冷应激对雏鹅HPA和HPT轴活性影响及其相关基因表达调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应激是机体对各种刺激所产生的一种非特异性应答反应。劣性应激可引起畜禽生产性能下降,诱发多种疾病,甚至造成死亡。寒冷是雏禽最普遍的应激原之一,由此引起的直接和间接经济损失是制约北方畜牧业发展的重要因素,研究动物冷应激发生机制,探索科学的应激监测方法,对提高应激预防水平,保障畜牧业发展有重要意义。冷应激对动物HPA和HPT轴为主的神经内分泌系统产生重要影响。然而未见冷应激对雏鹅HPA、HPT轴的影响及其相关基因表达调控的研究报道。本研究以7日龄皖西白鹅为试验对象,研究于12℃±1℃条件下进行急性冷应激处理时对HPA、HPT轴的影响。利用放射免疫法、FQ-RT-PCR等技术动态考察冷应激反应中血液生理生化指标、应激激素相关基因TRH、TSH、CRH、ACTH和HSP70基因mRNA的变化规律。同时采用RT-PCR技术克隆测序HSP70基因cDNA序列,并进行生物信息学分析。为深入研究动物冷应激机理,动物冷应激的早期监测和防治提供重要实验依据。研究主要取得如下成果:
     1.雏鹅受到冷应激时血相指标变化的测定结果
     以7日龄皖西白鹅为试验对象,研究于12℃±1℃条件下进行急性冷应激对皖西白鹅雏鹅某些血相指标变化的影响。研究结果表明,全血中红细胞(RBC)、红细胞压积(HCT)、血红蛋白(HGB)、红细胞分布宽度(RDW)总体呈减少趋势,且RBC在冷暴露3h、6h和冷暴露结束后0.5h和3h极显著低于冷应激前的水平;HCT和HGB在冷暴露3h、6h和冷暴露结束后3h时显著低于冷应激前的水平;RDW在冷暴露6h后至结束冷暴露后12h期间均极显著低于应激前水平(P<0.01)。白细胞(WBC)在冷暴露12h和24h时显著升高。淋巴细胞绝对值(LYM)在冷暴露6h时显著低于应激前的水平(P<0.05),淋巴细胞百分比(LYM%)在冷暴露后3h、6h和12h时显著升高(P<0.01),但冷应激24h时淋巴细胞百分比已经恢复正常,雏鹅已经开始适应。首次获得了皖西白鹅血液生理指标参考值,为兽医临床诊断与治疗提供了重要依据之一
     2.雏鹅冷应激时HPA、HPT轴应激激素测定的结果
     研究于12℃±1℃条件下进行急性冷应激处理时对雏鹅下丘脑-垂体-肾上腺皮质(HPA)轴和下丘脑-垂体-甲状腺(HPT)轴的影响。结果表明,FT3在冷暴露6h和12h时显著升高。FT4在冷暴露3h显著升高(P<0.01),随后逐渐下降,至结束冷暴露后12h显著降低(P<0.05)。T3在冷暴露过程中逐渐升高,在冷暴露6h和结束冷暴露后0.5h和3h时明显高于应激前水平。T4在冷暴露6h和结束冷暴露后6h时达到峰值。Cor在冷暴露3h时显著升高(P<0.05),并在冷暴露期间保持高水平。血清中ACTH随冷暴露时间延长而逐渐升高,在冷应激6h时显著高于应激前的水平(P<0.01),至冷暴露结束后3h时,ACTH再次明显升高(P<0.05)。ACTH、Cor和FT3反应敏感,初步认为它们可以作为评估冷应激程度的辅助指标。
     3.雏鹅冷应激反应中HPA、HPT轴应激激素相关基因表达调控规律
     采用RT-PCR技术对HPA、HPT轴应激激素相关基因TRH、TSH、CRH和ACTH克隆、测序,同源性比较,鹅TSH基因测序序列与GenBank上鹅TSH序列同源性为100%。鹅TRH、CRH、ACTH基因序列与GenBank上鸡TRH、CRH、ACTH基因序列同源性分别为94%、95%和95%。利用实时荧光定量逆转录PCR技术分析这些基因的表达调控规律。下丘脑TRH基因mRNA转录量在冷应激0.5h、3h、6h、9h、18h与应激结束后1h、6h和12h显著升高,其他时间内均下降到室温时的转录水平。垂体TSH基因nRNA转录量在冷应激1.5h到12h期间显著升高,应激12h时转录水平达到最高点,而其他应激时间均降低到应激前的水平,应激结束后1h到6h期间垂体TSH基因mRNA转录水平也被显著升高,冷处理结束后9h-24h已恢复到应激前的正常水平。下丘脑CRH基因nRNA转录量在冷应激3h、9h、18h时与应激结束后0.5h、1h和9h显著升高,其他时间点降到应激前的正常水平。肾上腺ACTH基因mRNA转录水平在冷应激1.5h-9h、18h时显著升高,其他时间点均迅速下降到应激前水平;冷处理结束后0.5h和3h,由于又突然受到热的室温应激,ACTH基因mRNA转录量又显著升高,其他时间点降到应激前的正常水平。
     下丘脑TRH基因mRNA表达呈现波动性变化趋势,但表达量均不超过1.5,说明下丘脑TRH基因是负调控的。下丘脑CRH、垂体TSH和肾上腺ACTH基因1nRNA的表达量分别在2.27-7.76、1.75-6.17、5.5-14.83范围内,总体呈上升趋势,说明TSH、CRH和ACTH基因均是冷应激反应时的正调控基因。
     4.鹅HSP70基因的克隆和生物信息学分析
     首次克隆了皖西白鹅HSP70基因cDNA序列2181bp,包括CDS全序列1905bp和3’UTR序列276bp,编码634个氨基酸。与GenBank上乌棕鹅HSP70基因cDNA序列进行比对分析,皖西白鹅HSP70基因共存在15个核苷酸变异(均在CDS区),只有1个蛋白质位点的差异,编码区同源性序列比对,与乌棕鹅同源性达99%,与家鸭、鸡、日本鹌鹑HSP70基因编码区同源性序列同源性分别达97%、92%和92%,与哺乳动物同源性均高于82%,进一步证实了HSP70在不同生物间的高度保守性。
     利用生物信息学预测鹅HSP70蛋白质的结构与功能,结果表明,HSP70蛋白质以亲水性区域为主;该蛋白具有丰富的B细胞抗原位点;抗原表位区域、柔韧性区域和表面可能性区域出现了较多的重叠区,这些区域相对易于形变,便于抗原、抗体的自由结合,可能是抗原位点的富集区;该蛋白二级结构以α-螺旋和无规则卷曲为主,无明显的跨膜螺旋,含有34个磷酸化位点,无糖基化位点,推测其可能在细胞信号转导与调控中发挥重要作用。
     5.雏鹅冷应激反应中HPT、HPTA轴HSP70mRNA的动态表达规律
     实时荧光定量逆转录PCR法检测结果表明,下丘脑HSP70mRNA转录量在冷应激(12℃±1℃)1.5h、6h和9h显著升高,其他时间点均恢复到正常水平;在冷处理结束后6h内HSP70mRNA转录水平均显著升高,应激结束后6h转录水平最高,随后又迅速下降到室温下的转录水平。垂体HSP70mRNA转录量在冷应激0.5h、1.5h、6h和12h时显著降低,其他应激时间均升高到应激前的水平,应激结束后0.5h、3h和6h转录水平也被显著降低,随后逐渐升高到应激前的正常水平。甲状腺HSP70mRNA转录量在冷应激0.5h时显著升高,随后迅速下降到应激前的水平,应激3h、6h和12h时显著降低。应激结束后0.5h和3h转录量显著升高,其他时间点逐渐恢复到正常水平。肾上腺HSP70基因mRNA转录水平在冷应激1.5h、6h、9h时和冷处理结束后3h到6h期间表达水平被显著降低,其他应激时间恢复到应激前的水平。冷应激期间及结束冷处理后一段时间,肾上腺HSP70基因mRNA表达水平都很低,在0.02-0.57范围内,HSP70基因mRNA表达量仍然不超过1,推测HSP70基因也是肾上腺组织细胞表达的下调基因,是负调控的。雏鹅冷应激反应中,HSP70基因在下丘脑、垂体、甲状腺和肾上腺中的表达规律是不同的,在不同的组织中有不同的调控规律。下丘脑HSP70mRNA转录水平最高,表达量总体呈现明显上升趋势,是冷应激反应时的正调控基因:而它在垂体、甲状腺和肾上腺中的表达总体是被抑制的,是垂体、甲状腺和肾上腺冷应激反应时的负调控基因。初步认为可以将HSP70作为动物冷应激的分子生物标志。
