新型喹唑啉类化合物的抑菌活性筛选及作用机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用室内生长速率法对本课题组新合成的数十个喹唑啉类化合物进行了抑菌活性的初步筛选,通过筛选发现含喹唑啉母环结构的化合物具有较好的抗真菌活性,如6-氟-4-乙硫基喹唑啉(q17)、6-氟-4-正丙硫基喹唑啉(q21)和6-氟-4-烯丙硫基喹唑啉(q25)等化合物。实验结果表明:化合物6-氟-4-乙硫基喹唑啉抑菌效果最好,对小麦赤霉病原菌(G.zeae)、辣椒枯萎病原菌(F.oxysporum)、苹果腐烂病原菌(C.mandshurica)、半夏立枯病原菌(R.solani)、水稻纹枯病原菌(T.cucumeris)、马铃薯晚疫病原菌(P.infestans)、油菜菌核病原菌(S.sclerotiorum)、黄瓜灰霉病原菌(B.cinerea)、苹果炭疽病原菌(C.gloeosporioides)九种植物病原真菌都有较好的生物活性,其EC_(50)分别为12.41μg/mL、18.19μg/mL、19.24μg/mL、24.91μg/mL、30.75μg/mL、26.77μg/mL、11.40μg/mL、8.31μg/mL、64.18μg/mL,对某些病原菌的生物活性甚至超过了商品药剂恶霉灵。
     由于其较高的抑菌活性,本文选择抑菌活性最好的化合物6-氟-4-乙硫基喹唑啉(q17)为研究对象,以辣椒枯萎病原菌为作用靶标,并以商品药剂恶霉灵为对照,对其作用机理进行了初步研究。实验结果表明:化合物q17在100μg/mL时,强烈抑制辣椒枯萎病原菌小孢子的萌发;使菌丝细胞出现肿胀,细胞质凝缩,并能诱导细胞膜通透性的增加;同时降低病原菌菌体细胞内包括还原糖、N-乙酰葡萄糖胺在内的一系列生物分子的含量;并抑制几丁质酶的活性;影响细胞对培养基中葡萄糖的吸收;但对蛋白合成几乎没有影响。
The effect of new quinazoline derivatives were tested against pathogenic fungi by using the mycelial growth rate method in the laboratory. Preliminary bioassay tests showed that some compounds possessed good antifungal activities, such as 4-ethylthio-6-fluoroquinazoline(q17), 4-n-Propylthio-6-fluoroquinazoline(q21) and 4-allylthio-6-fluoroquinazoline(q25). Further bioassays disclosed that compounds q17, q21 and q25 showed remarkable inhibitory effect on all kinds of tested plant pathogenic fungi with q17 showing the best results. The EC50 of q17 on G. zeae, F. oxysporum, C. mandshurica, R. solani, T. cucumeris, P. infestans, S. sclerotiorum, B. cinerea, C. gloeosporioides were 12.41 g/mL, 18.19μg/mL, 19.24μg/mL, 24.91μg/mL, 30.75μg/mL, 26.77μg/mL, 11.40μg/mL, 8.31μg/mL, 64.18μg/mL, respectively. Compound q17 had more potent antifungal activities against most of the tested fungi, and showed a broad-spectrum bioactivity.
     Action mechanisim of compound(q17) against F. oxysporum was studied, and hymexazol serving as the control. After treating F. oxysporum with compound q17 at 100μg/mL, only 6.5% of its spore bourgeoned. The permeability of the cell membrane increased along with the malformation of the hyphal and condensation of its endosome. After treatment with compound q17 at 100μg/mL within 12 h, the mycelial reducing sugar, D-GlcNAc content and chitinase activity declined, and the ability of sugar absorption by the cell from the culture medium was depressed, but the soluble protein content showed no obvious change.
引文
[1] 丁明武,陈云峰,杨尚君.2-烷氧基-3H-喹唑啉4-酮的合成与杀菌活性[J].有机化学,2004,24(8):923-926.
    [2] 马军安,黄润秋,冯磊,柴有新.取代苯甲醛肟羧酸酯的合成及生物活性研究(Ⅳ)—拟除虫菊酸4-二甲(乙)氨基苯甲醛肟酯的合成及生物活性[J].农药学学报,1999,1(3):8-13.
    [3] 万琴,徐尚成.新杀虫剂R-768[J].世界农药,1999,21(6):57-59.
    [4] 刘昕,黄润秋,李慧英,杨昭.O-(4-喹唑啉)羟肟酸硫代酯(酰胺)类化合物的合成及生物活性[J],应用化学,1999,16(2):23-26.
