lignin. Proceedings of the Combustion Institute,2011,33(2):1715-1722.
    [36]Yuan, S., Z. Zhou, J. Li, X. Chen, F. Wang. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis. Energy & fuels,2010,24(11):6166-6171.
    [37]Becidan, M.,(?). Skreiberg, J.E. Hustad. NOx and N2O Precursors (NH3 and HCN) in Pyrolysis of Biomass Residues. Energy & fuels,2007,21 (2):1173-1180.
    [38]Li, J., Z. Wang,X. Yang, L. Hu, Y. Liu, C. Wang. Evaluate the pyrolysis pathway of glycine and glycylglycine by TG-FTIR. Journal of Analytical and Applied Pyrolysis,2007, 80(1):247-253.
    [39]岑可法.高等燃烧学.2002:浙江大学出版社.
    [40]Glarborg, P., A. Jensen, J.E. Johnsson. Fuel nitrogen conversion in solid fuel fired systems. Progress in energy and combustion science,2003,29(2):89-113.
    [41]Hansson, K.M., L.E. Amand, A. Habermann, F. Winter. Pyrolysis of poly-1-leucine under combustion-like conditions. Fuel,2003,82(6):653-660.
    [42]Hamalainen, J.P., M.J. Aho, J.L. Tummavuori. Formation of nitrogen oxides from fuel-N through HCN and NH3:a model-compound study. Fuel,1994,73(12):1894-1898.
    [43]Di Nola, G., W. De Jong, H. Spliethoff. TG-FTIR characterization of coal and biomass single fuels and blends under slow heating rate conditions:Partitioning of the fuel-bound nitrogen. Fuel processing technology,2010,91(1):103-115.
    [44]Giuntoli, J., W. De Jong, S. Arvelakis, H. Spliethoff, A. Verkooijen. Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis:Dry distiller's grains with solubles (DDGS) and chicken manure. Journal of Analytical and Applied Pyrolysis,2009,85(1):301-312.
    [45]Tan, L.L., C.Z. Li. Formation of Nox and SOx precursors during the pyrolysis of coal and biomass. Part Ⅱ. Effects of experimental conditions on the yields of NOx and SOx precursors from the pyrolysis of a Victorian brown coal. Fuel,2000,79(15):1891-1897.
    [46]Stubenberger, G., R. Scharler, S. Zahirovic, I. Obernberger. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. Fuel, 2008,87(6):793-806.
    [47]Tan, L.L., C.Z. Li. Formation of Nox and Sox precursors during the pyrolysis of coal and biomass. Part I. Effects of reactor configuration on the determined yields of HCN and NH3 during pyrolysis. Fuel,2000,79(15):1883-1889.
    [48]Tian, F.J., S. Zhang, J. Hayashi, C.Z. Li. Formation of NOx precursors during the pyrolysis of coal and biomass. Part X:Effects of volatile-char interactions on the conversion of coal-N during the gasification of a Victorian brown coal in O2 and steam at 800° C. Fuel,2010,89(5): 1035-1040.
    [49]Yuan, S., X. Chen, W. Li, H. Liu, F. Wang. Nitrogen conversion under rapid pyrolysis of two types of aquatic biomass and corresponding blends with coal. Bioresource Technology, 2011,102(21):10124-10130.
    [50]Yuan, S., Z. Zhou, J. Li, X. Chen, F. Wang. HCN and NH3 released under rapid pyrolysis of biomass/coal blends. Journal of Analytical and Applied Pyrolysis,2011.
    [51]Ren, Q., C. Zhao, X. Wu,C. Liang, X. Chen,J. Shen, G. Tang, Z. Wang. Effect of mineral matter on the formation of NOx precursors during biomass pyrolysis. Journal of Analytical and Applied Pyrolysis.2009,85(1):447-453.
    [52]Winter, F., C. Wartha, H. Hofbauer. NO and N2O formation during the combustion of wood, straw, malt waste and peat. Bioresource Technology,1999,70(1):39-49.
    [53]任维,肖显斌,吕俊复,岳光溪.在流化床燃烧条件下焦炭氮转化的实验研究.中国矿业大学学报,2003,32(3):259-262.
    [54]任维,张建胜,姜孝国,吕俊复,姚纪恒,岳光溪.焦炭流化床燃烧条件下氧化亚氮生成途径的实验研究.环境科学学报,2003,23(3):408-410.