Stress is a nonspecific response to various kinds of stimulates in organism which can cause performance descends, induce various diseases, even result in death in livestock and poultries. The cold is one of the most important factor to restrict livestock farming development owing to the direct and indirect economic loss. Studying'the animal cold stress mechanism and investigating scientific stress monitor method have important meaning to elevate preventative level of stress and ensure livestock farming development. Cold stress has important effect on the HPA and HPT axis of nerve internal system, however, there was no correlated study in young goose. In this study,7d Wanxi White geese were used to study the effects on hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-thyroid (HPT) axis under cold stress (12℃±1℃), using the radioimmunity, fluorescence quantitative RT-PCR etc.
     Dynamic change rule of blood physiological and biochemical indicators, stress hormone, TRH, TSH, CRH, ACTH, HSP70mRNA by different times during cold exposure0,0.5,3,6,9,12,18,24hour and after terminate cold exposed0,0.5,3,6,9,12,24hour using radioimmunity, fluorescence quantitative PCR. Moreover, HSP70gene was cloned from Wanxi white goose by RT-PCR, the protein structure and function were further predicted by bioinformatics. The studies can provide experimental evidence for investigating reaction mechanism and earlier monitoring of animal cold stress. The main results were showed as following:
     1. Analysis of blood routines
     7d Wanxi White geese were used to study the influence on some parameters of blood under cold stress (12℃±1℃). The results were as follows. The Red blood cell (RBC), Haematocrit (HCT), Hemoglobin (HGB), Red blood cell distribution width (RDW) were decreased collectively. RBC was significant lower at3h,6h and at0.5h,3h after terminating cold stress than pre-cold stress. HCT and HGB were obviously decreased at3h,6h during cold stress and at3h after terminating cold stress. RDW was lower at6h during cold stress and at12h after end cold stress than pre-cold stress significantly (P<0.01). WBC was increased at12h,24h during cold stress. The absolute value of Lymphoid cell (LYM) was lower at6h during cold stress than pre-cold stress significantly (P<0.05). LYM%was increased at3h,6h and12h after cold stress (P<0.01). however, at normal level at24h after cold stress. Collecting detected the hematological results from all test groups during cold stress, obtaining Wanxi white goose blood physiological and biochemical reference values, which can provide important proof for veterinary clinical diagnosis and therapy.
