植物病原菌拮抗微生物的筛选、鉴定及拮抗机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业生产过程中,植物病原真菌和细菌很易感染植物,每年因此而造成数千万元的经济损失,如何控制疾病、维持植物的正常生长一直是科研工作者研究的热点。化学农药可以有效的控制真菌和细菌病害,在植病防治上发挥了巨大的作用。但是随着人们对化学农药更多的认识,比如它引起土壤、水体和大气的污染,农副产品中农药残留增加,直接危害了人类的健康及生存,以及病原菌的抗药性等问题,致使许多农药的使用受到了限制,由此加速了人们去寻求新的安全有效的植物病害防治途径。利用自然环境中的拮抗微生物防止植物病原的侵袭,也就是我们说的生物防治,这样不仅可以避免象化学农药引起的抗药性问题而且对环境和人类健康都是安全的。
     本研究用稀释分离法对成都、简阳、雅安等地区的农田、自然保护区的13个土壤样品进行放线菌和细菌的分离,共分离到放线菌119株,细菌67株。以玉米弯孢菌为供试菌,采用传统五点对峙法和改良的点对峙培养筛选法对80株放线菌进行筛选,结果显示,前者在同步培养5天时间筛选出具有拮抗活性放线菌14株,后者在同步培养5天时间筛选出具有拮抗活性放线菌21株,由此确定改良点对峙培养筛选法适宜病原真菌拮抗性放线菌的筛选。用改良的点对峙培养筛选法从119株放线菌筛选出对病原真菌有拮抗作用的放线菌共39株,用传统的点对峙法从67株细菌中筛选出对病原真菌都有拮抗作用的细菌5株,即BS04、ST1、ST8、C3和C4。其中对山葵墨入菌有拮抗活性的放线菌36株,玉米弯孢菌的拮抗放线菌29株,水稻纹枯病菌的拮抗放线菌27株,玉米小斑病菌的拮抗放线菌28株,玉米大斑病菌的
    
    拮抗放线菌28株,小麦赤霉菌的拮抗放线菌25株,玉米圆斑病菌的拮抗放
    线菌27株,枯斑拟盘多饱菌的拮抗放线菌27株,交链抱的拮抗放线菌25株。
    用改良的琼脂扩散法从119株放线菌和67株细菌筛选对病原细菌有拮抗作
    用的放线菌1株,编号为Pll,且只对姜瘟青枯假单胞菌有作用,筛选到拮
    抗细菌4株,其中BS04、STI、STS对柑桔溃疡病菌和姜瘟青枯假单胞菌均
    有拮抗作用,P18只对柑桔溃疡病菌有拮抗作用。
     由于拮抗菌 BS04对病原真菌和细菌都具有很好的拮抗作用,具有作为生
    防制剂的潜力,故对其进行了深入的研究。传统的细菌系统鉴定方法鉴定拮抗
    菌BS04结果发现,BSO4与多粘芽抱杆菌和多粘类芽抱杆菌都很相似,无法精
    确确定其分类地位。采用165 rDNA序列分析方法从分子角度确定拮抗菌BSO4
    的分类地位,结果表明细菌BS04的165 rDNA的序列与类芽抱杆菌属细菌有很
    高的同源性(92%一99%),与多粘类芽抱杆菌同源性为99%,最终鉴定其为多粘
    类芽抱杆菌。
     通过正交设计试验,优化了多粘类芽抱杆菌BS04发酵产拮抗物质的试验条
    件。确定了BS04最佳发酵条件,培养基组成(g/L)为葡萄糖10,糊精7.5,
    氯化钠5,玉米浆15,大豆粉30,碳酸钙3,自然pH,发酵接种量为30ml发
    酵液接种1.5ml种子液(10日Cfu/ml含菌量),28oC培养2天(140r/min)。
     以青枯假单胞菌为供试菌,采用改良的琼脂孔扩散法来进行生物跟踪,对
    多粘类芽抱杆菌BSO4拮抗成分进行了分离纯化。在对发酵液处理上发现,
    20一100%的(NH4)250;不能使拮抗成分沉淀,从而不能达到初步分离的目的:正己
    烷、乙醚、乙酸乙醋三种有机溶剂均不能把拮抗成分从发酵液中萃取出来,说
    明采用萃取法获得拮抗成分粗提液的方案也欠可行。用不同浓度的乙醇处理也
    不能促使拮抗成分产生沉淀,但是通过上清液减压浓缩可获得拮抗成分浓缩液,
    适合拮抗成分粗提液的制备。将发酵液经65%乙醇沉淀后,上清液减压浓缩经
    过Sp一Sepharose Fast Flow柱层析和Souree SRPe反相柱层析后得到棕黄色的
    纯化样品。将样品溶解在水中,测定其对青枯假单胞菌的拮抗作用,结果显示
    BS04拮抗成分能耐受广泛的pH,并且热稳定性好,活性不受蛋白酶K和胰蛋白
    酶影响,但是纯化的拮抗成分对病原真菌没有拮抗作用。拮抗成分的薄层层析
    荀三酮显色阳性和红外光谱结果暗示此活性成分可能为肤类,质谱结果显示此
    了
    
    活性成分为4个分子量相近的混合物,其分子量分别为1143.7Da、1125.6Da、
    1104.7Da和1085.7Da,但是是否这4个组分均有活性,还是只是其中一个或几
    个有活性,以及活性组分的结构和抗菌谱还有待进一步研究。另外,拮抗组分
    的200一40Onm扫描发现,其在209nm有一最高吸收峰,但是这并不代表每个组
    分的最大吸收峰,这一指标对拮抗组分大批量分离纯化提供了监测手段。
     通过对BSO4产酶能力的研究发现,BS04虽然没有几丁质酶活性,但是具
    有纤维素酶和蛋白酶活性,这就说明其产生的纤维素酶和蛋白酶在抗真菌上发
    挥了一定的作用,当然,这并不排除除降解纤维素和蛋白质以外的其他酶或未
    知拮抗成分也在拮抗过程中发挥着作用。
     通过显微观察,BS04代谢产物的拮抗成分可能是破坏了青枯假单胞菌的细
    胞膜,致使胞内物外溢,菌体最后发生死亡。BSO4作用于真菌,使真菌发生菌
    丝断裂解体,菌丝变形,内容物外溢。
    关键词:植物病原菌;拮抗菌;筛选;鉴定;
     多粘类芽袍杆菌;作用机理