    [55]任维,吕俊复,张建胜,岳光溪.焦炭流化床燃烧条件下氧化亚氮生成过程的实验研究.热能动力工程,2005,20(1):18-21.
    [56]de Diego, L.F., C.A. Londono, X.S. Wang, B.M. Gibbs. Influence of operating parameters on Nox and N2O axial profiles in a circulating fluidized bed combustor. Fuel,1996,75(8): 971-978.
    [57]Leckner, B. Fluidized bed combustion:mixing and pollutant limitation. Progress in energy and combustion science,1998,24(1):31-61.
    [58]张磊,杨学民,谢建军,丁同利,姚建中,宋文立,林伟刚.循环流化床燃煤过程NOx和N2O产生-控制研究进展[J].过程工程学报,2006,6(6):1004-1010.
    [59]Lyngfelt, A., B. Leckner. Combustion of wood-chips in circulating fluidized bed boilers—NO and CO emissions as functions of temperature and air-staging. Fuel,1999,78(9): 1065-1072.
    [60]Houshfar, E., y. Skreiberg, T. L v s, D. Todorovi, L. S rum. Effect of Excess Air Ratio and Temperature on NOx Emission from Grate Combustion of Biomass in the Staged Air Combustion Scenario. Energy & fuels,2011.
    [61]Chyang, C.S., F.P. Qian, Y.C. Lin, S.H. Yang. NO and N2O emission characteristics from a pilot scale vortexing fluidized bed combustor firing different fuels. Energy & fuels,2008,22(2): 1004-1011.
    [62]Kuprianov, V.I., K. Janvijitsakul, W. Permchart. Co-firing of sugar cane bagasse with rice husk in a conical fluidized-bed combustor. Fuel,2006,85(4):434-442.
    [63]Kuprianov, V.I., W. Permchart, K. Janvijitsakul. Fluidized bed combustion of pre-dried Thai bagasse. Fuel processing technology,2005,86(8):849-860.
    [64]Armesto, L, A. Bahillo, K. Veijonen, A. Cabanillas, J. Otero. Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass and Bioenergy,2002,23(3):171-179.
    [65]Fang, M., L. Yang, G. Chen. Z. Shi, Z. Luo, K. Cen. Experimental study on rice husk combustion in a circulating fluidized bed. Fuel processing technology,2004,85(11):1273-1282.
    [66]Lin, W., J.E. Johnsson, K. Dam-Johansen, C.M. van den Bleek. Interaction between emissions of sulfur dioxide and nitrogen oxides in fluidized bed combustion. Fuel.1994,73(7): 1202-1208.
    [67]Johnsson, J.E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel,1994,73(9):1398-1415.
    [68]Van der Lans, R., P. Glarborg, K. Dam-Johansen. Influence of process parameters on nitrogen oxide formation in pulverized coal burners. Progress in energy and combustion science, 1997,23(4):349-377.
    [69]Amand, L.E., B. Leckner. Influence of fuel on the emission of nitrogen oxides (NO and N2O) from an 8-MW fluidized bed boiler. Combustion and Flame,1991,84(1):181-196.
    [70]Kramlich, J., R. Nihart, S. Chen, D. Pershing, M. Heap. Behavior of N2O in staged pulverized coal combustion. Combustion and Flame,1982,48:101-104.
    [71]Young, B., M. Mann, M. Collings. Formation of NOx and N2O in the Fluidized-Bed Combustion of High-and Low-Rank Coals. COAL SCIENCE AND TECHNOLOGY, AMSTERDAM,1993:419-419.
    [72]Lyngfelt, A., B. Leckner. SO2 capture and N2O reduction in a circulating fluidized-bed boiler:influence of temperature and air staging. Fuel,1993,72(11):1553-1561.
    [73]Leckner, B., L.E. Amand, K. Lucke, J. Werther. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel,2004,83(4):477-486.
    [74]Giuntoli, J., W. de Jong, A.H.M. Verkooijen, P. Piotrowska, M. Zevenhoven, M. Hupa. Combustion characteristics of biomass residues and biowastes:fate of fuel nitrogen. Energy & fuels,2010.
