染料吸附后的界面修饰与复合敏化及其光伏特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye-sensitized solar cells,简称DSCs)是清洁能源领域中备受关注的研究方向,界面修饰和复合敏化是DSCs研究中的重要课题。本论文针对DSCs中光阳极/染料/电解质界面处染料团聚染料和光阳极的能级匹配、电子注入与电子反向复合、界面电子过程等关键科学问题,开展了染料吸附后的界面修饰及其光伏特性的研究;以界面修饰材料为载体层组装了交替多层结构,研究了交替多层结构复合敏化及其界面电子过程等。主要研究成果如下:
     (1)研究了染料吸附后的界面修饰材料和方法。将4-叔丁基吡啶(TBP)用于染料吸附后的界面修饰,而不是添加到电解质中。TBP的界面修饰削弱了染料团聚,抑制了电荷复合,同时避免了其对电解质中电荷传输的阻挡作用,改善了电池的转换效率。但TBP与染料分子之间的相互作用会降低染料的LUMO能级,导致电子注入效率下降,从而降低短路电流。
     (2)首次把醋酸镁(Mg(OAc)_2)用作界面修饰材料,研究了染料吸附后Mg(OAc)_2的界面修饰及其光伏特性。红外光谱及循环伏安结果表明Mg(OAc)_2与N3染料分子之间的相互作用削弱了染料团聚,阻挡了电荷复合,同时提高了N3分子的LUMO能级,从而提升了电子注入效率。Mg(OAc)_2界面修饰有效改善了DSCs的光电转换效率和稳定性。
     (3)在TBP和Mg(OAc)_2等修饰材料研究基础上,把多功能修饰材料8-羟基喹啉铝(Alq_3)用于染料吸附后的界面修饰,研究结果表明,Alq_3的界面修饰阻挡了电荷复合。同时,Alq_3和N3染料之间的福斯特共振能量转移(F rster resonance energytransfer, FRET)增加了电池光响应。
     (4)研究了交替多层结构复合敏化及其光伏特性。利用TiO_2平整膜简化模型,研究了适用于交替多层结构的载体材料的性质;组装了N3/Al_2O_3/N3交替多层结构,该结构能有效提高光吸收,阻挡暗反应,改善界面电子传输,从而提高电池效率;组装了N3/Al_2O_3/N749交替多层结构,该结构有效拓宽了电池光响应范围,同时降低暗电流,进而提高了电池的转换效率。基于交流阻抗的结果建立了等效电路模型,利用该模型对界面电子过程模拟得到的数据和实验测量值相吻合,从理论上解释了交替多层结构对界面阻抗特性以及电子注入与复合等过程的影响。
Dye-sensitized solar cells (DSCs) is an important research field of clean energysources. Inerface modification and composite sensitization are important approaches toimprove the performance of DSCs. In this paper, to solve some key problems such asdye aggregation, energy level matching between dye and photoanode, electron injectionand recombination at the interface of photoanode/dye/electrolyte, we mainly researchedinterface modification after dye-adsorption. Furthermore, using interface modificationmaterials as interlayer, alternating assembled structure for composite sensitization wasfabricated. The research is focused on the interaction between interface modificationmaterials and dye molecules and their effects on the photovoltaic properties of DSCs.The main results and conclusions of this dissertation are as follows:
     (1) The materials and methods for interface modification after dye-adsorption havebeen investigated. We used TBP for interface modification after dye-adsorption, insteadof adding it in the electrolyte as usual. It can be seen in the FTIR that TBP retarded thedye aggregation. Results of EIS indicated that TBP could reduce the chargerecombination. Furthermore, using TBP for interface modification could strengthenedthe effect of reducing charge recombination and avoid the disadvantage of blockingcharge diffusion in the electrolyte at the same time. As a result, a higher enhancement ofDSCs’ conversion efficiency by using TBP for interface modification afterdye-adsorption has been obtained. However, the interaction between TBP and N3dyemolecules decreased the LUMO of N3, resulting in the decrease of electron injectionefficiency, which could cause the reducing of photocurrent.
     (2) We studied the effects of Mg(OAc)_2inferface modification after dye-adsorptionfor the first time. Results of FTIR and CV represented that interaction betweenMg(OAc)_2and N3dye could retard the dye aggregation and charge recombination.Furthermore, the interaction also shifted the LUMO of N3to a higher level, whichenhanced the electron injection efficiency. As a result, Mg(OAc)_2inferface modificationafter dye-adsorption remarkably improved the efficiency and stability of DSCs.
