拌种灵(Amicarthiazol)对柑桔溃疡病菌作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以拌种灵、噻枯唑、萎锈灵、以及二硫氰基甲烷等杀菌剂,柑桔溃疡病
    菌、水稻白叶枯病菌、大豆斑疹病菌等植物病原细菌为材料,着重从拌种灵对柑
    桔溃疡病菌的毒力机制、柑桔溃疡病菌的药理学机制、柑桔溃疡病菌对拌种灵的
    抗药风险性及生理特性等方面深入系统地研究了拌种灵对柑桔溃疡病菌的作用机
    制,并对拌种灵在菌体细胞内的分子生理生化靶标进行了初步的探索。
     在国内外首次系统地研究了拌种灵对植物病原细菌的作用。在离体条件下,
    拌种灵对植物病原菌的抑制作用具有强烈的选择性,对水稻白叶枯病菌、水稻细
    菌性条斑病菌、柑桔溃疡病菌及大豆斑疹病菌的有效抑制中浓度(EC_(50))分别为
    0.5745、1.3026、2.6257和7.4970μg·mL~1,对丁香假单胞病菌、番茄青枯病菌和
    大白菜软腐病菌基本无效,预示拌种灵仅对黄单胞病菌引起的病害具有较高的活
    性。噻枯唑、萎锈灵、二硫氰基甲烷和链霉素等杀菌剂对柑桔溃疡病菌的有效抑
    制中浓度分别为3.6269、2.8547、0.1485和0.0409μg·mL~1,拌种灵对柑桔溃疡病
    菌的抑菌作用稍优于萎锈灵和噻枯唑,而低于二硫氰基甲烷和硫酸链霉素,但福
    美双不能抑制柑桔溃疡病菌的生长。拌种灵在偏酸或偏碱的环境下都具有抑菌作
    用,并且拌种灵能够抑制柑桔溃疡病菌对外源葡萄糖的吸收和利用,拌种灵对柑
    桔溃疡病菌的活性在不同的底物培养基中差异较大,以乙酸钠为底物的培养基中,
    活性约为在以葡萄糖为底物培养基中的5.3倍以上。
     对拌种灵、噻枯唑和萎锈灵的毒力机制进行比较表明,拌种灵与噻枯唑、萎
    锈灵、及二硫氰基甲烷具有相似、而功能相异的毒性基因。噻枯唑对小麦纹枯病
    菌的生长没有影响,拌种灵和萎锈灵防治细菌病害都具有较好的作用效果,但柑
    桔溃疡病菌对二者的耐受程度存在较大的差异,最低抑制浓度(MIC)表现为
    100μg·mL~1和400μg·mL~1。拌种灵、噻枯唑和萎锈灵的活性者低于二硫氰基甲
    烷。在相同的有效浓度下,拌种灵对柑桔溃疡病菌生长速率的影响优于噻枯唑与
    萎锈灵的作用效果之和。拌种灵和萎锈灵对柑桔溃疡病菌的呼吸作用都具有抑制
    
    作用,低浓度隍枯哩对病原菌的呼吸作用具有一定的刺激作用,与同浓度拌种灵
    相比,噬枯哩的抑制作用较弱,表明拌种灵在防治细菌病害过程中,分子结构中
    唆哩结构和苯胺基甲酚结构均能发挥生物活性。
     柑桔溃疡病菌的胞外产物在拌种灵与病原菌互作过程中具有一定的调控作
    用。胞外产物尤其是胞外粘多糖(EPS)对拌种灵具有很强的桔抗作用,胞外产物
    可以使拌种灵对病原菌生长的抑制率降低2倍左右。经拌种灵处理的病原菌,其
    胞外产物如:电解质、EPS、胞外蛋白、以及胞外水解酶等的产量和生物活性都呈
    现出一定规律的变化,在20Pg·mL拌种灵的棚下,菌体胞外蛋白的产量仅占
    对照的26.26%,f巳胞外蛋白酶的活性在拌种灵浓度低于10Pg·mL’条件下随着药
    剂浓度的升高而增强。研究表明,病原菌在药剂处理下可通过胞外产物的变化产
    生一定的抗逆反应。同时菌体细胞结构亦发生相应的变化,细胞质向中心浓缩,
    细胞两端出现空泡结构,细胞内含物与拌种灵接触减少,茵体细胞质表现出对外
    界不良环境抗逆性生理的适应性调节。
     菌体细胞的药理学研究表明,拌种灵对柑桔溃疡病菌的抑制作用在病原菌不
    同生长时朋具有很大差异,在病原菌生长静止期加入药剂,即使50%·mL‘拌种
    灵对病原菌生长的抑制作用都较小。拌种灵对病原菌的作用方式为抑菌作用而不
    是杀菌作用。丙酮酸、软酸氨基葡萄糖、N-乙酚-D-氨基葡萄糖、细胞色素C等可
    以抵消拌种灵在菌体内的抑制作用。拌种灵不改变菌体细胞膜通透性,对菌体细
    胞膜的功能没有影响,对细胞膜N广K”ATP酶及其活化能、菌体蛋白合成、丙酮
    酸和柠檬酸代谢,及细胞呼吸过程等都具有不同程度的活性,拌种灵能够抑制病
    原菌细胞磕用酸脱氢酶的活性,50%·mL-‘拌种灵作用于菌体30分钟后对琉琅酸
    脱氢酶的抑制率高达98%。但拌种灵对菌体脂质合成、以及末端活性氧的产生等
    都几乎没有影响。拌种灵对细胞呼吸作用的抑制与丁烯戳胺类杀菌剂的作用机制
    相似。有证据表明,菌体细胞糖代谢途径和细胞呼吸电子传递链上掳琅酸脱氢酶
    系是拌种灵在柑桔馈疡病菌菌体细胞内的作用靶标。
     经药剂诱导和紫外光照射双重作用首次获得柑桔腿病菌抗拌种灵突变体,
    经致病性研究表明,该突变体为由 突变体,抗药性的产生伴随着致病性的丧失,
     二互
    