    [75]Barisic, V., F. Klingstedt, P. Kilpinen, M. Hupa. Kinetics of the catalytic decomposition of N:O over bed materials from industrial circulating fluidized-bed boilers burning biomass fuels and wastes. Energy & fuels,2005,19(6):2340-2349.
    [76]Barisic, V., A.K. Neyestanaki, F. Klingstedt, P. Kilpinen, K. Eranen. M. Hupa. Catalytic decomposition of N2O over the bed material from circulating fluidized-bed (CFB) boilers burning biomass fuels and wastes. Energy & fuels,2004,18(6):1909-1920.
    [77]Bick, J.A.. T. Leustek. Plant sulfur metabolism—the reduction of sulfate to sulfite. Current opinion in plant biology,1998,1(3):240-244.
    [78]Obernberger, I., T. Brunner, G. Barnthaler. Chemical properties of solid biofuels—significance and impact. Biomass and Bioenergy,2006,30(11):973-982.
    [79]Dayton, D., B. Jenkins, S. Turn, R. Bakker, R. Williams, D. Belle-Oudry, L. Hill. Release of inorganic constituents from leached biomass during thermal conversion. Energy & fuels, 1999,13(4):860-870.
    [80]Johansen, J.M., J.G. Jakobsen, F.J. Frandsen, P. Glarborg. Release of K, Cl, and S during Pyrolysis and Combustion of High-Chlorine Biomass. Energy & fuels,2011,25(11): 4961-4971.
    [81]van Lith, S.C., V. Alonso-Ramirez, P.A. Jensen, F.J. Frandsen, P. Glarborg. Release to the gas phase of inorganic elements during wood combustion. Part 1:development and evaluation of quantification methods. Energy& fuels,2006,20(3):964-978.
    [82]Knudsen, J.N., P.A. Jensen, W. Lin, K. Dam-Johansen. Secondary capture of chlorine and sulfur during thermal conversion of biomass. Energy & fuels,2005,19(2):606-617.
    [83]Aho, M.J., J.P. Hamalainen, J.L. Tummavuori. Importance of solid fuel properties to nitrogen oxide formation through HCN and NH3 in small particle combustion. Combustion and Flame,1993,95(1-2):22-30.
    [84]Baxter, L.L., R.E. Mitchell, T.H. Fletcher, R.H. Hurt. Nitrogen release during coal combustion. Energy & fuels,1996,10(1):188-196.
    [85]Friebel, J., R. Kopsel. The fate of nitrogen during pyrolysis of German low rank coals—a parameter study. Fuel,1999,78(8):923-932.
    [86]Nelson, P.F., A.N. Buckley, M.D. Kelly. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx precursors (HCN and NH3). in Symposium (International) on Combustion.1992:Elsevier.
    [87]宋国良,吕清刚,周俊虎,岑可法.煤粉浓度对HCN与NH3析出特性的影响.中国电机工程学报,2008,28(17):49-54.
    [88]谢建军,杨学民,朱文魁,丁同利,宋文立,林伟刚.煤炭解耦燃烧过程N迁移与转化玉:热解阶段煤N的释放规律.燃料化学学报,2012,40(8).
    [89]Wu, Z., Y. Ohtsuka. Nitrogen distribution in a fixed bed pyrolysis of coals with different ranks:formation and source of N2. Energy & fuels,1997,11 (2):477-482.
    [90]Wojtowicz, M.A., J.R. Pels, J.A. Moulijn. The fate of nitrogen functionalities in coal during pyrolysis and combustion. Fuel,1995,74(4):507-516.
    [91]Ledesma, E.B., C.Z. Li, P.F. Nelson, J.C. Mackie. Release of HCN, NH3, and HNCO from the thermal gas-phase cracking of coal pyrolysis tars. Energy & fuels,1998,12(3):536-541.
    [92]Rudiger, H., U. Greul, H. Spliethoff, K.R.G. Hein. Distribution of fuel nitrogen in pyrolysis products used for reburning. Fuel,1997,76(3):201-205.
    |93]Li, C.Z., L.L. Tan. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis. Fuel, 2000,79(15):1899-1906.
    [94]Xie, Z., J. Feng, W. Zhao, K.C. Xie, K.C. Pratt, C.Z. Li. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. Fuel,2001,80(15):2131-2138.