In production agriculture, Fungal and bacterial plant pathogens infect plants and crops easily and often seriously, causing millions of dollars worth of economic damage each year. So, how to control these diseases and maintain the normal growth of plants is always the highlight. Application of chemical pesticides is the effective measure to control the fungal and bacterial infection and plays an important role in preventive defence. With the further knowledge to chemical pesticides, however, many concerns, such as the pollution of soil, water and atmosphere, the increase of the leftover of germicides in agricultural produce which imperils human health and life directly, the unbalance of ecological environment resulting from the pesticides, and resistance of phytopathogenic fungi and bacteria to germicides, have caused the withdrawal of many of them. So, new and safe alternative control measures are much sought after. Biological control by natural antagonistic organisms is a potential nonchemical tool for crop protection against phytopathogenic fungi and bacteria and offers a promising alternative to synthetic pesticides, in part because it is perceived as safe to the environment and human health and can avoid the appearance of drug-resistance.In our study, 13 soil samples were gathered from fields in Chengdu,
    
    Jianyang and Yaan, from which 119 actinomyces strains and 67 bacterial strains were isolated by tube dilution assay. With Curuvularia Lunata (Walk) Boed as the tested stain, 21 antibiotic actinomyces stains were screened out by modified hyphal extension inhibition assay and 14 antibiotic actinomyces stains by traditional hyphal extension inhibition assay from 80 actinomyces stains, which indicated that the modified method was suitable to screen the antibiotic actinomyces. From these isolates, 39 antibiotic actinomyces strains and 5 bacterial strains (BS04, ST1 ST8, C3 and C4) against phytopathogenic fungi were screened by modified hyphal extension inhibition assay and traditional hyphal extension inhibition assay, respectively. Among 39 antibiotic actinomyces strains, there were 36, 29, 27, 28, 28, 25, 27, 27 and 25 strains against Phoma wasabiae Yokogi Curuvularia Lunata (Walk) Boed Thantephorus cucumris , Cochlibolus Heterostrophus , Exserohilum Turcicum Fusarium graminearum Cochliobolus carbonum Pestalotiopsis foedans and Altalaria altanata, respectively. With