     2. Analysis of stress hormone in HPA and HPT anxis
     The effect on HPA axis and HPT axis was analyzed under cold stress (12℃±1℃) in Wanxi White geese. The results showed as follows.The Free triiodothyronine (FT3) was significantly higher at6h and12h after acute cold stress than that of pre-cold stress. The Free thyroxine (FT4) was obviously higher at3h in12℃±1℃temperature, however, dropped gradually later, decreased at12h (P<0.05). The triiodothyronine (T3) was increased steadily during cold stress and significantly higher at6h after cold exposure and at0.5h,3h after end cold exposure. The Thyroxine (T4) got peak value at6h after cold exposure and6h after end cold exposure. The cortisone (Cor) retained in the higher level at more parts time of cold exposure and obviously higher at3h during cold exposure. The Adrenocorticotrophic hormone (ACTH) significant increased at6h after cold exposure and at3h after end cold exposure (P<0.01, P<0.05). The ACTH, Cor and FT3are sensitive to cold stimulus.They can probably be used as the supply indexes evaluating cold stress.
     3. Analysis dynamic expression of gene mRNA correlated with hormone in HPA and HPT axis
     TRH, TSH, CRH and ACTH gene in Wanxi white goose were coloned using RT-PCR. The sequences identity with that of chicken were94%,95%and95%, respectively. Dynamic expression of TRH, TSH, CRH and ACTH mRNA in HPA and HPT axis was analyzed by FQ-RT-PCR. Hypothalamic TRH mRNA transcription level went up significantly at0.5h,3h,6h,9h ad18h during cold stress; It increased again after cold exposure in1h,6h andl2h; It decreased to normal level in the other time. Pituitary TSH mRNA transcription level was increased significantly from1.5h to12h, moreover, it went up the highest level at12h; Hereafter it declined to normal level. It increased again after cold exposure from1h to6h and was decreased to normal level after6h. Hypothalamic CRH mRNA transcription level went up significantly at3h,9h,18h during cold stress and at1h,6h and12h after cold exposure; It was down-regulated to normal level at the other time. Adrenal gland ACTH gene mRNA transcription level went up significantly from1.5h to9h and at18h during cold stress; It increased again after cold exposure at0.5h and3h; It decreased to normal level in the other time.
     Hypothalamic TRH mRNA transcription level had fluctuation trend and it's quanity was not over1.5, which indicated that Hypothalamic TRH was the down-regulation gene in cold stress reaction. The transcription quanity of TSH, CRH and ACTH was227-7.76、1.75-6.17、5.5-14.83and had ascend trend, which showed that they were the up-regulation gene in cold stress reaction. The results demonstrated that TRH, TSH, CRH and ACTH gene can be probably used as the molecular biomarker of animal cold stress.
     4. HSP70gene cloning and bioinformatics
     HSP70gene cDNA was cloned, whose size was2181bp in Wanxi white goose for the first time. It's1905bp of CDS and276bp of3'-UTR sequence, and encoded634amino acids. There were15nucleotides (in CDS) and only one amino acids difference, which were different between2populations. HSP70CDS sequence in goose had82-90%homology with mammals and fish, and up to99%with Chinese goose. Cluster analysis revealed that probably mammals, birds and fishes, each of these belonged to different categories separately.
     Bioinformatics analysis indicated that goose HSP70protein contained34phosphorylation sites. The diversity of CDS and the structure of amino acids in HSP70genes resulted in the differences of protein secondary structure. HSP70protein secondary structure had more Alpha and Coil region, without signal peptide and transmembrane helix; The hydrophobicity structure prediction of goose HSP70protein indicated that it had major hydrophobicity region. The protein had abundant B cell antigen location. There were more overlapping region in flexibility, surfaceprobability and antigencity, which made antigen and antibody combine easily, and it was probably antigen enrichment region. It was predicted that HSP70protein probably played an important role in cell signal transfer and control mechanisms.
     5. Analysis dynamic expression of HSP70mRNA in HPA and HPT axis during cold stress
     The dynamic expression of HSP70mRNA in HPA and HPT axis of7d Wanxi White goose was got utilizing FQ-RT-PCR. Hypothalamic HSP70mRNA transcription level went up significantly atl.5h,6h and9h; It decreased to normal level in the other time; It increased again after cold exposed in6hours, moreover, it went up the highest level at6h;Hereafter it declined to normal level. Pituitary HSP70mRNA transcription level descended significantly at0.5h,1.5h,6h and12h. It went up again gradually to normal level in the next12hours. It decreased again significantly at0.5h,3h,6h after cold exposure, hereafter, gradually increased to normal level. Thyroid HSP70mRNA transcription level went up quickly at0.5h, hereafter decreased at3h,6h,12h significantly under cold stress. It went up significantly at0.5h and3h after cold exposure and it was down-regulated gradually to normal level in the other time. Adrenal gland HSP70mRNA transcription level was decreased at1.5h,6h,9h during cold stress and at3h,6h after end cold exposure. It was up-regulated gradually to normal level in the other time. The Adrenal gland HSP70mRNA transcription quanity was0.02-0.57, which was predicted that it was down-regulation gene in cold stress reaction.
     The expression rule of HSP70mRNA was different in Hypothalamic, Pituitary, Thyroid and Adrenal gland. Hypothalamic HSP70mRNA transcription level was the highest which showed going up trend as a whole. HSP70was the up-regulation gene of Hypothalamic in cold stress reaction. Pituitary, thyroid and adrenal gland HSP70mRNA transcription level was repressed, which showed that it was the down-regulation gene of pituitary, thyroid and adrenal gland in cold stress reaction. The results demonstrated that it play a part in protective cell function, on the other hand, denoted that histiocyte function was placed in the urgent condition. The lymphocyte HSP70can probably be used as the molecular biomarker of animal cold stress.
引文
[1]Selye HA. Syndrome produced by diverse nocuous agent [J]. Nature, 1936,138:32.
    [2]邱家祥,米克热木.沙衣布扎提,赵红琼.家禽冷应激研究进展[J].动物医学进展,2008,29(3):96-100.
    [3]任涛,辛朝安,寒冷应激对鸡的影响[J].养禽与禽病防治,2002,1997,2:32-33.
    [4]田树飞,金曙光,寒冷应激对动物的影响及其预防[J].,河北北方学院学报,2005,21(2):55-57.