    [95]Chang, L., Z. Xie, K.C. Xie. K.C. Pratt, J. Hayashi, T. Chiba, C.Z. Li. Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCN. Fuel,2003,82(10):1159-1166.
    [96]Leppalahti, J., T. Koljonen. Nitrogen evolution from coal, peat and wood during gasification:Literature review. Fuel processing technology,1995,43(1):1-45.
    [97]Kambara, S., T. Takarada, Y. Yamamoto, K. Kato. Relation between functional forms of coal nitrogen and formation of nitrogen oxide (NOx) precursors during rapid pyrolysis. Energy & fuels,1993,7(6):1013-1020.
    [98]Kelemen, S., M. Gorbaty, P. Kwiatek. Quantification of nitrogen forms in Argonne premium coals. Energy & fuels,1994,8(4):896-906.
    [99]姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究.西安交通大学学报,2003,37(7):759-763.
    [100]姚明宇,刘艳华,车得福.氧对宜宾煤中燃料氮迁移特性的影响.燃烧科学与技术,2004,1 0(4):336-340.
    [101]Giuntoli, J., J. Gout, A.H.M. Verkooijen, W. de Jong. Characterization of Fast Pyrolysis of Dry Distiller's Grains (DDGS) and Palm Kernel Cake Using a Heated Foil Reactor:Nitrogen Chemistry and Basic Reactor Modeling. Industrial & engineering chemistry research,2011, 50(8):4286-4300.
    [102]Lang, T., A.D. Jensen, P.A. Jensen. Retention of organic elements during solid fuel pyrolysis with emphasis on the peculiar behavior of nitrogen. Energy & fuels,2005,19(4): 1631-1643.
    [103]Zheng, Y., A.D. Jensen, P. Glarborg, K. Sendt, B.S. Haynes. Heterogeneous fixation of N2: Investigation of a novel mechanism for formation of NO. Proceedings of the Combustion Institute,2009,32(2):1973-1980.
    [104]Fu, P., S. Hu, J. Xiang, L. Sun, T. Yang, A. Zhang J. Zhang. Mechanism study of rice straw pyrolysis by Fourier transform infrared technique. Chinese Journal of Chemical Engineering,2009,17(3):522-529.
    [105]Raveendran, K., A. Ganesh, K.C. Khilar. Pyrolysis characteristics of biomass and biomass components. Fuel,1996,75(8):987-998.
    [106]任强强,赵长遂.升温速率对生物质热解的影响.燃料化学学报,2008,36(2):232-235.
    [107]Liu, Q., S. Wang, Y. Zheng, Z. Luo, K. Cen. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. Journal of Analytical and Applied Pyrolysis,2008,82(1):170-177.
    [108]Ren, Q., C. Zhao, X. Wu, C. Liang, X. Chen, J. Shen, Z. Wang. Formation of NOx precursors during wheat straw pyrolysis and gasification with O2 and CO2. Fuel,2010,89(5): 1064-1069.
    [109]Ren, Q., C. Zhao, X. Wu, C. Liang, X. Chen, J. Shen, Z. Wang. Catalytic effects of Fe, Al and Si on the formation of NOx precursors and HCl during straw pyrolysis. Journal of thermal analysis and calorimetry,2010,99(1):301-306.
    [110]Stanczyk, K., R. Dziembaj, Z. Piwowarska, S. Witkowski. Transformation of nitrogen structures in carbonization of model compounds determined by XPS. Carbon.1995,33(10): 1383-1392.
    [111]Ren, Q., C. Zhao, L. Duan, X. Chen. NO formation during agricultural straw combustion. Bioresource Technology,2011.
    [112]Hayhurst, A., A. Lawrence. The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combustion and Flame,1996, 105(3):341-357.
    [113]Ogawa, M., N. Yoshida. Nitrous oxide emission from the burning of agricultural residue. Atmospheric Environment,2005,39(19):3421-3429.
    [114]Leckner, B., M. Karlsson. Gaseous emissions from circulating fluidized bed combustion of wood. Biomass and Bioenergy,1993,4(5):379-389.
    [115]Loffler, G., V.J. Wargadalam, F. Winter. Catalytic effect of biomass ash on CO,CH4 and HCN oxidation under fluidised bed combustor conditions. Fuel,2002,81(6):711-717.