modified agar diffusion assay, 1 actinomyces strain, named P11, was screened out to be antibiotic against to phytopathogenic bacteria, and it was antibiotic against to Pseudomonas solanacearum only. Bacteria BS04, ST1 and ST8 were antibiotic against Xanthomonas axonopodis pv. Citri (Hasse) Dye and Pseudomonas solanacearum, while bacterium P18 was antibiotic only against to Xanthomonas axonopodis pv. Citri (Hasse) Dye.Because of good antibiosis against phytopathogenic fungi and bacteria, bacterium BS04 had the potential as biocontrol agent, and so further study on it was carried out. In order to determine the taxonomic placement, the identification of BS04 was performed with traditional bacterial systemic identification method. The result showed that the physiological and biochemical character of BS04 is similar to that of Bacillus polymyxa and that of Paenibacillus polymyxa so that it was
    
    difficult to ascertain its systematic position. Therefore, the molecular identification of BS04 was performed. Through the comparative 16s rDNA sequences analysis, the 16s rDNA sequence of BS04 had high homology with typical Paenibacillus bacteria from the RDP library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proved that BS04 was subjected to Paenibacillus polymyxa.Through orthogonal test, the optimal fermentation conditions of producing antibiotic products of Paenibacillus polymyxa BS04 were given out. The fermentation cultures contained (g/liter): dextrose 10g, dextrin7.5g, sodium chloride5g, corn syrupl5g, soy meal30g, calcium carbonate 3g and pH5. 5-6.5. 3% seed media(V/V) with 108cfu/mL
引文
1.祖若夫,胡宝龙,周德庆编著.微生物学实验教程.复旦大学出版社.1993.
    2.宗兆锋,乔宏萍,何杞真.2株重寄生菌的分离和对靶标菌的抑制作用.西北农业学报2002,11(4):1—3。
    3.朱丽霞,程乃乾,高信曾,编著.生物学中的电子显微镜技术.1983.北京大学出版社.
    4.周与良,刑来君.真菌学.高等教育出版社,1989,29-31.
    5.周吉查,罗宽,肖启明.柑桔溃疡病生物防治研究.湖南农业大学学报(自然科学版).2001,27(4):303—305.
    6.周德庆,主编.微生物学实验手册.上海科学技术出版社.1986.
    7.郑若玄 编著.实用细胞学技术.科学出版社.1980.
    8.郑国昌主编.生物显微技术.人民教育出版社.1978.
    9.叶姜瑜.一种纤维素分解菌鉴别培养基.微生物学通报.1997,24(4):251-252.
    10.杨合同,任欣正,庞定远等.姜瘟病生物防治初报.山东科学.1990.3(4):42—46.
    11.徐丽华,姜成林 著.微生物资源学.科学出版社.1997.
    12.吴东儒.几丁质的化学结构和物理性质.1993.糖类的生物化学.99-101.
    13.王未名,陈建爱,孙永堂等.六种土传病原真菌被木霉抑制作用机理的初步研究.中国生物防治.1999,(3):142-143.
    14.王革,周晓罡,方敦煌,李天飞.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制.烟草科技.2000,142(3):45-47.
    15.孙彩云,潘军,陈秀兰,张玉忠,高培基.抑制姜瘟青枯假单孢菌的木霉菌株的筛选及其抑菌机理.山东大学学报(理学版).2002,37(4):373-376.