     抗药突变体具有遗传的稳定性。但抗药突变体的生长速率、菌体蛋白和胞外蛋白
     组分等与敏感菌株基本一致,对萎锈灵和噎枯咬具有潜在的正文互抗性,与二硫
     氰基甲烷没有交互抗性。胞外水解酶活性一般高于敏感菌株,其中以淀粉酶活性
     变化最为明显。胰琅酸脱氢酶活性显著降低,抗药突变体受拌种灵的抑制作用亦
     降低。同时抗药突变体从蔗糖产生还原物质的能力显著降低。抗药突变体的性质
Toxicity mechanism, pl~rmacology, resistance risk, physiological and
     biochemical characters, and targets of attacking site et al. were studied in citrus
     bacterial canker disease (CBCD) pathogen Xunthomonas citri inhibited by
     carboxamides fungicide amicarthiazol.
    
     Action of amicarthiazol to plant pathogen bacteria was first charactered systemly
     in abroad and domestic researches. Intensely selection was indicated in inhibition of
     amicarthiazol to plant pathogen bacteria Xanthomonade such as X oryzae pv. oryzae,
     X o. pv. oryzicola, X citri, and X glycines et al. with high activity of efficient
     inhibitory medium concentration (EC50) 0.5745, 1.3026, 2.6257 and 7.4970kg 秐L1 in
     vitro, respectively. Little inhibition was showed to Pseudomonas syringae pv. syringae,
     Ralstonia .solanacearum and Erwinia carotovora pv. carotovora. However. EC50 of
     hismerthiazol. carboxin. diisothiocyanatomethane and streptotnycin sulfate were
     3.6269, 2.8547, 0.1485, 0.040%.tg mU? It showed that inhibitory efficiency of
     aniicarthiazol was better than that of carboxin and bismerthiazol, yet less than
     diisothiocyanatomathane and streptomycin sulfate to the growth of bacterium X citri.
     Thiram and pH tendency had no influence on inhibition to the pathogen, glucose
     oxidation and utility by cell of X citri was 5.3 times in medium with sodium acetate
     solely hig~r than with glucose as sole carbonic resource.
    
     The functions of toxicity radicals with the similar structures were minor
    
     112
    
    
    
    
    
    
    
    
    
     difference through comparison of toxicity mechanism among amicarthiazol,
     bismerthiazol and carboxin. They all had well inhibitory efficiency to the growth of
     plant bacterial disease pathogen and Rhizocto,iia cerealis. But bisnierthiazol had little
     toxicity to Rhizoctonia cerealis. The median inhibitory concentrations (MIC) of X
     curl to amicarthiazol and carboxin were 10014g. mV and 40014g ml]?respectively,
     it reflected that some different tolerances were exjsted between amicarthiazol and
     carboxin. Under the same efficient concentration effect of amiearthiazol was better
     than total of the effect of bismerthiazol and carboxin to the -growth and the respiration
     of X carl. However. Bismerthiazol could stimulate the respiration of the bacterium on
     some distance in low concentration. The results indicated that thiazole and
     benamidemetide structures in the molecular structure of amicarthiazol all had
     bioactivity to X cUrl.
    
     Extracellular secretions of X cUrl had certain abilities to regulate the interaction
     course between amicarthiazol and the bacterial cell. The secretions, especially
     extracellular polysaccharide (BPS), could strongly antagonize the inhibition of
     amicarthiazol. Output of electrolyte, El扴, extracelkilar protein, and bioactivity of
     extracehlular hydrolytic enzymes were regularized to vary with the concentration of
     amicarthiazol. To be noted that 73.74% product of ex~acelluIar protein of the
     bacterium treated with 2014g. mU?amicarthiazol was inhli,ited. l~ut the activity of
     extracellular proteinase increased with concentrati(n of aznicarthiazol till up to
     1014g. mU1. The results made known that the pathogenic bacteria possess an active
     echo to the adverse environment by changing the atti~butions of extracellular
     secretions enriching its cytoplasm when surrounded by fungicides to minor the
     probable touch to amicarthia~ol.
    