    [5] 刘进前,徐小岗,陈秀华,余爱珍,戴祖瑞,张秀平.2,4-二氨基-5-氯6-取代苄氨基喹唑啉的合成及其抗疟、抗肿瘤和抗菌活性[J],药学学报,1991,26(11):821-828.
    [6] 刘云海,秦国伟,丁水平,吴晓云.板蓝根化学成分的研究(Ⅲ)[J].中草药,2002,33(2):97-99.
    [7] 刘刚,宋宝安,桑维均,杨松,金林红,丁雄.N-取代芳环4-氨基喹唑啉类化合物的合成及生物活性研究[J].有机化学,2004,23(10):1296-1299.
    [8] 刘庆,周伟澄,余爱珍,张庆文,张秀平.7-[4-(2,4-二氨基喹唑啉-6-基)哌嗪-1-基]-6-氟喹诺酮类化合物的合成和抗菌作用[J].中国医药工业杂志,1996,27(3):104-107.
    [9] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社.2000,197-199.
    [10] 张一宾.近几年新开发的化学农药品种[J].现代农药,2003,2(4):31-36.
    [11] 张建华.6-氨基藜芦腈和呋喃锂(钠)在哌唑嗪及其他喹唑啉类降压药物合成中的应用[J].北京医药,1994,28(2):22-31.
    [12] 罗曼,蒋立科.柠檬醛对黄曲霉质膜损伤机制的初步研究[J].微生物学报,2001,41(6):723-729.
    [13] 陈齐斌,沈嘉祥.抗植物病毒剂研究进展和面临的挑战与机遇[J].云南农业大学学报,2005,20(4):505-512.
    [14] 陈亚飞,孙宇,高丰衣,周立娜,徐康森.SDS-聚丙烯酰胺凝胶电泳法测定蛇毒康瘤蛋白的相对分子质量[J].中国生化药物杂志,2004,25(5):300-303
    [15] 祖若夫,周德庆.微生物学实验教程[M].上海:复旦大学出版社.1993,192-193.
    [16] 顾向阳,胡正嘉.一种测定土壤几丁质酶活性的方法[J].土壤通报,1994,25(6):284-285.
    [17] 黄润秋,李慧英,马军安,邱德文.4-肟醚基喹唑啉类化合物的合成及其抗植物病毒 TMV活性[J].高等学校化学学报,1996,17(4):571-574.
    [18] 黄君珉,陈茹玉.α-硫羰基膦酸衍生化喹唑啉酮含磷类似物的研究[J].高等学校化学学报,2000,21(8):1216-1220.
    [19] 黄青春,周明国,叶钟音.拌种灵对柑桔溃疡病菌菌体细胞活性的影响[J].南京农业大学学报,2001,24(3):23-26.
    [20] 揭元萍,陈勇军.3-苄基6-硝基-喹唑啉-2, 4-二酮的合成研究[J].试剂与精细化学品,1997,10:37-40.
    [21] 焦瑞身,周德庆.微生物生理代谢实验技术[M].北京:科学出版社.1990,66-68.
    [22] 蒙小英,张秀平,陈秀华,余爱珍.2,4-二氨基-5-甲基-6-(N-甲基取代苄氨基)喹唑啉的合成及其抗肿瘤和抗菌活性[J].药学学报,1991,26(5):383-386.
    [23] Anonymous. Systemic antifungal drugs[J]. Medical Letter on Drugs and Therapeutics, 1994, 36(16):16-18.
    [24] Antonio, R.; Ulrich, M.; Roland, B. Chitinases of Streptomyces olivaceoviridis and significance of processing for multiplicity[J]. Journal of Bacteriology, 1992, 174(11):3450-3454.
    [25] Dawson, W. A. J. M.; Bateman, G. L. Sensitivity of fungi from cereal roots to fluquinconazole and their suppressiveness towards take-all on plants with or without fluquinconazole seed treatment in a controlled environment[J]. Plant Pathology, 2000, 49(4): 477-486.
    [26] Dominguez-Escrig, J. L.; Kelly, J. D.; Neal, D. E.; King, S. M.; Davies, B. R. Evaluation of the therapeutic potential of the epidermal growth factor receptor tyrosine kinase inhibitor gefitinib in preclinical models of bladder cancer[J]. Clinical Cancer Research, 2004, 10(14): 4874-4884.
    [27] El-Sharief, A. M. Sh.; Ammar, Y. A.; Zahran, M. A.; Ali, A. H.; EI-Gaby, M. S. A. Amino acids in the synthesis of heterocyclic systems: The synthesis of triazinoquinazolinones, triazepinoquinazolinones and triazocinoquinazolinones of potential biological interest[J]. Molecules, 2001, 6(3):267-278.