    [5]Kizaki T.Yamashita H,Oh-lshi S,et al.Immunomodulation by cells of mononuclear phagocytel ineage in acute cold-stressed or cold-acclimatized mice[J]. Immunology,1995,86(3):456-462.
    [6]Bamshad M, Song CK, Bartness TJ. CNS origins of sympathetic nervous system outflow to brown adipose tissue[J]. Am J Physiol.1999,276:1569-1578.
    [7]Fukuhara K, Kvetnansky R, Cizza G, et al. Interrelations between sympathoadrenal system and hypothalamo-pituitary-adrenocortical/thyroid systems in rats exposed to cold stress[J]. Neuroendocrinol,1996,8(7):533-541.
    [8]Asakura M.Nagashima H,Fujii S.et al.Influences of chronic stress on central nervous systems[J]. Nihon Shinkei Seishin Yakurigaku Zasshi,2000, 20(3):97-105.
    [9]杨焕民,李士泽.动物冷应激的研究进展[J].黑龙江畜牧兽医,1999,3:42.
    [10]Hashimoto K, Makino S, Asaba K, et al. Physiological roles of corticotrophin-releasing hormone receptor type2 [J]. Endocrine J,2001, 48(1):1-9.
    [11]Sapolsky RB, Romero LM, Munck A.How do glucocorticoids influence stress responses Integrating permissive, suppressive, stimulatory and preparative actions [Jj. Endocr Rev,2000,21(1):55-89.
    [12]Minton JE. Function of the hypothalamic-pituitary-adrenal axis and the sym-patheticnervous system in models of acute stress in domestic farm animals[J] Journal of Animal Science,1994,72,1891-1898.
    [13]杨焕民,胡仲明,李士泽,等.雏鸡在冷暴露下体内相关激素的动态变化[J].中国兽医学报,2001,21(6):600-602.
    [14王建鑫,王安,急性冷应激对金定鸭开产前内分泌活动的影响[J].东北农业大学学报,2005,36(4):480-485.
    [15]瞿旭久.畜禽应激的研究进展[J].动物营养研究进展,1994,6:131-140.
    [16]RichardEA.Environment-Immune[M].Interactionspouslsci,1994,73:1062-1076.
    [17]Strack AM, Bradbury MJ, Dalhnan MF. Corticosterone decreases non-shivering thermogenes is and increases lipid storage in brown adipose tissue[J].Am JPhysiol,1995,268(1):183-11
    [18]Tan Z, Nagata S.Super imposed cold stress induced hypothalamic- pituitary-adrenal responseduring long-duration restrain stress[J].JUOEH,2002, 24(4):361-373.
    [19]王玢,左明雪.人体及动物生理学[M].北京:高等教育出版社,2001.
    [20]Ceccatelli S, Orazz OC. Effect of different types of stressors on peptide messenger ribonucletic acids in the hypothalamic paraventricular nucleus[J]. Acta Endocrinol:Copenh,1993,128(6):485-492.
    [21]谢启文.现代神经内分泌学[M].上海:上海医科大学出版社,1999.
    [22]王金涛,张久丽,张洪涛,等.冷应激对雏鸡下丘脑-垂体-甲状腺轴的影响[J].中国畜牧杂志,,2008,44(9):39-48.
    [23]李士泽,杨焕民,袁学军,等冷应激对健康雏鸡某些内分泌活动的影响[J]应用与环境生物学报,1998,4(2):167-169.
    [24]杨明,李庆芬.哺乳动物冷应激的主要神经内分泌反应[J].动物学研 究,2002,23(4):335-340.
    [24]Petrovic N,Cvijic G, Djordjevic J, et al. The activities of antioxidant enzymes and monoamine oxidase and uncoupling protein 1 content in brown fat of hypo-and hyperthyroid rats[J].Ann N Y Acad Sci,2005,1040:431-435.
    [25]许绍芬.神经生物学[M].上海:上海医科大学出版社,1999.
    [26]杨琳,杜荣.环境温度对鸡饲粮代谢能值及血浆中甲状腺激素浓度的影响[J].畜牧兽医学报,1993,24(6):494-499.
    [27]胡健饶,许宁一,应激对神经内分泌系统影响的研究进展[J],杭州师范学院学报,2002,1(2):65-68
    [28]李震钟,家畜环境生理学[M],北京:中国农业出版社,1999.
    [29]胡仲明,柳巨雄.动物生理学前沿[M].长春:吉林人民出版社,2003
    [30]Kizaki T, Yamashita H, Oh-lshi S, et al. Immunomodulation by cells of mononuclear phagocyte lineage in acute cold-stressed or cold-acclimatized mice[J].Immunology,1995,86 (3):456-462.
    [31]刘伟译.母猪在不同外界环境温度下对能量的需要[J].饲料方角,1997,(2):23-25.
    [32]袁学军,李士泽,黄丽波,等.冷应激对海兰雏鸡某些血相变化的影响[J].动物医学进展,2001,21(2):59-61.
    [33]Ortuno J, Esteban MA, Meseguer J. Effects of short-term crowding stress on the gilthead seabream (Sparus aurata L) innate immune response [J]. Fish Shellfish Immunol,2001,11(2):187-197.
    [34]Mashaly MM, Hendricks GL, Kalama MA, et al. Effect of heat stress on production parameters and immune responses of commercial laying hens [J]. Poult Sci,2004,83(6):889-894.
    [35]Willemsen G, Carroll D, Ring C, et al. Cellular and mucosal immune reactions to mental and cold stress:associations with gender and cardiovascular reactivity [J]. Psychophysiology,2002,39(2):222-228.
    [36]MoseleyP. Stress proteins and the immune response[J]. Immunopharmacology, 2000.48(3):299-302
    [37]黄庆军,惠敢,丁桂风,等.应激免疫抑制蛋白的组织分布.中国神经精神疾病杂志[J].2003,29(1):70.