     Many researches were further to make clear diet the inhibitory rate was great
     different during different growth stage of
引文
1. Akhtar,M.A.; Bhatti,M.H.R.; Aslam,M. Detection of biodiversity in Xanthomonas campestris pv. citri. Pakistan Journal of Botany. 1997, 29(1) : 161-166.
    2. Akhtar,M.A.; Rahber-Bhath,M.H.; Aslam,M. Pathgenicity spectrum of Xanthomonas campestrs pv. citri strains in Pakistan. Pakistan Journal of Botany. 1995, 27(2) : 447-450.
    3. Akhtar, M.A.; Rahber-Bhath, M.H.; Aslam,M. Antibacterial activity of plant diffusate against Xanthomonas campestris pv. citri. International Journal of Pest Management. 1997,43(2) 149-153.
    4. Alonso,J.; Garcia,J.L. Proline iminopeptidase gene from Xanthomonas campestris pv. citri. Microbiology. 1996, 42(10) : 2951-2957.
    5. Araki,F.; Yabutani,K. a , a , a-Trifluoro-3'-isopropoxy-o-toluanilide (NNF-136) , a new fungicide for the control of disease caused by Basidiomycetes. Proc. Brit. Crop Protect. Conf.-Pests and Diseases. 1981, P: 3-10.
    6. Bach,E.E.; Alba,A.P.C. Cross-reactive antigens between Xanthomonas campestris pv. citri pathotypes and Citrus species. Journal of Phytopathology. 1993, 138(1) : 84-88.
    7. Ben-Yephet,Y.; Henis,Y.; Dinoor,A. Genetic studies on tolerance of carboxin and benomyl at the asexual phase of Ustilago hordi. Phytopathology, 1974, 64 : 51-56.
    8. Ben-Yephet,Y.; Henis,Y.; Dinoor,A. Inheritance of tolerance to carboxin and benomyl in Ustilago hordi. Phytopathology. 1975b, 65 : 563-567.
    9. Bochow,H.; Luc,L.H.; Sung,P.O. Development of tolerance by phytopathogenic fungi to systemic fungicides. Acta Phytopathol. 1971, 6 : 399-414.
    10. Broadbent,P.; Pttkethley,R.N.; Barnes,D. et al. A further outbread of citrus canker near Darwin. Australasian Plant Pathology. 1995,24(2) : 90-103.
    
    
    11. Broomfield,P.L.E.; HargreavesJ.A.; A single amino acid change in the iron-sulfur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Current Genetics. 1992, 22 : 117-121.
    12. Coles,J.C.; Thomas,P.S.; Gorden,A.W. Studies on the binding of carboxin analogs to succinate dehydrogenase. the Journal of Biological Chemistry. 1978, 253 (16) : 5573-5578.
    13. Costacurta,A.; Mazzafera,R; Rosato,Y.B. Indole-3-acetic acid biosynthesis by Xanthomonas axonopodis pv. citri is increased in the presence of plant leaf extracts. FEMS Microbiology Letters. 1998, 159(2) : 215-220.
    14. Csizinszky,A.A.; Civerolo,E.L.; JonesJ.B. Inactivation of Xanthomonas campestris pv. in vitro with plant extracts. Acta Horticulturae. 1993, 331 : 301-305.
    15. Dai,H.; Liao,H.J.; Chiang,K.S. Differential stability of filamentous phage genomes in Xanthomonas campestris pv. citri. Microbios. 1988, 56(228-229) : 157-167.
    16. Dai,H.; Lo,Y.S.; Kuo,A.L.; Lin,B.Y; Chiang,K.S. Inheritable instability of colony morphology of Xanthomonas campestris pv. citri. Botanical Bulletin of Academia Sinica. 1991, 32(4) : 271-277.
    17. Davis,R.A.; von Schmeling,B.; Kulka,M; Felauer,E. Furan-3-carboxamides. Can. Patent. 893,676. 1972; Can. Patent 932,334. 1973; U.S. Patent 3,959,481. 1976; U.S. Patent 4,054,585. 1977.
    18. Dye,D.W.; Lettiott,R.A. Bergey Bacterial Determinative Mannule 8th. Edition. 1986, P:243-249.
    19. Dutta,S.; Biggs,R.H. Regulation of ethylene biosynthesis in citrus leaves infected with Xanthomonas campestris pv. citri. Physiologia Plantarum. 1991, 82(2) : 225-230.
    20. Edgington,L.V.; Barron,G.L. Relation of structure to fungitoxic spectrum of oxathiin fungicides. Can. Phytopathol. Soc. Proc. 1967, 33 : 18-19.
    