    16.阮继生,刘志恒,梁丽糯,杨德成 编著.放线菌研究及应用.科学出版社.1990.
    17.彭昭裘,曾昭瑞,张志光,等.水稻纹枯病及其防治.上海:上海科学技术出版社,1985.
    18.穆文明.新经济植物—山葵,特种经济动植物,2000,4:23.
    19.梅汝鸿,徐维敏著.植物生态学.中国农业出版社,1998.48-51.
    20.茆振川.木霉菌培养液对苹果腐烂病菌的拮抗作用.河北果树.2000(3):15-16.
    21.鲁素云.植物病害生物防治学.北京:北京农业大学出版社,1993.
    22.刘大群,Neil A.Anderson,Linda L.Kinkel.拮抗链霉菌防治马铃薯疮痂病的大田试验研究.植物病理学报.2000.30(3):237-244。
    23.林丽钦.山葵、辣根、芥末的辛辣成分及功能,福建轻纺,1999,124(9):1-4.
    24.廖晓兰,罗宽.油菜花上细菌的分离及其对菌核菌的拮抗作用.湖南农业大学学报.2000.16(4):296-298。
    25.李湘民,华菊玲,罗任华,许志刚。水稻主要病害拮抗细菌的筛选与鉴定。江西农业学报。2000,12(3):32-35.
    26.焦振泉,刘秀梅综述,孟昭赫审校.16S rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生分册.1998,25(1):12-16.
    
    27.姜成林,徐丽华主编.微生物资源开发与利用.中国轻工业出版社.2001.
    28.郭坚华,潘登明,任欣正。抗青枯生防菌拮抗物性质的初步研究.南京农业大学学报.1994,18(2):59-62.
    29.戈峰,曹东风,李典谟.我国化学农药使用现状、问题及其减少对策.中国无公害农业的发展策略和途径.北京:中国农业出版社.1998,39-45.
    30.高克祥,王淑红,刘晓光等.木霉菌株T88对7种病原真菌的拮抗作用.河北林果研究.1999,14(2):159-162.
    31.傅湘琦编著.浅谈电子显微镜和亚细胞技术.科学普及出版社.1980.
    32.方中达编.植病研究方法.农业出版社.1979.
    33.董春,董成刚,赵青峰,曾宪铭.利用拮抗细菌防治烟草青枯病初步研究.广东农业科学.1996,5:28-30.
    34.东秀珠,蔡妙英等编著.常见细菌系统鉴定手册.2001.科学出版社。
    35.程光胜,李玲阁,张启先 等译.微生物学实验法.北京:科学出版社.1981,324-341.
    36.陈志谊,许志刚,陆凡,刘永锋,陈毓苓.拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究.江苏农业学报.2000,16(3):148-152.
    37. Zheng-XY; Sinclair-JB. The effects of traits of Bacillus megaterium on seed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl. 2000, 45: 2, 223-243.
    38. Xu, L. H., Q. R. Li, and C. L. Jiang. 1996. Diversity of soil actinomycetes in Yunnan, China. Appl. Environ. Microbiol. 62:244-248.
    39. Wolk. M., and Sarkar. S. 1993. Antagonismus in vitro von Bacillus spp. Gegenuber Rhizoctonia solani and Pythium spp. Ana. Schadlingskde. Pflanzenschutz. Umweltschutz. 66:211-125.
    40. Weller, D.M. and Cook, R.J. (1983). Suppression of take-all of wheat by seed treatments with fluorescent pseudomonas. Phytopathology. 73:463-469.
    41. Vasntha D T., Malaf V R., Gnanamanickam S S. Biological control of sheath blight of rice in India with antagonistic bacteria. Plant and Soil. 1989,119:325-330
    42. Vanloon LC, Bakker P, and Pieterse CMJ. 1998. Systemic resistance induced by Rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-483.
    43. Umezawa, H., Takita, T., and Shiba, T. 1978. Bioactive peptides produced by microorganisms.
    44. Tong-Yunhui, Ji-Zhaolin, Xu-jingyou, Chen-jijun. Identification of bacterial species antagonistic against Botrytis cinerea and conditions for their growth. Journal-of-Yangzhou-University, -Agricultural-and-Life-Sciences-Edition. 2002, 23(2): 67-70.