     (3) As the interface modification materials of Mg(OAc)_2and TBP improve theperformance of DSCs through only retarding the dye aggregation and charge recombination, a multifunction interface modification material,8-hydroxyquinolinealuminium (Alq_3) has been developed and applied in the interface modification afterdye-adsorption. Fisrtly, it retarded the charge recombination, shown in the EIS and darkcurrent curve. Secondly, it transferred energy to N3dye through F rster resonanceenergy transfer (FRET), enhancing the photo-resoponse of DSCs.
     (4) The interlayer of alternating assembled structure has been studied using acompact TiO_2film as a simplified model for the TiO_2porous film. Based on Al_2O_3interlayer, N3/Al_2O_3/N3alternating structure has been fabricated. This structureincreased light absorption, improved the interface charge transfer, retarded thecharge recombination and then enhanced the conversion efficiency. To furtherwiden photoresponse range, the N3/Al_2O_3/N749alternating assemble structure hasbeen fabricated. Compared to the devices using individual dye, such structure increasedthe conversion efficiency and reduced the charge recombination. Based on results ofEIS, a series of equivalent circuit models were built to explain electron process and thechange of parameters of DSCs. The value of impedance elements obtained bycalculation from the equivalent circuit models accorded with the measured values well.
引文
[1] Bequerel E. Recherches sur les effets de la radiation chimique de la lumi ere solaire, aumoyen descourantss dectriques. CR Acad Sci,1839,9:145-149.
    [2] Adams W G, Day R E. Photovoltaic effect in Selenium. Proc R Soc Lond A,1876,25:113-120
    [3] Chapin D M, Fuller C S, Pearson G L. A new silicon p-n junction photocell for convertingsolar radiation into electrical power. J Appl Phys,1954,25:676-677.
    [4] Hagfeldt A, Boschloo G, Sun L, et al. Dye-sensitized solar cells. Chem Rev.2010,110:6595-6663.
    [5] Tang C W.2-Layer organic photovoltaic cell. App Phys Lett,1986,48:183-185.
    [6] Gr tzel M, Janssen R, Mitzi D B, et al. Materials interface engineering for solution-processedphotovoltaics. Nature,2012,488:304-12.
    [7] Memming R. Electron-trasfer reaction between excited molecules and semiconductoreelctrondes. J Electrochem Soc,1979,126:375-375.
    [8] Gr tzel M. Photoelectrochemical cells. Nature,2001,414:338-344.
    [9] O'Regan B, Gr tzel M. A Low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature,1991,353:737-740.
    [10] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-basedredox electrolyte exceed12percent efficiency. Science.2011,334:629-634.
    [11] Research cell efficiency records. National Renewable Energy Laboratory,2013,http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
    [12] Chung I, Lee B, He J, Chang R P H, et al. All-solid-state dye-sensitized solar cells with highefficiency. Nature,2012,485:486-494.
    [13] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (version40). ProgPhotovolt: Res Appl,2012,20:606-614.
    [14] Nazeeruddin M K, Muller E, Humphry-Baker R, et al. Redox regulation in ruthenium(II)polypyridyl complexes and their application in solar energy conversion. J Chem Soc, DaltonTrans,1997:4571-4578.
    [15] Gr tzel M. Recent advances in sensitized mesoscopic solar cells. Acc Chem Res,2009,42:1788-1798.
    [16] O'Regan B C, Durrant J R. Kinetic and energetic paradigms for dye-Sensitized Solar Cells:moving from the ideal to the real. Acc Chem Res,2009,42:1799-1808.
    [17] Xu L, Hu Y L, Pelligra C, et al. ZnO with different morphologies synthesized by solvothermalmethods for enhanced photocatalytic activity. Chem Mater,2009,21:2875-2885.
    [18] Bergeron B V, Marton A, Oskam G, et al. Dye-sensitized SnO2electrodes with iodide andpseudohalide redox mediators. J Phys Chem B,2005,109:937-943.
    [19] Sayama K, Sugihara H, Arakawa H. Photoelectrochemical properties of a porous Nb2O5electrode sensitized by a ruthenium dye. Chem Mater,1998,10:3825-3832.
    [20] Tachibana Y, Moser J E, Gr tzel M, et al. Subpicosecond interfacial charge separation indye-sensitized nanocrystalline titanium dioxide films. J Phys Chem,1996,100:20056-20062.