    
    21. Edgington,L.V.; Walton,G.S.; Miller,P.M. Fungicide selective for Basidiomycetes. Science. 1966,153:307-308.
    22. Egel.D.S.; Graham,J.H.; Stall,R.E. Genomic relatedness of Xanthomonas campestris pv.citri strains causing diseases of citrus. Applied and Environmental Microbiology. 1991, 57(9) : 2724-2730.
    23. EL-Goorani,M.A. The occurrence of citrus canker disease in United Arab Emirates. Journal of Phytopathology. 1989, 125(3) : 257-264.
    24. Fargher,R.G.; Galloway,L.D.; Probert,M.E. The inhibitory action of certain substances on the growth of mould fungi. Mem. Shirley Inst. 1930, 9 : 37-41.
    25. Frost,A.J.P; Jung,K.V.; Bedford,J.L. The timing of application of benodanil (BAS3170F) for the control of careal rust diseases. Proc. 7th. Brit. Insecticide and Fungicide Conf. 1973,2 : 105-110.
    26. Gabriel,D.W.; Hunter,J.E.; Kingsley,M.T. et al. Clonal population structure of Xanthomonas campestris and genetic diversity among citrus canker strains. Molecullar Plant-Microbe Interactions. 1988, 1(2) : 59-65.
    27. Gabriel,D.W.; Kingsley.M.T; Hunter,J.E. Gottwald.T. Reinstatement of Xanthomonas citri (ex Hassc) and X. phaseoli ( ex Smith) to species and reclassification of all X. campestris pv. citri strains. International Journal of Systematic Bacteriology. 1989, 39(1) : 14-22.
    28. Georgopoulos,S.G.; Alexandri,E.; Chrysayi,M. Genetic evidence for the action of oxathiin and thiazole derivatives on the succinic dehydrogenases system of Ustilago maydis mitochondria. Journal of Bacteriology. 1972, 110 (3) : 809-817.
    29. Georgopoulos,S.G.; Chrysayi,M.; White,G.A. Carboxin resistance in the haploid, the heterozygous diploid, and the plant-parasitic dicaryotic phase of Ustilago maydis. Pestic. Biochem. Physiol. 1975a, 5 : 543-551.
    30. Georgopoulos,S.G.; Sisler,H.D. Gene mutation eliminating antimycin A-tolerant electron transport in Ustilago maydis. J. Bacteriol. 1970, 103 : 745-750.
    
    
    31. Gilling,M.R.; Fahy,P.C.; Broadbent,P. et al. Rapid identification of a second outbreak of Asiatic citrus canker in the Northern Territory using the polymerase chain reaction and genomic fingerprinting. Australasian Plant Pathology. 1995, 24(2) : 104-111.
    32. Gottwald,T.R.; Civerolo,E.L.; Garnsey,S.M. et al. Dynamics and spatial distribution of Xanthomonas campestris pv. citri group E strains in simulated nursery and new grove situation. Plant Disease. 1988, 72(9) : 781-787.
    33. Gottwald, T. R.; Graham, J. H.; Schubert, T.S. An epidemiological analysis of the spread of citrus canker in urban Miami, Florida, aad synergistic interaction with the Asian citrus leafminer. Fruits (Paris). 1997, 52(6) : 383-390
    34. Gottwald.T.R.; McGuire,R.G.; Garran.S. Asiatic citrus canker: spatial and temporal spread in simulated new planting situation in Argentina. Phytopathology. 1988, 78(6) : 739-745.
    35. Gottwald.T.R.; Reynolds,K.M.; Campbeli,C.L; Timmer,L.W. Spatial and spatiotemporal autocorrelation analysis of citrus canker epidemics in citrus nurseries and groves in Argentina. Phytopathology, 1992,82(8) : 843-851.
    36. Gottwald,T.R.; Timmer,L.W. The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Tropical Agriculture. 1995, 72(3) : 194-201.
    37. Graham.J.H.; Gottwald,T.R.; Fardelmann,D. Cultivar-specific interactions for strains of Xanthomonas campestris from Florida that cause citrus canker and citrus bacterial spot. Plant Disease. 1990, 74(10) : 753-756.
    38. Graham,J.H.; Gottwald,T.R.; Riley.T.D. et al. Susceptibility of citrus fruit to bacterial spot and citrus canker. Phytopathology. 1992,82(4) : 452-457.
    39. Graham,J.H.; McGuire,R.G.; Miller,J.W. Survival of Xanthomonas campestris in citrus plant debris and soil in Florida and Argentina. Plant Diseases. 1987, 71(12) : 1094-1098.
    
    
    40. Grouet,D.; Montfort,F.; Leroux,P. Presence of a strain of Puccinia horiana resistant to oxycarboxin in France. Phytiatr-Phytopharm. 1981, 30 : 3-12.
    41. Grover,R.K.; Chopra,B.L. Adaptation of Rhizoctonia species to two oxathiin compounds and manifestations of the adapted isolates. Acta Phytopathol. Acad. Sci. Hung. 1970,5 : 113-121.
    42. Gunatilleke,I.A.U.N.; Arst,H.N.; Scazzocchio,C. Three genes determine the carboxin sensitivity of mitochondrial succinate oxidation in Aspergillus nidulans. Genet. Res. 1976, 26 : 297-305.
    43. Haken,P.T. Meded. Fac. Landbwentensch. Rijksumiv. Gent. 1971, 36 : 79-88.
    44. Hardison J.R. Relationships of molecular structure of 1,4-oxathiin fungicides to chemotherapeutic activity against rust and smut fungi in grass. Phytopathology. 1971,61 :731-735.
    45. Hardison,J.R. Chemotherapy of smut and rust pathogens in Poa pratensis by thiazole compounds. Phytopathology. 1971,61 : 1396-1399.
    46. Harrison,W.A.; Kulka,M; von Schmeling,B. Thiazzolecarboxamides U.S. Patent 3,547,917. 1970; Can. Patent 873,888. 1971; U.S. Patent 3,709,992. 1973.
    47. Hartung,J.S. Plasmid-based hybridization probes for detection and identification of Xanthomonas campestris pv. citri. Plant Disease. 1992, 76(9) : 889-893.
    48. Hollomon D.W.; Brent K.J. Can we overcome fungicides resistance? Chemistry and industry , 1989, (6) : 177-182.
    49. Jank.B.; Grossmann,F. 2-Methyl-5,6-dihydro-4H-pyran-3-carboxylic acid anilide, a new systemic fungicide against smut diseases. Pesticide Sci. 1971, 2 : 43-44.
    50. Jiao,H.J.; Wang,S.Y.; Civerolo,H.L. Lipid composition of citrus leaves from plants resistant and susceptible to citrus bacterial canker. Journal of Phytopathology. 1992, 135(1) : 48-56.
    51. Kale,K.B.; Peshney,N.L. Chemical control of acid lime canker, scheduling of spray intervals for quality fruit production. PKV Research Journal. 1996, 20(1) :
    