    45. Thimon, L., F. peypoux, R. Maget-Dana, and G. Michel. 1992. Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Am. Oil Chem. Soc. 69:92-93.
    46. Tanaka, Y. T., and S. mura. Agroactive compounds of microbial origin. Annu. Rev. Microbiol. 1993.47:57-87.
    
    47. Suzuki, K., K. Nagai, Y. Shimizu, and Y. Suzuki. 1994. Search for actinonrycetes in screening for new bioactive compounds. Actinomycetology 8:122-127.
    48. Stromberg KD, Kinkel LL, Leonard KJ. 2000. Interactions between xanthomonas translucens pv. Translucens, the causal agent of bacterial leaf positive bacteria. Bacterial rev. 40:722-756.
    49. Smid, E. J., Van Beek, J. A. M., and Gorris, L. G. M. 1993. Biological control of Penicillium hirsutum by antagonistic soil bacteria. InBiological control of foliar post-harvest diseases. Vov. 16. Edited by N. J. Kokkema, J. Kohl, and Y. Elad. IOBC WPRS Bulletin, Wageningen, the Netherlands. Pp. 190-193.
    50. Simon, A., and K. Sivasithamparan. 1989. Pathogen suppression: a case study of Gaeumannomyces graminis var. tritici in soil. Soil Biol. Biochem. 21:331-337.
    51. Silo-Suh. L. A. Lethbridge. B. L., Raffel. S. J., He. H. Clardy. J. and Handelsman, J. 1994. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl. Environ. Microbiol. 60:2023-2030.
    52. Shomura, T. 1993. Screening for new products of new species of Dactylosporangium and other actinomycetes. Actinomycetology 7:88-98.
    53. Shirmbock. M. Lorito. M. Wang Y. L, Haynes. C. K. Arisan-Atac. I., Scala, F., Harman. G. E. and Kubicek. C. P. 1994. Paralled formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harziamun against phytopathogenic fungi. Appl. Envion. Microbiol. 60: 4364-4370.
    54. Sengupta. S. , Banerjee. A. B. , and Bose. S. K. 1994. Gammagluramyl and D- and L- peptide linkages in mycobacillin, a cyclic peptide antibiotic. Biochem. J. 121:839-846.
    55. Seldin, L., Silva de Azvedo, F., Alviano, D.S., and de Freire Bastos, M. C. 1999. Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organisms. Lett. Appl. Microbiol. 28:423-427.
    56. Schippers B, Bakker AW and Bakker PH. 1987. Interactions of deleterious and beneficial Rhizosphere microorganisms and the effects of cropping practice. Ann. Rev. Phytopathology. 25: 339-58.
    57. Scher FM and Baker R. 1982. Effect of Pseudomonas and a synthesis iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology. 72: 1576-73.
    58. Sambrook J, Fritsch EF and Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press. 1989.
    59. Saito H and Miura K. Preparation of transforming DNA by phenol treatment. Biochem. Biophys. Acta. , 1963, 72:619-629.
    
    60. Rosado, A., and Seldin, L. 1993. Production of a potentially novel anti-microbioal substance by Bacillus polymyxa. World J. Microbiol. Biotechnol. 9:521-528.
    61. Rombouts. P. M., Fleet. G. H. Manners. O. J. and Pfaff. H. B. 1978. Lysis of yeast cell walls: nonlytic and lyric (1,6)-β-D-glucanases from Bacillus circulans WL-12. Carbohydr. Res. 64: 237-249.
    62. Rodriguez Kabana, R.G. Godoy, G. Morgan Jones, and R.A. Shelby. 1983 .The det ermination of soil chitinase activity: conditions for assay and ecological studies. Plant Soil 75:95-106
    63.R.E.戈登,W.C.海恩斯,C.H.N.帕格(蔡妙英等译).1983.芽孢杆菌属.北京:农业出版社.