    [116]Wang, X., Y. Xiong, H. Tan, Y. Liu, Y. Niu, T. Xu. Influences of CO and O2 on the Reduction of N2O by Biomass Char. Energy & fuels,2012.
    [117]Wang, X., J. Si, H. Tan, Q. Zhao, T. Xu. Kinetics investigation on the reduction of NO using straw char based on physicochemical characterization. Bioresource Technology,2011.
    [118]Dong, L., S. Gao, W. Song, G. Xu. Experimental study of NO reduction over biomass char. Fuel processing technology,2007,88(7):707-715.
    [119]Zhao, Z., W. Li, J. Qiu, X. Wang, B. Li. Influence of Na and Ca on the emission of NOx during coal combustion. Fuel.2006,85(5):601-606.
    [120]Wargadalam, V., G. Loffler, F. Winter, H. Hofbauer. Homogeneous formation of NO and N2O from the oxidation of HCN and NH3 at 600-1000°C. Combustion and Flame,2000,120(4): 465-478.
    [121]Thomas,K.M. The release of nitrogen oxides during char combustion. Fuel,1997,76(6): 457-473.
    [122]Tullin, C., A. Sarofim, J. Beer. Formation of NO and N2O in coal combustion:The relative importance of volatile and char nitrogen. Journal of the Institute of Energy,1993,66:207-215.
    [123]De Soete, G. Heterogeneous N2O and NO formation from bound nitrogen atoms during coal char combustion.in Symposium (International) on Combustion.1991:Elsevier.
    [124]Shimizu, T., Y. Sazawa, T. Adschiri, T. Furusawa. Conversion of char-bound nitrogen to nitric oxide during combustion. Fuel,1992,71(4):361-365.
    [125]Garijo,E.G., A.D. Jensen, P. Glarborg. Kinetic study of NO reduction over biomass char under dynamic conditions. Energy & fuels,2003,17(6):1429-1436.
    [126]Guerrero, M., A. Millera, M.U. Alzueta, R. Bilbao. Experimental and kinetic study at high temperatures of the NO reduction over eucalyptus char produced at different heating rates. Energy & fuels,2011,25(3):1024-1033.
    [127]Dong, L., S. Gao,G. Xu. NO reduction over biomass char in the combustion process. Energy & fuels,2009,24(1):446-450.
    [128]Winter, F., C. Wartha, G. Loffler, H. Hofbauer. The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions.in Symposium (International) on Combustion.1996:Elsevier.
    [129]Goel, S., B. Zhang, A.F. Sarofim. NO and N-20 Formation During Char Combustion:Is It HCN or Surface Attached Nitrogen? Combustion and Flame,1996,104(1):213.
    [130]Hayhurst, A., A. Lawrence. The amounts of NO and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char. Combustion and Flame,1996, 105(3):341-357.
    [131]Orikasa, H., K. Matsuoka, T. Kyotani, A. Tomita. HCN and N2 formation mechanism during NO/char reaction. Proceedings of the Combustion Institute,2002,29(2):2283-2289.
    [132]Miettinen, H., M. Abul-Milh. N2O formation from combustion of char particles with NO. Energy & fuels,1996,10(2):421-424.
    [133]Molina, A., J. Murphy, F. Winter, B. Haynes, L. Blevins, C. Shaddix. Pathways for conversion of char nitrogen to nitric oxide during pulverized coal combustion. Combustion and Flame,2009,156(3):574-587.
    [134]Knudsen, J.N., P.A. Jensen, K. Dam-Johansen. Transformation and release to the gas phase of Cl, K. and S during combustion of annual biomass. Energy& fuels,2004,18(5):1385-1399.
    [135]秦建光,余春江,李双江,马孝琴,王勤辉,方梦祥,骆仲泱.循环流化床秸秆燃烧中的碱金属迁徙转化研究.太阳能学报,2009,30(5):667-672.
    [136]秦建光,余春江,聂虎,李廉明,骆仲泱,岑可法.秸秆燃烧中温度对钾转化与释放的影响.太阳能学报,2010,31(005):540-544.
    [137]Teng, H., E.M. Suuberg, J.M. Calo. Studies on the reduction of nitric oxide by carbon:the nitric oxide-carbon gasification reaction. Energy & fuels,1992,6(4):398-406.