    43-46.
    52. Kapur, S.; Cheema, S. S.; Kapur, S. P. Efficacy of different chemo-therapeutants for the control of citrus canker. Plant Disease Research. 1997, 12 (2) : 159-161.
    53. KeonJ.P.R.; Broomfield,P.L.E.; Hargreaves,J.A.; White,G.A. Monecular genetic analysis of carboxin resistance in Ustilago maydis. In: Pest and Diseases, Proceedings of the British Crop Protection Conference. 1992. P: 221-226.
    54. KeonJ.P.R.; Broomfield,P.L.F.; White,G.A.; Hargreaves,J.A. Amutant form of the succinate dehydrogenase iron-sulfur protein subunit confers resistance to carboxin in the maize smut pathogen Ustilago maydis. Biochemical Society Transactions. 1994a, 22 : 234-237.
    55. Keln,J.P.R.; White,G.A.; Hargreaves,J.A. Isolation, characterization and sequence analysis of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen Ustilago maydis. Current Genetics. 1991, 19 : 475-481.
    56. Kirkpatrik,D.; Finn,C.M.; Conway, B.; et al. Biokinetics and metabolism of N-(2,3-dichlorophenyl)-3,4,5,6-tetrachlorophthalamic acid in rates. J. Agric. Food Chem. 1981,29:608.
    57. Kitagawa,T.; Hu,J.G.; Ishida,Y. et al. A new immunoassay for Xanthomonas campestris pv. citri and its application for evaluation of resistance in citrus plants. Plant Disease. 1992, 76(7) : 708-712.
    58. Koller,W. Target sites of fungicides action. CRC Press, Boca Raton, FL. USA. 1992.
    59. Kubicek,Q.B.; Civerolo,E.L.; Bonde,M.R. et al. Isozyme analysis of Xanthomonas campestris pv. citri. Phytopathology. 1989, 79(3) : 297-300.
    60. Kulka,M; Schmeling,B.von Carboxin fungicides and related compounds. Modern Selective Fungicides proterties,applications,mechanisms of action. 2nd. Horst Lyr(ed.), Gustav Fisher Verlag. Jena Germany, 1995
    61. Leroux,P. Recent developments in the mode of action of fungicides. Pestic. Sci.
    
    1996,47: 191-197.
    62. Lette,R.P.; Egel,D.S.; Stall,R.E. Genetic analysis of hrp-related DNA sequences of Xanthomonas campestris strains causing diseases of citrus. Applied and Environmental Microbiology. 1994, 60(4) : 1078-1086.
    63. Luc,L.H.; Sung,P.Y.; Bochow,H. Untersuchungen uber das verhalten systemfungizidtoleranter laborkulturen von Sclerotinia sclerotiorum und Fusarium solani in infektions-und bekampfungsversuchen. Arch Pflanzenschutz. 1971, 7 : 91-102.
    64. Ludwigshafen,H.O. U.S. Patent 3,644,112. 1972.
    65. Lyr,H. Modern Selective Fungicides : properties, application, machanism of action. 2ed. Edu. Gustav Fisher Verlag, Jena, Germany. 1995
    66. Maciel.J.L.N.; Duarte,V.; Ayub,M.A.Z. Plasmid DNA restriction profole and copper sensitivity of Xanthomonas axonopodis pv. citri from Rio Grande do Sul, Brazil. Fitopatologia Brasileira. 1998, 23(2) : 116-120.
    67. Malavota.V.A.; Rldrigues Neto,J.; Caralho,M.L.V. Studies on the survival of the bacterium carsing citrus canker. Laranja. 1987, 1: 125-132.
    68. Maria,S.; Abdel-Lateef Mahmoud,F.A.; Eckstein Zygmunt. Comparision of the systemic fungicidal activity of 2-amino-4-methyl-5-carboxyanilidothiazole (ALF) and 2,4-dimethyl-5-carboxyanilidothiazole (ALG) in greenhouse and field tests. Acta. Phytopathology. 1973, 8 (3-4) : 283-294.
    69. Masroor,M.K.; Sudhir Chandra. Effect of carbon sources on antibiotic production by Aspergillus spp. antagonistic to citrus canker pathogen. Philippine Journal of Science. 1989,118(2) : 141-145.
    70. Mathre,D.E. Mode of action of oxathiin systemic fungicides. I. Effect of carboxin and oxycarboxin on the general metabolism of several Basidiomycetes. Phytopathology. 1970, 60 : 671-676.
    71. Mathre,D.E. Mode of action of oxathiin systemic fungicides. J. Agr. Food Chem.
    