    64.R.E.布坎南,N.E.吉本斯等(中国科学院微生物研究所译).1984.伯杰细菌鉴定手册(第八版).北京:科学出版社.
    65. Piuri, M., Sanjchez-Rivas, C., and Ruzal, S. M. 1998. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages.. Lett. Appl. Microbiol. 27:9-13.
    66. Pichard-B; Thouvenot-D. Effect of Bacillus polymyxa seed treatments on control of black-rot and damping-off of cauliflower. Seed Science and Technology. 1999, 27: 2, 455-465.
    67. Pichard, B., Laure, J. P., and Thouvenot, D. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215-218.
    68. Peypoux. F., Besson. F., Michel. G. and Deleambe. L. 1981. Sturcture of bacillomycin D, a new antibiotic of the iturin group. Eur. J. Biochem. 118:323-327.
    69. Perrin H. Beatty and Susan E. Jensen. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48: 159-169(2002).
    70. Okami, Y., and K. Hotta. 1988. Search and discovery of new antibiotics, p. 33-67. In M. Goodfellow, S. T. Williams, and M. Mordaski (ed.), Actinomycetes in biotechnology. Academic Press, London, United Kingdom.
    71. Oedjijiono, M., Line, A., and Dragar, C. 1993. Isolation of bacteria antagonistic to a range of plant pathogenic fungi. Soil Biol. Biochem. 25: 247-250.
    72. Nakajima, N., Nakatsugawa, Y., and Chihara, S. 1975. Gatavalin and process for producing same. U. S. Pat. 3923978.
    73. Nakajima, N., Nakatsugawa, Y., and Chihara, S. 1975. Gatavalin and process for producing same. U. S. Pat. 3923978.
    
    74. Nakajima, N., Chihara, S. , and Koyama, Y. 1972. A new antibiotic, gatavalin I. Isolation and characterization. J. Antitiot. 25:243-247.
    75. Mckeen CD, Reilly CC and Pausey PL. 1986. Production and partial characterization of antifungal substances antagonistic to Monlinia fructicola from Bacillus subtil is. Phytopathology. 76:136-39.
    76. May-Harting, A., A. H. Hedges, and R. C. W. Berkeley. 1972. Methods for studying bacteriocins. Methods Microbiol. 7A: 315-422.
    77. Mavingui. P. and Heulin. T. 1994. In vitro chitinase and antifungal activity of a soil rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26:801-803.
    78. Mavingui, P. , and Heulin, T. 1994. In vitro chitinase and anfifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyca. Soil Biol. Biochem. 26: 801-803.
    79. Maurhofer M, Keel C, and Hass D et al., 1994. Pyoluteorin production by Pseudomonas fluorescens strain CHAO is involved in the suppression of Pythium damping-off of cress but not cucumber. European Journal Plant Pathology. 100:221-32.
    80. Marten-P; Smalla-K; Berg-G. Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology. 2000, 89: 3, 463-471.
    81. Lorito, M. 1998. Chitinolytic enzymes and their genes, p. 153-172. In G. E. Harman, and C. P. Kubicek (ed.), Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol. 2. Taylor and Francis, Ltd., London, United Kingdom.
    82. Loper, J. E. (1988). Role of fluorescent siderophore in biological control of pythium ultimum by a Pseudomonas fluorescents strain. Phytopathology. 78:166-172.
    83. Liang, X. Y., Huang, H. C., Yanke, L. J., and Kozub, G. C. 1996. Control of damping-off of safflower by bacterial seed treatment. 40: 1506-1514.
    84. Latoud, C., F. Peypoux, and G. Michel. 1987. Action of iturin A, an antifungal antibiotic from Bacillus subtilis on the yeast Saccharomyces cerevisiae. Modification of membrane permeability and lipid composition. J. Antibiot. 40:1588-1595.
    85. Ladha JK, Bbarraquio WL, and Watanabe I. 1983. Isolation and Identification of Nitrogen fixing enterobacter cloaeae and Klebsiella planticola associated with rice plants. Can. J. Microbioll. 29:1301-1308.