    [38]Campisi J, Leem TH, Fleshner M. Stress-induced extracellular Hsp72 is a functionally significant danger signal to the immune system [J]. Cell Stress Chaperones,2003,8(3):272-286.
    [39]袁学军,李士泽,黄丽波,等.冷应激对海兰雏鸡某些血相变化的影响[J].动物医学进展,2001,21(2):59-61.
    [40]陈巍,柳巨雄,杨勇军,等.几种中药及营养物质抗寒作用的研究进展[J].动物医学进展,2002,23(5):37-39.
    [41]Wang JT, Li S, Li JL, et al. Effects of cold stress on the messenger ribonucleic acid levels of peroxisome proliferator-activated receptor-y in spleen, thymus, and bursa of Fabricius of chickens [J]. Poult Sci,2009,88: 2549-2554.
    [42]杨焕民,李士泽,张丽萍,等.核黄素对受冷大鼠增重、成活和有关激素的影响[J].营养学报,1998,20(3):281-285.
    [43]Jiang XH, Guo SY, Xu S, et al. Sympathetic nervous system mediates cold stress-induced suppression of natural killer cytotoxicity in rats [J]. Neurosci Lett,2004,357:1-4.
    [44]Radonic A, Thulke S, Mackay IM, et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications,2004,313 (4):856-862.
    [45]Aviles H, Johnson MT, Monroy FP. Effects of cold stress on spleen cell proliferation and cytokine production during chronic toxoplasma gondii infection [J]. Neuroimmunomodulation,2004.11:93-302
    [46]吴永魁,计红,李乾学,等.冷应激对断乳仔猪ACTH及皮质醇的影响[J]. 应用与环境生物学报,2005,11(4):477-478.
    [47]陈巍,柳巨雄,杨勇军,等.几种中药及营养物质抗寒作用的研究进展[J].动物医学进展,2002,23(5):37-39.
    [48]吴永魁,张祚新,柳巨雄,等.抗寒添加剂对大鼠的饲喂效应及安全性评价[J].黑龙江八一农垦大学学报,2004,16(2):65-69.
    [49]王凯,柳巨雄,陈巍,等.复方中药制剂提高大鼠抗冷应激作用时效关系的研究[J].中兽医医药杂志,2002,2:3-5.
    [50]陈耀明,董兆申,赵振高,等.Vc,Ve和Zn协同脂肪提高大鼠耐寒力的研究[J].解放军预防医学杂志,2000,18(3):160-163.
    [51]Li Y Q, Sheng C F. The characteristic of molecular redundancy in life evolution[J]. Scientific Chinese,1996,6:38
    [52]Lu C F, Wang H, Jian L C, et al. Progress in study of plant antifreeze proteins [J]. Progress in Biochemistry and Biophysics,1998,25(3):210-216.
    [53]Knight C A, Duman J G. Inhibition of recrystallization of ice by insect thermal hysteresis proteins:a possible cryprotective role [J].Cryobiology,1986,23: 256-262.
    [54]Sidebottom C, Buckey S, Pudney P, et al. Heat-stable antifreeze protein from grass[J]. Nature,2000,406(6793):256-263.
    [55]Griffith M, Ala P, Yang D S C, et al. Antifreeze protein produced endogenously in winter rye leaves[J]. Plant Physiol,1992,100(2):593-596.
    [56]费云标,孙龙华,黄涛,等.沙冬青高活性抗性蛋白的发现[J].植物学报,1994,36(8):649-650.
    [57]尹明安,崔鸿文,樊代明.胡萝卜抗冻蛋白基因克隆及植物表达载体构建[J].西北农林科技大学:自然科学版,2001,29(1):6-10.
    [58]Chakrabatty A, Yang D S C, Hew C L. Structure function relationships in a winter flounder antifreeze polypeptide. Ⅱ. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides [J]. J Biol Chem,1989, 264(19):11313-11316.
    [59]钟其旺,樊廷俊.鱼类抗冻蛋白的研究进展[J].生物化学与生物物理学报,2002,34:124-130
    [60]Hayes PH, Scott G K, Nig NF, et al. Cysteine-rich type II protein precursor is initiated from the third AUG codon of its mRNA[J]. J Biol Chem,1989, 264:18761-18767.
    [61]Koike M, Okamoto T, Isuda S, et al. A novel plant defensin-like gene of winter wheat is specially induced during cold acclimation[J].Biochem Biophys Research Comm,2002,298:46-53.
    [62]Amir G, Rubinsky B, Smolinsky A K, et al. Successful use of ocean pout thermal hysteresis protein (antifreeze protein III) in cryopreservation of transplanted mammalian heart at subzero temperature [J]. J Heart Lung Transplantation,2002,21:137.
    [63]Baardsnes J, Davies P L. Contribution of hydrophobic residues to ice binding by fish type III antifreeze proteins[J].BiochimBiophys Acta (BBA),2002,1 601:49-54.
    [64]Kubo T, Arai Y, Tadahashi K.Expression of transduced HSP70 gene protects chondrocytes from stress[J].The Journal of Rheumatology,2001, 28(M2):330-335.
    [65]Leandro NS, Gonzales E, Ferro JA,et al. Expression of heat shock protein in broiler embryo tissues after acute cold or heat stress[J]. Mol Reprod Dev,2004, 67(2):172-177.
    [66]Hall DM, Xu L, Drake VJ, et al. Aging reduces adaptive capacity and stress protein expression in the liver after heat stress [J]. J Appl Phaysiol,2000,89(2): 749-759.
    [67]Kumar Y,Chawla A,Tatu U. Heat shock protein 70 as a biomarker of heatstress in a simulated hot cockpit[J]. Aviat Space Environ Med,2003,74(7):711-716.