    [21] Jean D M G, Ladislav K, Jacques M, et al. Highly efficient sensitization of titanium dioxide. JAm Chem Soc,1985,107:2988-2990.
    [22] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2nanotube arrays indye-sensitized solar cells. Nano Lett,2006,6:215-218.
    [23] Ngamsinlapasathian S, Sakulkhaemaruethai S, Pavasupree S, et al. Highly efficientdye-sensitized solar cell using nanocrystalline titania containing nanotube structure. JPhotochem Photobiol A: Chem,2004,164:145-151.
    [24] Jiu J T, Isoda S, Wang F M, et al. Dye-sensitized solar cells based on a single-crystalline TiO2nanorod film. J Phys Chem B,2006,110:2087-2092.
    [25] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titaniathin-film electrode composed of a network structure of single-crystal-like TiO2nanowiresmade by the "oriented attachment" mechanism. J Am Chem Soc,2004,126:14943-14949.
    [26] Zhang W, Zhu R, Liu X, et al. Facile construction of nanofibrous ZnO photoelectrode fordye-sensitized solar cell applications. App Phys Lett,2009,95:043304.
    [27] Tan B, Toman E, Li Y, Wu Y. Zinc stannate (Zn2SnO4) dye-sensitized solar cells. J Am ChemSoc,2007,129:4162-4163.
    [28] Liu R, Du W, Chen Q, Gao F, Wei C, Sun J et al. Fabrication of Zn2SnO4/SnO2hollowspheres and their application in dye-sensitized solar cells. RSC Adv,2013,3:2893-2896.
    [29] Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nature Mater,2005,4:455-459.
    [30] Gao Y, Nagai M, Chang T C, et al. Solution-derived ZnO nanowire array film asphotoelectrode in dye-sensitized solar cells. Cryst Growth Des,2007,7:2467-2471.
    [31] Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized solar cells.Nano Lett,2007,7:2183-2187.
    [32] Zhang Q F, Cao G Z. Nanostructured photoelectrodes for dye-sensitized solar cells. NanoToday,2011,6:91-109.
    [33] Zhang Q F, Cao G Z. Hierarchically structured photoelectrodes for dye-sensitized solar cells. JMater Chem,2011,21:6769-6774.
    [34] Baxter J B, Aydil E S. Dye-sensitized solar cells based on semiconductor morphologies withZnO nanowires. Sol Energy Mater Sol Cells,2006,90:607-622.
    [35] Dong H P, Wang L D, Gao R, et al. Constructing nanorod-nanoparticles hierarchical structureat low temperature as photoanodes for dye-sensitized solar cells: combining relatively fastelectron transport and high dye-loading together. J Mater Chem,2011,21:19389-19394.
    [36] Zhang Q F, Chou T R, Russo B, et al. Aggregation of ZnO nanocrystallites for highconversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed,2008,47:2402-2406.
    [37] Memarian N, Concina I, Braga A, et al. Hierarchically assembled ZnO nanocrystallites forhigh-efficiency dye-sensitized solar cells. Angew Chem Int Ed,2011,50:12321-12325.
    [38] Shin S S, Kim J S, Suk J H, et al. Improved quantum efficiency of highly efficient perovskiteBaSnO3-based dye-sensitized solar cells. ACS Nano,2013,7:1027-1035.
    [39] Kubo W, Sakamoto A, Kitamura T, et al. Dye-sensitized solar cells: improvement of spectralresponse by tandem structure. J Photochem Photobiol A: Chem,2004,164:33-39.
    [40]孔凡太,戴松元.染料敏化太阳电池研究进展.化学进展,2006,18:1409-1423.
    [41] Gr tzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Prog Photovolt: ResAppl,2000,8:171-185.
    [42] Nazeeruddin M K, De Angelis F, Fantacci S, et al. Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc,2005,127:16835-16847.
    [43] Kruger J, Plass R, Gr tzel M, et al. Improvement of the photovoltaic performance ofsolid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4'-dicarboxy-2,2' bipyridine)-bis(isothiocyanato) ruthenium(II). App Phys Lett,2002,81:367-369.
    [44] Schmid M L, Zakeeruddin S M, Gr tzel M. Efficiency improvement in solid-statedye-sensitized photovoltaics with an amphiphilic Ruthenium-dye. App Phys Lett,2005,86:013504.