    1971, 19:872-874.
    72. McGuire,R.G. Ecaluation of bactericidal chemicals for control of Xanthomonas on citrus . Plant Disease. 1988, 72(12) : 1016-1020.
    73. Medrano,F.J.; Alonso.J.; Garcia,J.L. et al. Crystallization and preliminary X-ray diffraction analysis of proline iminopeptidase from Xanthomonas campestris pv. citri. FEBS Letters. 1997,400(1) : 91-93.
    74. Medrano, F.; Alonso, J.; Garcia,J. L. et al. Struqture of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family. EMBO Journal. 1998, 17 (1) : 1-9.
    75. Nakagami,K. et al. J. Pesticide Sci. 1980, 5 : 237
    76. Namekata,T. Citrus canker present situation in Sao Paulo State and other contaminated states. Laranja. 1987,1 : 117-120.
    77. Nogueira,E.M.; Palazzo,D.A.; Ceravolo,L.C. et al. Studies on the resistance of citrus verities to citrus canker at the President Prudente Experimental Station,SP. Laranja. 1987, 1: 141-148.
    78. O'Relly,P.; Kolayashi,S.; Yamane,S. et al. A novel fungicide with broad-spectrum diseases control. Brighton Crop Prot. Conf.-Pest and Diseases. 1992, P: 427-434.
    79. Pabttra Kalita; Bora, L.C.; Bhagabati, K.N. Phyllφplane microflora of citrus and their role in management of citrus canker. Indian phytopathology. 1996, 49 (3) : 234-237.
    80. Palazzo,D.A.; Nogueiro,E.M.; Ceravolo.L.C.; et al. Epidemiological studies on citrus canker (Xanthamonas campestris pv. citri): progress of the disease in time. Laranja. 1987,1: 133-140.
    81. Pommer,E.H.; Girgensohn,B.; Konig,K.H. et al. Development of new systemic fungicides with carboxailide structure. Kemia-Kemi. 1974,1 : 617-618.
    82. Pommer,E.H.; Kradel,J. Mebenil (BAS3050F) new compound with specific action against some Basidiomycetes. Proc. 5th. Brit. Insecticide Fungicide Conf. 1969, 2 :
    
    563-568.
    83. Pommer,E.H.; Reuther,W. Furmetamid, a new active ingredient for the control of wood-destroying Basidiomycetes. Proc. 4th. Intern. Biodeterioration Symp. 1978, P: 67-70.
    84. Prasad, M.B.N.V.; Roopali Singh; Rekha, A.; Ramesh Chand Evaluation of lemon cultivars and acid lime-lemon hybrids for resistance to Xanthomonas axonopodis pv. cirri. Scientia Horticulturae. 1997, 71 (3/4) : 267-272.
    85. Pruvost,O.; Hartung,J.S.; Civerolo,E.L. et al. Plasmid DNA fingerprints distinguish pathotypes of Xanthomonas campestris pv. citri, the causal agent of citrus bacterial canker disease. Phytopathology. 1992, 82(4) : 485-490.
    86. Pruvost,O.; Verniere,C.; Hartung,J. et al. Towards an improvement of citrus canker control in Reunion island. Fruits (Paris). 1997, 52 (6) : 375-382.
    87. Pullaiah,N.; Moses,G.J.; Kumar,P.S. Biochemical nature of resistance in citrus to canker disease (Xanthomonas campestris pv. citri (Hasse) Dye). Journal of Research APAU. 1993, 21(3) : 172-173.
    88. Pullaiah,N.; Moses,G.J.; Kumar,P.S. Morphological nature of resistance in citrus to canker disease (Xanthomonas campestris pv. citri (Hasse) Dye). Journal of Resarch APAU. 1994,22(3/4) : 139-140.
    89. Ram Kishun; Ramesh Chand. Studies on germplasm resistance and chemical control of citrus canker. Indian Journal of Horticulture. 1987, 44(1-2) : 126-132.
    90. Rangaswami,G. Development of resistance to streptomycin in Xanthomonas citri and X. malvacearum. Curr. Sci. 1957, 26(6) : 185-186.
    91. Sankhla,B.; Sankhla,H.C.; Delela,G.G. Adaptation of Alternaria triticina Prasada and Prabhu to fungicides. Rajasthan J. Agric. Sci. 1970, 1 : 116-119.
    92. Schewe,T.; Lye,H. Mechanism of action of carboxin fungicides and related compounds. In: Lyr,H. (Ed.): Modern Selective Fungicides. Gustav Fisher Verlag, Jena Germany. 1987, P: 133-142.
    