    [68]吴永魁,仔猪冷应激中激素、HSP70及其mRNA的动态变化[D],吉林大学,博士论文,2006.
    [69]Suzuki E, Kageyama H, Nakaki T, et al. Nitric oxide induced heat shock protein 70 mRNA in rat hypothalamus during acute restraint stress under sucrose diet [J]. Cell Mol Neurobiol,2003,23(6):907-915.
    [70]Matz JM, Blake MJ, Tatelman HM, et al. Characterization and regulation of cold2induced heat shock protein expression inmouse brown adipose tissue [J]. Am J Physiol,1995,269:R38-R47.
    [71]计红,吴永魁,胡仲明,等.不同强度冷应激下仔猪淋巴细胞HSP70 mRNA的转录规律[J].应用与环境生物学报2007,13(4):507-509.
    [72]Quintero L, Cuesta MC, Silva JA, et al. Repeated swim stress increases pain-induced expression of c-Fos in the rat lumbar cord [J]. Brain Res,2003, 965(1-2):259-268.
    [73]Tan Z, Nagata S. PVN c-fos expression. HP A axis response and immune cell distribution during restraint stress [J]. JUOEH,2002,24(2):131-149.
    [74]蓝妮,谢启文,王淑芬.大鼠应激时垂体c-fos和催乳素基因表达关系的研究[J].中国医科大学学报,2000,29(4):244-246.
    [75]Zhang W, Li J, Zhu J,et al. Chinese medicine Banxia-houpu decoction regulates c-fos expression in the brain regions in chronic mild stress model in rats[J]. Phytother Res,2004,18(3):200-203.
    [76]Umriukhin PE, Koplik EV, Grivennikov IA,et al.Gene c-Fos expression inbrain of rats resistant and predisposed to emotional stress after intraperitoneal injection of the ACTH(4-10)analog-semax[J]. Zh Vyssh Nerv Deiat Im I P Pavlova,2001,51(2):220-227.
    [77]Bellmann K, Jaattela M, Wissing D. Heat shock protein hsp70 overexpression confers resistance against nitric oxide [J].FEBS Lett,1996,391(1-2):185-188.
    [78]Konturek PC,Brzozowski T,Ptak A,et al.Nitric oxide releasing aspirinprotects the gastric mucosa against stress and promotes healing of stress-induced gastric mucosal damage:role of heat shock protein 70 [J].Digestion,2002,66 (3):160-172.
    [79]Ritossa F.A new puffing pattern induced by temperature shock and DNP in Drasophila [J]. Experientia,1962,18:571-573.
    [80]Bond U, Schlesinger MJ.Heat shock proteins and development.Adv Genet, 1987,24(1):1-9.
    [81]李坚,阳帆,赵文健.热休克蛋白70的生物学功能研究进展[J].科技信息(学术研究),008,20:67-68
    [82]孙培明,王志亮,李金明,等.热休克蛋白70研究新进展[J]. 中国兽医学报,2007,27(2):284-288
    [83]罗善明.热休克蛋白70与肝细胞肝癌的研究进展[J].重庆医学,2008,37
    [84]Hartl Fu. Molecular chaperones in cellular protein folding.Nature[J].1996,381, (6583):571-579
    [85]马旭,吕刚.HSP7 0与细胞保护的研究进展[J].大连医科大学学报,2007,29(2):194-200
    [86]Ting J, Lee AS. Human gene encoding the 78kDa glucose-regulated protein and its pseudogene: structure, conservation and regulation [J].DNA,1987,7: 275-286.
    [87]Kang PJ, Ostennann J, Shilling J. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins[J].Nature,1990, 348:137-143.
    [88]Wright BH, Corton JM, EI-Nahas AM, et al. Elevated levels of circulating heatshock protein 70(HSP70) in peripheral and renal vascular disease [J]. Heart Vessels,2000,15:18-22.
    [89]Sorger PK, Pelhem HRB. Cloning and expression of a gene encoding hsc73: the major hsp70-like protein in unstressed rat cells [J]. EMBO J.1987,6: 993-996.
    [90]郭建巍.HSP70抗原呈递分子的研究进展[.J].微生物学免疫学进展,2000,28(3):95-98
    [91]任宝波,王玉艳,王纯净,等.HSP70家族的分类及基因结构与功能[J].动物医学进展,2005,26(1):98-101.
    [92]Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones [J].Endocrine Reviews,1997,18(3):306-360.
    [93]Gray CC, Amrani M, Yacoub MH. Heat stress proteins and myocardial protection:experimental model or potential clinical tool [J]. Int J Biochem Cell Biol,1999,31(5):559-573.
    [94]Young JC, Agashe VRSiegers K. Path ways of chaperone medited protein folding in the cytosol [J]. Nat Rev Mol Cell Bioi,2004,5(10):781-791
    [95]Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control[J]. Cell,2006,125(3):443-451.
    [96]Gusarova V.Caplan AJ,Brodsky JL,et al. Apoprotein B degradation is promoted by the molecular chaperones hsp90 and hsp70[J]. J Biol Chem,2001, 276(27):24 891-24 900.
    [97]Mosser DD, Caron AW,Bourget L,et al.The chaperone function of hsp70 is required for protection against stress-induced apoptosis[J]. Mol Cell Biol, 2000,20(19):7 146-7 159.
    [98]Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nat Med,2000,6(4):435-442.
    [99]Srivastava PK, Amato RJ. Heat shock proteins:the'Swiss Army Knife'vaccines against cancers and infectious agents[J].Vaccine,2001,19(17-19):2590-2597.
    [100]Sato S, Abe K, Kawagoe J, et al. Isolation of complementary DNAs for heat shock protein (HSP)70 and heat shock cognate protein(HSC)70 genes and thexpressions in post-ischaemic gerbil brain[J].Neurol Res,1992,14(5):375-380.