    86. Kurusu, K., Ohba, K., Arai, T., and Fudushima, K. 1987. New peptide antibiotics LI-F-3, F04, F05,F07, and F08, produced by Bacillus polymyxa I. Isolation and characterization. J. Antibiot. 40:1506-1514.
    
    87. Kim-DalSoo: Cook-RJ; Weller-DM; Kim-DS. Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology. 1997, 87: 5, 551-558.
    88. Kim. C. H. and Kim. D. S. 1993. Ectracellular cellulolytic enzymes of Bacillus circulans are present as two multiple protein complexes. Appl. Biotech. 42:83-94.
    89. Kim, B. S., J. Y. Lee, and B. K. Hwang. 1998. Diversity of actinomycetes antagonistic to plant pathogenic fungi in cave and sea-mud soils of Korea. J. Microbiol. 36:86-92.
    90. Kerr k. 1980. Biological control of crown gall through production of agrocin 84. Plant Disease 64:25-30.
    91. Kajimura, Y., and Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8, isolation, structure elucidation and biological activity. J. Antibiot. 50:220-228.
    92. Kajimura, Y., and Kaneda, M. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8, taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antitiot. 49:129-135
    93. John Wiley and Sons, Toronto, Ont., Canada Shoji, J., Kato, T., and Hinoo, H., 1977. The structure of polymyxin T. J. Antibiot. 30:1042-1048
    94. John N. Porter. Culture conditions for antibiotic-producing microorganisms, p. 3-8. In Hash, J. H. (ed.), Methods in enzymology, vol. 43. Academic press, New York. San Francisco-London. 1975
    95. Jiang, C. L., and L. H. Xu. 1996. Diversity of aquatic actinomycetes in lakes of the middle plateau, Yunnan, China. Appl. Environ. Microbiol. 62:249-253.
    96. Ito, M., Koyama, Y. 1972a. Jolipeptin, a new peptide antibiotic. Isolation, physico-chemical and biological characteristics. J. Antitiot. 25:304-308.
    97. Ito, M. and Koyama, Y. 1972b Jolepeptin, a new peptide antibiotic. The mode of action of jolipeptin. J. Antibiot. 25:309-314.
    98. Hayakawa, M., K. Ishizawa, and H. Nonomura. 1988. Distribution of rare actinomycetes in Japanese soils. J. Ferment. Technol. 66:367-373.
    99. Haran, S., H. Schickler, and I. Chet. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Rrichoderma harzianum. Microbiology 142:2321-2331.
    100. Handelsman, J.,and E. V. Stabb. 1996. Biocontrol of soilborne plant pathogens. Plant Cell 8:1855-1869.
    101.H.C.叶高罗夫 著,冯明霞,周本励 译.抗生菌的分离及其抗菌效能的生物学检定.人民卫生出版社.1965.
    102.Giverolo E L.世界柑桔溃疡病及其病原菌分化的研究现状和进展.世界农业.1992,(5):115-120.
    
    103. Gaffney TD, Friedrich L, and Vernooi JB et al., 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 261:754-756.
    104. Emmert EAB, and Handelsman J. 1999. Biocontrol of plant disease: a (gram-) positive perspective, FEMS Microbiology Letters 171:1-9.
    105. Elad Y, and Baker R.1985. The role of competition for iron and carbon in suppression of chlamydospoore germination of Fusarium spp. By Pseudomonas spp. Phytopathology. 75:1053-59.
    106. El-Abyard M S, EL-sayed M A, EL-shanshoury A R, et al., Towards the biological control of fungal and bacterial deseases of tomato using antagonistic Streptomyces spp. Plant and Soil. 1993,149:185-195.
    107. Doi, R. H., and McGloughlin, M. 1992. Biology of Bacilli. Applications to industry. Butterworth-Heinemann, Toronto, Ont., Canada.
    108. DiPietro A, Lorito M and Hayes CK. 1993. Endochitinase from Gliocladium virens: Isolation, characterization, and synergistic antifungal activity in combination with gliotoxin. Phytopathology, 83:308-313.