    [45] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline TiO2electrodes. J Am Chem Soc,1993,115:6382-6390.
    [46] Wang P, Klein C, Moser J E, et al. Amphiphilic ruthenium sensitizer with4,4'-diphosphonicacid-2,2'-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells. J PhysChem B,2004,108:17553-17559.
    [47] Cao Y, Bai Y, Yu Q, et al. Dye-sensitized solar cells with a high absorptivity rutheniumsensitizer featuring a2-(Hexylthio)thiophene conjugated bipyridine. J Phys Chem C,2009,113:6290-6297.
    [48] Chen C Y, Wang M, Li J Y, et al. Highly efficient light-harvesting ruthenium sensitizer forthin-film dye-sensitized solar cells. ACS Nano.2009,3:3103-3109.
    [49] Chen C Y, Wu S J, Wu C G, et al. A ruthenium complex with superhigh light-harvestingcapacity for dye-sensitized solar cells. Angew Chem Int Ed,2006,45:5822-5825.
    [50] Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2filmwith high molar extinction coefficient ruthenium sensitizers for high performancedye-sensitized solar cells. J Am Chem Soc,2008,130:10720-10728.
    [51] Kuang D B, Ito S, Wenger B, et al. High molar extinction coefficient heteroleptic rutheniumcomplexes for thin film dye-sensitized solar cells. J Am Chem Soc,2006,128:4146-4154.
    [52] Wang P, Zakeeruddin S M, Moser J E, et al. A stable quasi-solid-state dye-sensitized solar cellwith an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials,2003,2:402-407.
    [53] Shklover V, Ovchinnikov Y E, Braginsky L S, et al. Structure of organic/inorganic interface inassembled materials comprising molecular components. crystal structure of the sensitizer bis
    [(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II). Chem Mater,1998,10:2533-2541.
    [54] Kuang D B, Klein C, Ito S, et al. High molar extinction coefficient ion-coordinatingruthenium sensitizer for efficient and stable mesoscopic dye-sensitized solar cells. Adv FunctMater,2007,17:154-160.
    [55] Redmond G, Fitzmaurice D, Gr tzel M. Visible light sensitization by cis-bis (thiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO filmprepared by sol-gel techniques. Chem Mater,1994,6:686-691.
    [56] Rensmo H, Keis K, Lindstrom H, et al. High light-to-energy conversion efficiencies for solarcells based on nanostructured ZnO electrodes. J Phys Chem B,1997,101:2598-2601.
    [57] Stergiopoulos T, Arabatzis I M, Cachet H, et al. Photoelectrochemistry at SnO2particulatefractal electrodes sensitized by a ruthenium complex-Solid-state solar cell assembling byincorporating a composite polymer electrolyte. J Photochem Photobiol A: Chem,2003,155:163-170.
    [58] Kilsa K, Mayo E I, Brunschwig B S, et al. Anchoring group and auxiliary ligand effects on thebinding of ruthenium complexes to nanocrystalline TiO2photoelectrodes. J Phys Chem B,2004,108:15640-15651.
    [59] Campbell W M, Jolley K W, Wagner P, et al. Highly efficient porphyrin sensitizers fordye-sensitized solar cells. J Phys Chem C,2007,111:11760-11762.
    [60] Lan C M, Wu H P, Pan T Y, et al. Enhanced photovoltaic performance with co-sensitization ofporphyrin and an organic dye in dye-sensitized solar cells. Energ Environ Sci,2012,5:6460-6464.
    [61] Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitizedsolar cells. Chem Comm,2003:3036-3037.
    [62] Horiuchi T, Miura H, Sumioka K, et al. High efficiency of dye-sensitized solar cells based onmetal-free indoline dyes. J Am Chem Soc,2004,126:12218-12219.
    [63] Wang M, Xu M, Shi D, et al. High-performance liquid and solid dye-sensitized solar cellsbased on a novel metal-free organic sensitizer. Adv Mater,2008,20:4460-4463.
    [64] Mishra A, Fischer M K R, Baeuerle P. Metal-free organic dyes for dye-sensitized solar cells:from structure: property relationships to design rules. Angew Chem Int Ed,2009,48:2474-2499.
    [65] Li S L, Jiang K J, Shao K F, et al. Novel organic dyes for efficient dye-sensitized solar cells.Chem Comm,2006:2792-2794.