    [101]Peng P, Menoret A, Srivastava PK. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography [J]. JImmunol Methods,1997,204(1):13-21.
    [102]Asea A, Kraeft SK, Kurt-Jones EA. et al. HSP70 stimulates cytokine production through a CD 14-dependant pathway, demonstrating its dual role as a chaperone and cytokine [J]. Nat Med,2000,6(4):435-442
    [103]John DJ, Monika F. Releasing signals, secretory pathways and immune function of endogenous extracellular heat shock protein72 [J]. Journal of Leukocyte Biology,2006,9:1-10.
    [104]徐波,张建超.实时荧光定量PCR技术及在畜牧兽医中的应用[J].畜禽业,2009,(12):10-12.
    [105]Yin J L, Shackel N A, Zekry A, et al. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorescent probes or SYBR Green I [J]. Immunol Cell Biol,2001,79(3):213.
    [106]Livak K J, Flood S J, Marmaro J, et al. Oligo nucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization[J]. PCR Methods APPI,1995,4(6):357.
    [107]Tyagi S, Krammer F R. Molecular beacon:probes that fluorescence upon hybridization [J]. Na.t Biotech,1996,14:303-308.
    [108]Bustin S A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology,2000,25:169-193.
    [109]Radonica, Thulke S, Mackay I M. et al. Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications,2004,313:856-862.
    [110]Y.J.Tu, Y. J. Su, Kehua Wang, et al. Gene expression of heart and adipocyte fatty acid-binding protein in chickens by FQ-RT-PCR[J]. Asian-Australasian Journal of Animal Sciences,2010,23 (6):7-12.
    [111]屠云洁,苏一军,王克华,等.利用实时荧光定量RT —PCR检测鸡A—FABP和H— F A B P基因的差异表达[J].中国畜牧杂志,2010,46(7):1-4.
    [112]屠云洁,苏一军,王克华,等.清远麻鸡H-FABP和A-FABP基因mRNA的差异表达研究[J].西北农林科技大学学报,2010,38(4),53-58.
    [113]屠云洁,苏一军,王克华,等H-FAB P基因在鹿苑鸡和隐性白羽鸡肉质中的差异表达[J].扬州大学学报,2009,30(4):23-29.
    [114]吴桂琴,郑江霞,杨宁.伴性矮小型鸡GH、GHR和IGF-1基因的表达变化[J].遗传,2007,29(8):989-994.
    [115]Min Q, Yi N Y. Quantification of Magnaporthe griseaduring infection of rice plants using real-time polymerase chain reaction and northern blot/phosphoimaging analyses [J]. Phytopathology,2002,92:870-876.
    [116]Bohm J, Hanga, Schubertr, et al. Real-time quantitative PCR:DNA determination in isolated spores of the mycorrhizal fungus Glomus mosseae and monitoring of Phytophthora infestans and Phyto phthora citricola in their respective host plants [J]. J Phytopath -ology,1999,147:409-416.
    [117]Lees A K, Cullen D W, SullIvan L, et al. Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil [J]. Plant Pathology,2002,51: 293-302.
    [118]夏明星,赵文军,马青,等.番茄细菌性溃疡病菌的实时荧光PCR检测[J].植物病理学报,2006,36(2):152-157.
    [119]殷幼平,黄冠军,赵云,等.柑桔溃疡病菌实时荧光定量PCR检测与应用 [J].植物保护学报,2007,34(6):607
    [120]漆艳香,肖启明,朱水芳.玉米细菌性枯萎病菌16S rDNA基因克隆及TaqMan探针实时荧光PCR[J].湖南农业大学学报:自然科学版,-2003,29(3):183-187.
    [121]郑耘,杨伟东,陈枝楠,等.烟草环斑病毒DB-RT-Real-timePCR检测方法研究[J].植物保护学报,2007,33(1):117-119.
    [122]张阳德.生物信息学(21世纪高等院校教材·生物科学系列)[M].北京:科学出版社,2009
    [123]施卫萍.生物信息学研究进展[J].安徽农学通报,2009,15(10):32-33.[18]
    [124]刘智珺.生物信息学中数据库技术的应用[J].计算机与数字工程,2009,37(5):157-159.
    [125]谢启文.现代神经内分泌学[M].上海:上海医科大学出版社,1999.
    [126]王建鑫,王安,急性冷应激对金定鸭开产前内分泌活动的影响[J],东北农业大学学报,2005,36 (4):480-485.
    [127]Sheridan JF, Dobbs C, Brown D, et al. Psychoneuroimmunology:stress effects on pathogenesis and immunity during infection J. Clin Microbiol Rev, 1994,7:200-212..
    [128]Wang JW, Xu SW. Effects of cold stress on the messenger ribonucleic acid levels of corticotrophin-releasing hormone and thyrotropin-releasing hormone in hypothalami of broilers [J]. Poult Sci,2008,87.973-978
    [129]Moseley P.Stress proteins and the immune response [J].Immunopharmacology, 2000,48(3):299-302.
    [130]Hangalapura BN, Nieuwland MG, Buyse J, et al. Effect of duration of cold stress on plasma adrenal and thyroid hormone levels and immune responses in chicken lines divergently selected for antibody responses [J]. Poultry Science, 2004,83:1644-1649.
    [131]郭景茹,杨焕民,王忠伟,等.冷应激对畜禽免疫系统功能影响的研究进展 [J],环境与健康杂志,2010,27(7):649-651.
    [132]Laura S, Lucia N, Carlos V, et al. Rapid changes in anterior pituitary cell phenotypes in male and female mice after acute cold stress [J]. Endocrinology, 2008,149:2159-2167.