    
    93. Schewe,T; Lyr,H. Mechanism of action of carboxin fungicides and related compound. In: Lyr,H. (Ed.): Modern Selective Fungicides : properties, application, machanism of action. 2ed. Edu. Gustav Fisher Verlag, Jena, Germany. 1995
    94. Schmeling,B.von; Kulka,M. Systemic fungicidal activity of 1,4-oxathiin derivation. Science NO.3722, 1966, 152 : 659-660.
    95. Schubert,T.S.; Miller,J.W.; Gabriel,D.W. Another outbreak of bacterial canker on citrus in Florida. Plant Disease. 1996, 80(10) : 1208.
    100 Serizawa,S.; Inoue,K.; Suzuk,M. Studies on citrus canker disease. IX. Seasonal changes in disease development and correct timing of bactericidal applications. Bulletin of the Shizuoka Prefectural Citrus Experiment Station. 1985, 21 : 35-43.
    101 Sisler,H.D.; Ragsdale,N.N. Fungitoxicity and growth regulation involving aspects of lipid biosynthesis. Neth. J. Pl. Pathol. 1977, 83 (Suppl. 1) : 81-92.
    102 Snel,M.; von Schmeling,B.; Edgington,L.V. Fungitoxicity and structure-activity relationships of some oxathiin and thiazole derivatives. Phytopathology. 1970, 60: 1164-1169.
    103 Sothisorubini Nalliah.; Sundaresan,R.S.V.; Sivapalan,A. Studies on Xanthomonas citri (Hasse) Dowson, causing canker disease of citrus. Vingnanam Journal of Science. 1986, 1(1) : 19-25.
    104 Stingl,H.; Hartel,K.; Heubach,G. HOE2989, ein neues systematisches Fungizid, Wirksam gegen verschiedene Basidiomyceten (Rost und Brandpilze Sowie Rhizoctonia). VII. Int. Congr. Plant Protect. Paris. 1970, P: 205
    105 Sudo,T.; Shinohara,K.; Dohmae,N. et al. Isolation and characterization of the gene encoding an aminopeptidase involved in the selective toxicity of ascamycin toward Xanthomonas campestris pv. citri. Biochemical Journal (London). 1996, 319(1) : 99-102.
    106 Stead,D.E.; Sellwood,J.E.; Wilson,J. et al. Evaluation of a commercial microbial
    
    identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. Journal of Applied Biochemistry. 1992, 72(4) : 315-321.
    107 Swarup,S.; Feyter,R.DE; Brlansky,R.H.; Gabriel,D.W. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit canker-like lesions on citrus. Phytopathology, 1991, 81(7) : 802-809.
    108 Swarup.S.; Yang,Y; Kingsley,M.T.; Gabriel,D.W. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Molecular Plant-Microbe Interactions. 1992, 5(3) : 204-213.
    109 Talaga,P.; Stahl,B.; Wieruszeski,J.M. et al. Cell-associated glucans of Burkholderia solanacearum and Xanthomonas campestris pv. citri: a new family of periplasmic glucans. Journal of Bacteriology. 1996, 178(8) : 2263-2271.
    110 Ten Haken,P; Dunn,C.L. Structure-activity relationships in a group of carboxanilides systematically active against broad rust Uromyces fabae and wheat rust Puccinia recondite. Proc. 6th. Brit. Insecticide-Fungicide Conf. 1971. P: 455-462.
    111 Timmer,L.W. Evaluation of bactericides for control of citrus canker in Argentina. Proceedings of the Florida State Horticultural Society. 1989, 101 : 6-9.
    112 Van Tuyl,J.M. Acquired resistance to carboxin in Aspergillus nidulans. Neth. J. Pl. Pathol. 1975,81 : 122-123.
    113 Vauterin,L.; Yang,P.; Hoste,B. et al. Differentiation of Xanthomonas campestris pv. citri strains by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins,fatty acid analysis, and DNA-DNA hybridization. International Journal of Systematic Bacteriology. 1991, 41(4) : 535-542.
    114 Verniere,C.; Devaux,M.; Pruvost,O et al. Study of biochemical and physiological variability in Xanthomonas campestris pv. citri, causal agent of bacterial citrus canker. Fruits (Paris). 1991,46(2) : 153-161.
    
    
    115 Verniere,C.; Hartung.J.S.; Pruvost. O.P. et al. Characterization of phenotypically distinst strains of Xathomonas axonapodis pv. citri from Southwest Asia. European Journal of Plant Pathology. 1998, 104(5): 477~487.
    116 White,G.A.; Thorn,G.D. Theophenecarboxamide fungicides: structure-activity relationships with the succinate dehydrogenase complex from wild-type and carboxin-resistant mutant strains of Ustilago maydis. Pesticide Biochem. Physiol. 1980, 14: 26~40.
    117 Wu, W.C.; Kuo,H.F.; Hsueh,Y.K. et al. A simple method for maintaining Xanthomonas campestris pv. citri. Chinese Journal of Microbiology and Immunology. 1990, 23(2):162~165.
    118 Wu,W.C.; Wang,L.Y.; Chung, K.C. Asupplemental list of the Xanthomonas campestris pv. citri strains isolated in Taiwan. Plant Protection Bulletin, Taiwan. 1991, 33(3): 30~304.
    119 Yang Meikwei; Huang HueiMei; Yang YenChun; Su WeiChih Molecular cloning and expression of the coat protein genes of Cf, a filamentous bacteriophage of Xanthomonas campestris pv. citri. Botanical Bulletin of Academia Sinica. 1995, 36(4): 207~214.
    120 Yang YiNong; Gabriel,D.W. Intragenic recombination of a single plant pathogen gene provides a mechanism for the evolution of new host specificities. Journal of Bacteriology. 1995, 177(17): 4963~4968.
    121 Zhang Kinshan; He Shizhong; Huang Zhong Effect of several fungicides for control of citrus canker. South China Fruits. 1996, 25(3): 20
    122 俞大绂.防治柑桔溃疡病的几点意见,北京农业大学学报,1955,1(1):63~67.
    123 林孔湘,李斌,柑桔溃疡病田间防治试验及发生规律的报告,中国植物病理学会讯,1955,11,12:143~156.
    124 唐振尧.论柑桔表皮组织对溃疡病的抵抗性,植物病理学报,1958,4(1):56~70.
    