    [66] Choi H, Lee J K, Song K, et al. Novel organic dyes containing bis-dimethylfluorenyl aminobenzo b thiophene for highly efficient dye-sensitized solar cell. Tetrahedron,2007,63:3115-3121.
    [67] Ooyama Y, Harima Y. Molecular designs and syntheses of organic dyes for dye-Sensitizedsolar cells. Eur J Org Chem,2009:2903-2934.
    [68] Li L, Hao Y, Yang X, et al. A double-band tandem organic dye-sensitized solar cell with anefficiency of11.5%. Chemsuschem,2011,4:609-612.
    [69] Farrow B, Kamat P V. CdSe quantum dot sensitized solar cells. shuttling electrons throughstacked carbon nanocups. J Am Chem Soc,2009,131:11124-31.
    [70] Lee H, Wang M, Chen P, et al. Efficient CdSe quantum dot-sensitized solar cells prepared byan improved successive ionic layer adsorption and reaction process. Nano Lett,2009,9:4221-4227.
    [71] Shalom M, Ruhle S, Hod I, et al. Energy level alignment in CdS quantum dot sensitized solarcells using molecular dipoles. J Am Chem Soc,2009,131:9876-9877.
    [72] Barea E M, Shalom M, Gimenez S, et al. Design of injection and recombination in quantumdot sensitized solar cells. J Am Chem Soc,2010,132:6834-6839.
    [73] Gonzalez-Pedro V, Xu X, Mora-Sero I, et al. Modeling high-efficiency quantum dot sensitizedsolar cells. ACS Nano,2010,4:5783-5790.
    [74] Shalom M, Albero J, Tachan Z, et al. Quantum dot-dye bilayer-sensitized solar cells: breakingthe limits imposed by the low absorbance of dye monolayers. J Phys Chem Lett,2010,1:1134-8.
    [75] Hu H, Ding J, Zhang S, et al. Photodeposition of Ag2S on TiO2nanorod arrays for quantumdot-sensitized solar cells. Nanoscale Res Lett,2013,8:10-18.
    [76] Tian J, Zhang Q, Zhang L, et al. ZnO/TiO2nanocable structured photoelectrodes forCdS/CdSe quantum dot co-sensitized solar cells. Nanoscale,2013,5:936-943.
    [77] Zeng X Y, Zhang W J, Xie Y, et al. Low-cost porous Cu2ZnSnSe4film remarkably superior tonoble Pt as counter electrode in quantum dot-sensitized solar cell system. J Power Sources,2013,226:359-362.
    [78] Kim H S, Lee C R, Im J H, A et al. Lead iodide perovskite sensitized all-solid-state submicronthin film mesoscopic solar cell with efficiency exceeding9%. Sci Rep,2012,2:591
    [79] Lee J W, Son D Y, Ahn T K, et al. Quantum-dot-sensitized solar cell with unprecedentedlyhigh photocurrent. Sci Rep,2013,3:1050.
    [80] Gr tzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solarcells. J Photochem Photobiol A: Chem,2004,164:3-14.
    [81] Zeng W, Cao Y, Bai Y, et al. Efficient dye-sensitized solar cells with an organicphotosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks.Chem Mater,2010,22:1915-1925.
    [82] Mao J, He N, Ning Z, Zhang Q, Guo F, Chen L et al. Stable dyes containing double acceptorswithout COOH as anchors for highly efficient dye-sensitized solar cells. Angew Chem Int Ed,2012,51:9873-9876.
    [83] Im J H, Lee C R, Lee J W, et al.6.5%efficient perovskite quantum-dot-sensitized solar cell.Nanoscale,2011,3:4088-4093.
    [84] Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based onmeso-superstructured organometal halide perovskites. Science,2012,338:643-647.
    [85] Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2heterojunction solar cells. J AmChem Soc,2012,134:17396-17399.
    [86] Im J H, Chung J, Kim S J, et al. Synthesis, structure, and photovoltaic property of ananocrystalline2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res Lett,2012,7:353.
    [87] Noh JH, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stableinorganic–organic hybrid nanostructured solar cells. Nano Lett,2013,10.1021/nl400349b.
    [88] Snaith H J, Schmidt-Mende L. Advances in liquid-electrolyte and solid-state dye-sensitizedsolar cells. Adv Mater,2007,19:3187-3200.
    [89] Wang Z S, Sayama K, Sugihara H. Efficient eosin Y dye-sensitized solar cell containingBr-/Br-3electrolyte. J Phys Chem B,2005,109:22449-22455.