    [28] El-Sayed, R.; Wasfy, A. A. F.; ALY, A. A. Synthesis of novel heterocycles with antimicrobial and surface activity[J]. Journal ofoil, soap, cosmetics, 2004, 53(6):247-251.
    [29] Estrada, E.; Pena, A.; Garcia-Domenech, R. Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach[J]. Journal of Computer Aided Molecular Design, 1998, 12(6):583-595.
    [30] Ghorab, M. M; Abdel-Gawad, S. M.; El-Gaby, M. S. Synthesis and evaluation of some new fluorinated hydroquinazoline derivatives as antifungal agents[J]. Farmaco, 2000, 55(4): 249-255.
    [31] Heux, L.; Brugnerotto, J.; Desbrieres, J.; Versali, M. R; Rinaudo, M. Solid state NMR for determination of degree of actetylation of chitin and chitosan[J]. Biomacromolecules, 2000, 1(4):746-751.
    [32] Hollingworth, R.; Ahmmadsahib, K.; Gedelhak, G.; McLaughlin, J. New inhibitors of complex Ⅰ of the mitochondrial electron transport chain with activity as pesticides[J]. Biochemical Societ Transactions, 1994,22:230-233.
    [33] Ibrahim, S. S.; Abdel-Halim, A. M.; Gabr, Y.; EI-Edfawy, S.; Abdel-Rahman, R. M. Synthesis and biological evaluation of some new fused quinazoline derivatives[J]. Journal of Chemical Research(S), 1997, 5:154-155.
    [34] Jiang, S. P.; Zeng, Q.; Gettayacamin, M.; Tungtaeng, A.; Wannaying, S.; Lim, A.; Hansu-kjariya, P.; Okunji, Ch. O.; Zhu, Sh.; Fang, D. H. Antimalarial activities and therapeutic properties of febrifugine analogs[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(3): 1169-1176.
    [35] Kapteyn, J. C.; Pillmoor, J. B.; De, Waard, M. A. Biochemical mechanisms involved in selective fungitoxicity to two sterol 14α-demethylation inhibitors, prochloraz and quinconazole: Accumulation and metabolism studies[J]. Pesticide Science, 1992, 36(2):85-93.
    [36] Keledjian, K.; Borkowski, A.; Kim, G.; Jsaacs, J. T.; Jacobs, S. C.; Kyprianon, N. Reduction of human prostate tumor vascularity by the alphal-adrenoceptor antagonist terazosin[J]. The Prostate, 2001, 48(2):71-78.
    [37] Khan, I. A.; Hassan, G.; Ihsanullah.; Khan, M. A. Efficacy of post-emergence herbicides for controlling weeds in canola[J]. Asian Journal of Plant Sciences, 2003, 2(3):294-296.
    [38] Kobno, Y.; Waanabe, M.; Hosokawa, D. Studies on the physiogical changes in the rice plant infected with Ⅹ. oryzae[J]. Ann Phytopath Sor Japan, 1981,47:555-561.
    [39] Lamberth, C.; Hillesheim, E.; Bassand, D.; Schaub, F. Synthesis and acaricidal activity of 4-pyrimidinyloxy and 4-pyrimidinylaminoethylphenyl dioxolanes and oxime ethers[J]. Pest Management Science, 2000,56(1):94-100.
    [40] Lee, J. Y.; Lee, Y. S.; Park, H. K.; Seo, S. H.; Yang, B. S. 4-(Phenylarnino)-[1,4]dioxano 2,3-glquinazoline derivatives and process for preparing the same[P]. US 2003045537, 2003 [Chemieal Abstracts 2003, 138, 122652c].
    [41] Leistner, S.; Siegling, A.; Strohscheidt, T.; Droessler, K.; Faust, G. Preparation of 3-(alkylthioalkyl)-2,4-dioxo-1,2,3,4-tetrahydroquinazolines[P]. DD293816, 1991 [Chemical Abstracts 1991, 117, 48587].
    [42] Mei, H. Y.; Cui, M.; Heldsinger, A.; Lemrow, S. M.; Loo, J. A.; Sannes-Lowery, K. A.; Sharmeen, L.; Czarnik, A. W. Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules[J]. Biochemistry, 1998, 37(40): 14204-14212.
    [43] Mohamed, A. A.; Hamad, A. A.; Hussein, I. E.; Sami, G. A. Synthesis and biological screening of some new substituted-3H-quinazolin-4-one analogs as antimicrobial agents[J]. Sandi Pharmaceutial Journal, 2004, 12(2): 63-71.