    
    125 张志雍.柑桔溃疡病及其防治研究,中国植物保护科学,科学出版社,1961,P:812~842.
    126 林肯恕.柑桔溃疡病苗消毒试验,华中农学院年报,1961.
    127 高日霞.柑桔溃疡病防治示范,植物保护,1964,2(3):118.
    128 林肯恕.湖北阳新、广济两县柑桔溃疡病传播距离的调杳,湖北农业科学,1963,(4):34~41.
    129 李斌.福州柑桔溃疡病的发生规律,植物保护学报,1966,5(1):21~25.
    130 浙江农业大学主编.果树病理学,上海科学技术出版社,1979,P:134~138.
    131 林肯恕.柑桔溃疡病苗化学治疗试验,植物保护学报,1981,8(3):159~162.
    132 刘锡.柑桔溃疡病的防治,江西柑桔科技,1984,26(4):31,33.
    133 陈福如,王青松,陈皓,等.可杀得防治柑桔溃疡病药效试验,福建果树,1986,10~11.
    134 童水远,郑重禄.乙磷铝和农用链霉素防治柑桔溃疡病试验,福建果树,1986,22~23.
    135 唐振尧.柑桔溃疡病防治试验简介,湖北农业科技,1987,(12):20~21.
    136 陈崇杰.施农药结合修剪防治柑桔溃疡病的效果,福建果树,1988,32~34.
    137 胡天其.柑桔溃疡病的发生及防治的研究综述,世界农业,1988,7(1):30~32.
    138 邹汉玄,龙育才,黄大树,等.柑桔溃疡病的药剂防治,农药,1988,27(2):54~55.
    139 郑重禄,童水远.农用金核霉素防治柑桔溃疡病试验,福建果树,1988,14~16.
    140 王中康.柑桔溃疡病菌噬菌体XCP1检验技术研究,中国农业科学,1990,23(2):34~39.
    141 Civerole,E.L.王中康译.世界柑桔溃疡病及病原菌的研究现状和进展,植物检疫,1990,4(2):115~120.
    142 徐春明,邱玉兰.拌种双防治柑桔溃疡病研究初报,江苏农药,1991,(3):29.
    143 徐春明,周德荣,杨中新,等.拌种双防治柑桔溃疡病研究,农药,1992,31(3):59,52.
    
    
    144 方毅敏,张宜绪.柑桔溃疡病综合防治研究,植物保护学报,1992,19(2):101~105.
    145 王中康,舒正义.应用A蛋白酶联法快速检测柑桔溃疡病,西南农业大学,1992,14(2):142~146.
    146 中国农业科学院果树研究所主编.中国果树病虫志(第二版),中国农业出版社,1994.
    147 韦建福,韦禄贵,覃光明,等.6个日体脐橙优良品种对柑桔溃疡病的抗性调查,植物保护,1995,21(5):18~19.
    148 许章翠,郑先驹,殷献样,等.柑桔溃疡病菌适生性调查研究初报,第二届全国植物病害检疫学术研讨会论文集,1996,P:149~152.
    149 赵友福,张乐.柑桔溃疡病检疫章程2,1996,P:325~327.
    150 王中康,罗怀海,舒正义,等.应用斑点免疫技术检测柑桔溃疡病菌,西南农业大学学报,1997,19(6),529~532.
    151 应芝秀,俞杏林,施书星.拌种双等农药防治柑桔溃疡病的试验,1985
    152 周明国,叶钟音,刘经芬.杀菌剂抗性研究进展,南京农业大学学报,1994,17(3):33~41.
    153 中国植保学会主编,新农药技术讲习会资料汇编,1983.
    154 李希平 农药使用手册,江苏科学技术出版社,1991.
    155 刘建华,刘勇,拌种双对多种蔬菜病菌的抑制作用,农药,1991,30(4):55.
    156 郭栋懦,赵殿祥.拌种双防治小麦散黑穗病,农药,1988,27(2):51,14.
    157 许美昌,戴宝江.拌种双防治西瓜炭疽病,农药,1988,27(4):52.
    158 阚李斌,曹炳和,周勇,等.拌种双防治水稻恶苗病,农药,1988,27(5):52.
    159 叶钟音,彭云良.中国植物病理学会六十周年纪念论文摘要汇编,1989,P:227.
    160 江苏省农科所植保室主编.低毒高效杀菌剂药效试验资料汇编.P:敌枯双防治水稻白叶枯试验简结,1975
    161 江苏省农科所植保室主编.低毒高效杀菌剂药效实验资料汇编.P:柑桔溃疡病药剂防治试验,1975
    
    
    162 欧阳宝辉,于华坤.丁烯酰胺类杀菌剂研究.农药工业,1980,4:36~39,33.
    163 沈阳化工研究院.农药商品手册,中国农药工业协会出版,1986,P:191.
    164 谢关林,王汉荣.防治水稻细菌性条斑病药剂的筛选,浙江农业科学,1991,5:233~235.
    165 南开大学元素有机化学研究所主编.国外农药进展,化学工业出版社,1978,P:174.
    166 郭奇珍.有机硫杀菌剂,农业出版社,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700