    [90] Sapp S A, Elliott C M, Contado C, et al. Substituted polypyridine complexes of cobalt(II/III)as efficient electron-transfer mediators in dye-sensitized solar cells. J Am Chem Soc,2002,124:11215-11222.
    [91] Cong J, Yang X, Kloo L, et al. Iodine/iodide-free redox shuttles for liquid electrolyte-baseddye-sensitized solar cells. Energ Environ Sci,2012,5:9180-9194.
    [92] Kashif M K, Axelson J C, Duffy N W, et al. A new direction in dye-sensitized solar cellsredox mediator development: in ditu gine-tuning of the cobalt(II)/(III) redox potential throughLewis base interactions. J Am Chem Soc,2012,134:16646-16653.
    [93] Cheng M, Yang X, Zhang F, et al. Efficient dye-sensitized solar cells based onhydroquinone/benzoquinone as a bioinspired redox couple. Angew Chem Int Ed,2012,51:9896-9899.
    [94] Shi Y T, Zhan C, Wang L D, et al. The electrically conductive function of high-molecularweight poly(ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells.Phys Chem Chem Phys,2009,11:4230-4235.
    [95] Uchida S, Kubo T, Segawa H. Nano-clay Electrolyte for high performance dye-sensitizedsolar cells trends in advanced sensitized and organic solar cells. The222ndECS meeting,2012.
    [96] Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counterelectrodes of dye-sensitized solar cells. Chem Lett,2003,32:28-29.
    [97] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based oncarbon black counter electrodes. J Electrochem Soc,2006,153:A2255-A2261.
    [98] Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se on conductive substratesas high-performance counter electrodes for dye-sensitized solar cells. J Am Chem Soc,2012,134:10953-10958.
    [99] Bajpai R, Roy S, Kumar P, et al. Graphene supported platinum nanoparticle counter-electrodefor enhanced performance of dye-sensitized solar cells. ACS Appl Mat Interfaces,2011,3:3884-3889.
    [100] Choi H, Kim H, Hwang S, et al. Graphene counter electrodes for dye-sensitized solar cellsprepared by electrophoretic deposition. J Mater Chem,2011,21:7548-7551.
    [101] Dou Y Y, Li G R, Song J, et al. Nickel phosphide-embedded graphene as counter electrode fordye-sensitized solar cells. Phys Chem Chem Phys,2012,14:1339-1342.
    [102] Gong F, Wang H, Wang Z S. Self-assembled monolayer of graphene/Pt as counter electrodefor efficient dye-sensitized solar cell. Phys Chem Chem Phys,2011,13:17676-17682.
    [103] Hong W, Xu Y, Lu G, et al. Transparent graphene/PEDOT-PSS composite films as counterelectrodes of dye-sensitized solar cells. Electrochem Commun,2008,10:1555-1558.
    [104] Kaniyoor A, Ramaprabhu S. Thermally exfoliated graphene based counter electrode for lowcost dye sensitized solar cells. J Appl Phys,2011,109:124308.
    [105] Lee K S, Lee Y, Lee J Y, et al. Flexible and platinum-free dye-sensitized solar cells withconducting-polymer-coated graphene counter electrodes. ChemSusChem,2012,5:379-382.
    [106] Park H, Brown P R, Buloyic V, et al. Graphene as transparent conducting electrodes inorganic photovoltaics: studies in graphene morphology, hole transporting layers, and counterelectrodes. Nano Lett,2012,12:133-140.
    [107] Radich J G, Dwyer R, Kamat P V. Cu2S reduced graphene oxide composite forhigh-Efficiency quantum dot solar cells. overcoming the redox limitations of S2-/S2-nat thecounter electrode. J Phys Chem Lett,2011,2:2453-2460.
    [108] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as a catalytic counterelectrode in dye-sensitized solar cells. ACS Nano,2010,4:6203-6211.
    [109] Wan L, Wang S, Wang X, et al. Room-temperature fabrication of graphene films on variablesubstrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci,2011,13:468-475.
    [110] Yen M Y, Teng C C, Hsiao M C, et al. Platinum nanoparticles/graphene composite catalyst asa novel composite counter electrode for high performance dye-sensitized solar cells. J MaterChem,2011,21:12880-12888.