    109. Di jksterhuis, J., Sanders, M., Gorris, L. G. M., and Smid, E. J. 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86: 13-21.
    110. De la Cruz. J., Pintor-Toro. J. A., Benitez. T. and Hobell. A. 1995. Purification and characterization of an endo-β-1,6-glucanase from Trichoderma harzianum that is related to its mycoparasitism. J. Bacteriol. 177. 1864-1871.
    lll.De la Cruz, J., M. Rey, J. M. Lora, A. Hidalgo-Gal lego, F. Dominguez, J. A. Pintor-Toro, A. Llobell, and T. Benitez. 1993. Carbon source control on P -glucanase, chitobiase and chitinase from Trichoderma harzianum. Arch. Microbiol. 159:316-322.
    112. De la Cruz, J., and A. Llobell. 1999. Purification and properties of a basic endo-β-1,6-glucanase (BGN16. 1) from the antagonistic fungus Trichoderma harzianum. Eur. J. Biochem. 265:145-151.
    113. Davies JE. 1990. What are antibiotics? Archaic functions for modern activities. Mol. Microbiol. 4:1227-1232.
    114. Dash. C., Ahmad. A., Nath. D. and Rao. M. Novel bifunctional inhibitor of xylanase and aspartic protease: implications for inhibition of fungal growth. Antimicrobial agents and chemotherapy, 2001,45(7): 2008-2017.
    115. Cook, R. J. 1996. Assuring the safe use of microbial biocontrol agents: a need for policy based on real rather than perceived risks. Can. J. Plant Pathol. 18:439-445.
    116.Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.
    11
    
    117. Cook RJ, and Backer KF 1983. The role of bacteria in the biological control of plant pathogens. Ann. Phytopathol. Soc. St. Paul. MN
    118. Chung DY, Kyeremen AG and Gunji Y, et al, 1999, Identification and cloning of an Erwinia carotovora subSp carotovora bacteriocin regulator gene by insertional mutagensis. J. Bacteriol 181:1953—1957.
    119. Bruce—A: Srinivasan-U; Staines-HJ; Highley-TL. Chitinase and laminarinase production in liquid culture by Trichoderma spp. and their role in biocontrol of wood decay fungi. International-Biodeterioration-and-Biodegradation. 1995, 35: 4, 337-353.
    120. Bierbaum G. Brota H. Koller KP, et al., Cloning sequencing and production of the lanticiotic mersacidin. [J]. FEWS Microbiol Lett. 1995.15:121.
    121. Benítez, T., C. Limón, J. Delgado-Jarana, and M. Rey. 1998. Glucanolytic and other enzymes and their genes, p. 101-127. In G. E. Harman, and C. Kubicek (ed.), Trichoderma and Gliocladium: enzymes, biological control and commercial applications, vol. 2. Taylor and Francis, Ltd., London, United Kingdom.
    122. Beatty-PH, Jensen-SE. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology. 2002,48:2, 159-169.
    123. Bartnieki-Gareia. S. 1987. The cel wall: a crucial structure in fungal evolution. In: Evolutionary Biology of the Fungi (Rayner, A. D. A., Hrasier. C. M., and Moore. D. Eds) 390-403. Cambridge University Press. New York.
    124. Bartnicki-García, S. 1968. Cell wall chemistry, morphogenesis and taxonomy. Annu. Rev. Microbiol. 22:87-109.
    125. Baker KF. 1987. Evolving concepts of biological Control of plant pathogens. Ann. Rev. Phytopathol. 26:67-85.
    126. Baby U I., Manibhusbanrao K. Control of rice sheath blight through the integration of fungal antagonists and organist amendments. Tropical Agriculture. 1993, 70:240-244.
    127.[日]土壤微生物研究会编.土壤微生物实验法.科学出版社.1983。
    128.[美]J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著.金冬雁,黎孟枫等译.分子克隆实验指南(第二版).科学出版社.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700