    [138]Suzuki, T., T. Kyotani, A. Tomita. Study on the carbon-nitric oxide reaction in the presence of oxygen. Industrial & engineering chemistry research,1994,33(11):2840-2845.
    [139]Chen, W.Y., L. Ma. Effect of heterogeneous mechanisms during reburning of nitrogen oxide. AIChE Journal,1996,42(7):1968-1976.
    [140]Aarna,I., E.M. Suuberg. A review of the kinetics of the nitric oxide-carbon reaction. Fuel, 1997.76(6):475-491.
    [141 J(?)rensen, C.O., J.E. Johnsson, A. Jensen. Reduction of NO over wheat straw char. Energy & fuels,2001,15(6):1359-1368.
    [142]Yin, Y., J. Zhang, C. Sheng. Effect of pyrolysis temperature on the char micro-structure and reactivity of NO reduction. Korean Journal of Chemical Engineering,2009,26(3):895-901.
    [143]Adanez, J., F. Luis, F. Garcia-Labiano, A. Abad, J.C. Abanades. Determination of biomass char combustion reactivities for FBC applications by a combined method. Industrial & engineering chemistry research,2001,40(20):4317-4323.
    [144]Campbell, P.A., R.E. Mitchell, L. Ma. Characterization of coal char and biomass char reactivities to oxygen. Proceedings of the Combustion Institute,2002,29(1):519-526.
    [145]Jones, J., P. Patterson, M. Pourkashanian, A. Williams. Approaches to modelling heterogeneous char NO formation/destruction during pulverised coal combustion. Carbon,1999, 37(10):1545-1552.
    [146]Lang, T., P.A. Jensen, J.N. Knudsen. The effects of Ca-based sorbents on sulfur retention in bottom ash from grate-fired annual biomass. Energy & fuels,2006,20(2):796-806.
    [147]Khalil, R.A., M. Seljeskog, J.E. Hustad. Sulfur abatement in pyrolysis of straw pellets. Energy & fuels,2008,22(4):2789-2795.
    [148]Ohman, M., A. Nordin, B.J. Skrifvars, R. Backman, M. Hupa. Bed agglomeration characteristics during fluidized bed combustion of biomass fuels. Energy & fuels,2000,14(1): 169-178.
    [149]Olofsson, G., Z. Ye,I. Bjerle, A. Andersson. Bed agglomeration problems in fluidized-bed biomass combustion. Industrial & engineering chemistry research,2002,41(12):2888-2894.
    [150]Cheng, J., J. Zhou, J. Liu, Z. Zhou, Z. Huang, X. Cao, X. Zhao, K. Cen. Sulfur removal at high temperature during coal combustion in furnaces:a review. Progress in energy and combustion science,2003,29(5):381-405.
    [151]王申祥,付志新,郭占成.焦炭中硫的空间分布规律研究.燃料化学学报,2006,34(2):142-145.
    [152]刘艳华,车得福,徐通模.利用X射线光电子能谱确定煤及其残焦中硫的形态.西安交通大学学报,2004,38(1):101-104.
    [153]Liu, H., B.M. Gibbs. Modelling of NO and N2O emissions from biomass-fired circulating fluidized bed combustors. Fuel.2002.81(3):271-280.
    [154]Houshfar, E.,(?). Skreiberg,D. Todorovic,A. Skreiberg, T. L(?)vas. A. Jovovic, L. Sorum. NOx emission reduction by staged combustion in grate combustion of bio mass fuels and fuel mixtures. Fuel,2012.
    [155]Fournel, S., S. Godbout, M. Heitz, P. Brassard, J. Palacios. Gaseous Emissions from Agricultural Biomass Combustion:Influence of Biomass Characteristics.2012.
    [156]Tullin, C.J., S. Goel, A. Morihara, A.F. Sarofim, J.M. Beer. Nitrogen oxide (NO and N2O) formation for coal combustion in a fluidized bed:effect of carbon conversion and bed temperature. Energy & fuels,1993,7(6):796-802.
    [157]Houshfar, E.,(?). Skreiberg, T. L(?)vas, D. Todorovic, L. S(?)rum. Effect of Excess Air Ratio and Temperature on NOx Emission from Grate Combustion of Biomass in the Staged Air Combustion Scenario. Energy & fuels,2011,25(10):4643-4654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700