    [44] Preet, M. S.; Bedi, V. K. Synthesis and biological activity of novel antibacterial quinazolines[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14:5211-5213.
    [45] Radl, S.; Hezky, P.; Proska, J.; Krejci, I. Synthesis and analgesic activity of some quinazoline analogs of anpirtoline[J]. Archiv der Pharmazie (Weinheim, Germany), 2000, 333(11): 381-386.
    [46] Ramadan, A. M. Structrual and biological aspects of copper (Ⅱ) complexes with 2-methyl-3-amino-(3 H)-quinazoline-4-one[J]. Journal of Inorganic biochemistry, 1997, 65(3): 183-189.
    [47] Ravikanth, V.; Thffanyl, W.; Harsh, P. B.; Frank, R. S.; Jorge, M. V. Phytotoxic and antimicrobial activities of catechin derivatives[J]. Journal of Agriculture and Food Chemistry, 2004, 52(5):1077-1082.
    [48] Ryu, C. K.; Shim, J. Y.; Yi, Y. J.; Chae, M. J.; Han, J. Y.; Jung, O. J. Synthesis and antifungal activity of 5,8-quinazolinedione derivatives modified at positions 6 and 7[J]. Archives of Pharmacal Research, 2004, 27(10):990-996.
    [49] Schu, S. G.; Huber, S. Evidence for the inhibition of potato virus X replication at two stages dependent on the concentration of ribavine, 5-azadehytrouracel as 1,5-diacety-5-azadehy-trouracil[J]. Biochemistry Physiology Pflanzen, 1991, 187:429-438.
    [50] Shalaby, A. A.; EI-Khamry, A. M.; Shiba, S. A.; Ahmed, A. A.; Hanafi, A. A. Synthesis and antifungal activity of some new quinazoline and benzoxazinone derivatives[J]. Archiv der Pharmazie ( Weinheim, Germany), 2000, 333(11):365-372.
    [51] Shintani, S.; Li, C.; Mihara, M. Gefitinib ('Iressa', ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, up-regulates p27KIP1 and induces G1 arrest in oral squamous cell carcinoma cell lines[J]. Oral Oncol, 2004, 40: 43-51.
    [52] Srivastava, N.; Bahadur, S.; Verma, H. N.; Khan, M. M.; Abid, A. Synthesis of new 5,3- and 2-substituted (1,3,4)-oxadiazoles and their related products as potential antifungal and antiviral agents[J]. Current Science, 1984, 53 (5):235-239.
    [53] Tao, W.; Svetlana, Z.; Ann, F. D.; William, S. C.; Carl, E. S. Physicochemical properties and bioactivity of fungal chitin and chitosan[J]. Journal of Agriculture and Food Chemistry, 2005, 53(10):3888-3894.
    [54] Tarun, K. C.; Prem, D. Antifungal activity of 4-Methyl-6-alkyl-2H-pyran-2-ones[J]. Journal of Agriculture and Food Chemistry, 2006, 54(6):2129-2133.
    [55] Teruhiko, N.; Haruki, K.; Hiroshi, K. hnproved bioassay method for Spodoptera litura chitinase inhibitors using a colloidal chitin powder with a uniform particle size as substrate[J]. Pesticide Science, 1999, 55(5):563-565.
    [56] VanBrocklin, H. F. Development of novel epidermal growth receptor-based radiopharmaceuticals: imaging agents for breast cancer[J]. US Army Medical Resesrch and Material Command Fort Destick Fonds, Maryland, 2001, 9.
    [57] Wissner, A.; Berger, D. M.; Boschelli, D. H.; Floyed, M. B.; Greenberger, Jr. L. M.; Gruber, B. C.; Johnson, B. D.; Mamuya, N.; Nilakantan, R.; Reich, M. E; Shen, R.; Tsou, H. R.; Upeslacis, E.; Wang, Y. F.; Wu, B.; Ye, E; Zhang, N. 4-Anilino-6,7-dialkoxyquinoline-3-carbonitrile inhibitors of epidermal growth factor receptor kinase and their bioisosteric relationship to the 4-anilino-6,7-dialkoxyquinazoline inhibitors[J]. Journal of Medecinal Chemistry, 2000, 43(17): 3244-3256.
    [58] Wright, I. G. Preparation of 4-[2-[4-tertiarybutylphenyl] ethoxy]quinazoline[P]. EP 380264, 1990 [Chemical Abstracts 1990, 114, 6539].
    [59] Yuji, H.; Yukari, O.; Koki, H. Hyperproduction and application of α-agatase to enzymatic enhancement of antioxidant activity of porphyran[J]. Journal of Agriculture and Food Chemistry, 2006, 54(26): 9895-9900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700