    [133]袁学军,黄丽波,冷应激时贵妃雏鸡外周白细胞分类及T淋巴细胞变化的影响[J].黑龙江畜牧兽医,2008,(7):65-66.
    [134]袁学军,李士泽,黄丽波,等.冷应激对海兰雏鸡某些血相变化的影响[J],动物医学进展,2001,22(1):59-61.
    [135]Spinu M, Degen A A. Effect of cold st ress on performance and immune responses of bedouin and whiteleghorn hens [J]. British Poultry Science 1993,34:177-185.
    [136]Martinez M, Calvo-Torrent A, Herbert J. Mapping brain response to social stress in rodents with c-fos expression: a review[J]. Stress,2002.5(1):3-13.
    [137]钱令嘉.应激与应激医学[J].疾病控制杂志,2003,7(5):393-396.
    [138]Bao J Y, Li L, Wang Z L,et al. Development of one2step real2 time RT-PCR assay for detection and quantitation of peste despetit s ruminant s virus [J]. Journal of Virological Methods,2007,148:2322236.
    [139]刘凤华,吴国娟,王占贺,等.热应激对仔鸡血清生化及免疫指标的影响.北京农学院学报[J].2002,17(4):51-54.
    [140]Shelness G S, Williams D L. Apolipoprotein II messenger RNA. Transcriptional and splicing heterogeneity yields six 5'-untranslated leader sequences [J]. J Biol Chem,1984,259(15):9929-9935.
    [141]Liew P K. Zulkifli I, Hair-Bejo M, Omar A R, et al. Effects of early age feed restriction and heat conditioning on heat shock protein 70 expression, resistance to infectious bursal disease, and growth in male broiler chickens subjected to heat stress[J]. Poultry Science,2003,82:1879-1885.
    [142]Mariusz C, Magdalena C, Aneta K, et al. Delayed effects of cold stresson immune response in laboratory mice J. Proc R Soc B,2002,269:1493-1497.
    [143]Mikami T, Sumida S, Ishibashi Y, et al. Endurance exercise training inhibits activity of plasma GOT and liver caspase-3 of rats exposed to stress by induction of heat shock protein 70 [J] Journal of Applied Physiology,2004, 96(5):1776-1781.
    [144]Jayakumar J, Suzuki K, Sammut I A, et al. Heat shock protein 70 gene transfection protects mitochondrial and ventricular function against ischemia-reperfusion injury[J]. Circulation,2001,104:303-307
    [145]Hangalapura B N, Nieuwland M G B, Buyse J, et al. Effect of duration of cold stress on plasma adrenal and thyroid hormone levels and immune responses in chicken lines divergently selected for antibody responses[J]. Poult Scienxe Association.2004,83(10):1644-1649.
    [146]Widlak W, Vydra N, Malusecka E, et al. Heat shock transcription factorl down-regulates spermatocyte-specific 70 kDa heat shock protein expression prior to the induction of apoptosis in mouse testes[J]. Genes to Cells,2007,12: 487-499.
    [147]Salak-Johnson JL, McGlone JJ. Making sense of apparently conflicting data: stress and immunity in swine and cattle [J]. American Society of Animal Science,2007,85:81-88.
    [148]Parida M M, Santhosh S R, Dash P K, et al. Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid and real-time detection of Japanese encephalitis virus[J]. Journal of Clinical Microbiology,2006,44(11):4172-4178.
    [149]Randegger CC, Hachler H. Real-time PCR and melting curve analysis for reliable and rapid detection of SHV extended-spectrum β-Lactamases [J]. Antimicrobial Agents and Chemotherapy,2001,45 (6):1730-1736.
    [150]王金涛,徐世文.冷应激对雏鸡下丘脑-垂体-肾上腺皮质轴的影响[J].中 国兽医科学,2007,37(7):614-618.
    [151]屠云洁,耿照玉,陈国宏,等.冷应激对家禽神经内分泌系统的影响[J].安徽农业科学,2009,37(24):11555-11557.
    [152]Bamshad M, Kay S C, Bartness T J. CNS origins of sympathetic nervous system outflow to brown adipose tissue [J].American Journal of Physiology, 1999,276:1569-1578.
    [153]Liu R Y, Corry P M, Lee Y J. Regulation of chemical stress-induced hsp70 gene expression in murine L929 cells [J]. Journal Cell Science,1994,107: 2209-2214.
    [154]李士泽,任宝波,杨焕民,等.不同强度冷应激对大鼠肌肉、脾脏和肝脏中HSP70表达的影响[J].应用与环境生物学报,2006,12(2):235-228.
    [155]张顺利,魏纪东,陈晓虹,等.小鼠不同组织器官热休克蛋白70表达的研究[J].解剖学报,2002,33(4):391-394.
    [156]Mosser D D, Theodorakis N G, Morimoto R I. Coordinate changes in heat shock element-binding activity and HSP 70 gene transcription rates in human cells[J].Molecular and Cellular Biology,1988,8(11):4736-4744.
    [157]Sun L, Chang J, Kirchhoff S R, and Knowlton A A. Activation of HSF and selective increase in heat-shock proteins by acute dexamethasone treatment [J]. AJP-Heart and Circulatory Physiology,2000,278:1091-1097.
    [158]邱烈,管勤,袁英.HSP70对组织细胞的保护[J].重庆医学,2009,38(15):1978-1980.
    [159]Xu C S, Ji A L, Xia M, et al. Modification and degradation of the C6 rat glioma cellular HSP68 in vivo and in vitro[J]. Acta Biochimica et Biophysica Sinica. 1998,30(2):179-184.
    [160]Huang L, Nahid FM, Demetrius M. Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo:analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 gene [J]. Molecular and Cellular Biology,2001,21:8575-859
    [161]Virginia LV, Monica RS, Tiffany F, et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane associated form that activates macrophages [J]. The Journal of Immunology,2008,180,4299-4307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700