    [111] Zhang D W, Li X D, Li H B, et al. Graphene-based counter electrode for dye-sensitized solarcells. Carbon,2011,49:5382-5388.
    [112] Zhu G, Pan L, Lu T, et al. Electrophoretic deposition of reduced graphene-carbon nanotubescomposite films as counter electrodes of dye-sensitized solar cells. J Mater Chem,2011,21:14869-14875.
    [113] Munkhbayar B, Nine M J, Jinseong J, et al. Synthesis of a graphene-tungsten composite withimproved dispersibility of graphene in an ethanol solution and its use as a counter electrodefor dye-sensitised solar cells. J Power Sources,2013,230:207-217.
    [114] Hao F, Dong P, Zhang J, et al. High electrocatalytic activity of vertically aligned single-walledcarbon nanotubes towards sulfide redox shuttles. Sci Rep,2012,2:368.
    [115] Ma B B, Gao R, Wang L D, et al. Recent progress in interface modification for dye-sensitizedsolar cells. Science China-Chemistry,2010,53:1669-1678.
    [116] Sommeling P M, O'Regan B C, Haswell R R, et al. Influence of a TiCl4post-treatment onnanocrystalline TiO2films in dye-sensitized solar cells. J Phys Chem B,2006,110:19191-19197.
    [117] Chen S G, Chappel S, Diamant Y, et al. Preparation of Nb2O5coated TiO2nanoporouselectrodes and their application in dye-sensitized solar cells. Chem Mater,2001,13:4629-4634.
    [118] Law M, Greene L E, Radenovic A, et al. ZnO-Al2O3and ZnO-TiO2core-shell nanowiredye-sensitized solar cells. J Phys Chem B,2006,110:22652-22663.
    [119] Kim D H, Lee S, Park J H, et al. Transmittance optimized nb-doped TiO2/Sn-doped In2O3multilayered photoelectrodes for dye-sensitized solar cells. Sol Energy Mater Sol Cells,2012,96:276-280.
    [120] Jung H S, Lee J K, Nastasi M, et al. Preparation of nanoporous MgO-Coated TiO2nanoparticles and their application to the electrode of dye-sensitized solar cells. Langmuir,2005,21:10332-10335.
    [121] Li T C, Goes M S, Fabregat-Santiago F, et al. Surface passivation of nanoporous TiO2viaatomic layer deposition of ZrO2for solid-state dye-sensitized solar cell applications. J PhysChem C,2009,113:18385-18390.
    [122] Nguyen T V, Lee H C, Khan M A, et al. Electrodeposition of TiO2/SiO2nanocomposite fordye-sensitized solar cell. Solar Energy.2007,81:529-534.
    [123] Wu X M, Wang L D, Luo F, et al. BaCO3modification of TiO2electrodes in quasi-solid-statedye-sensitized solar cells: Performance improvement and possible mechanism. J Phys ChemC,2007,111:8075-8079.
    [124] Wang P, Wang L D, Ma B B, et al. TiO2surface modification and characterization withnanosized PbS in dye-sensitized solar cells. J Phys Chem B,2006,110:14406-14409.
    [125] Liu R, Qiang L S, Yang W D, et al. Enhanced conversion efficiency of dye-sensitized solarcells using Sm2O3-modified TiO2nanotubes. J Power Sources,2013,223:254-258.
    [126] Diamant Y, Chen S G, Melamed O, et al. Core-shell nanoporous electrode for dye sensitizedsolar cells: the effect of the SrTiO3shell on the electronic properties of the TiO2core. J PhysChem B,2003,107:1977-1981.
    [127] Luo F, Wang L D, Ma B B, et al. Post-modification using aluminum isopropoxide afterdye-sensitization for improved performance and stability of quasi-solid-state solar cells. JPhotochem Photobiol A: Chem,2008,197:375-381.
    [128] Miyasaka T, Kijitori Y, Murakami T N, et al. Efficient nonsintering type dye-sensitizedphotocells based on electrophoretically deposited TiO2layers. Chem Lett,2002:1250-1251.
    [129] Boschloo G, Haggman L, Hagfeldt A. Quantification of the effect of4-tert-butylpyridineaddition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2solar cells. J PhysChem B,2006,110:13144-13150.
    [130] Stathatos E, Lianos R, Zakeeruddin S M, et al. A quasi-solid-state dye-sensitized solar cellbased on a sol-gel nanocomposite electrolyte containing ionic liquid. Chem Mater,2003,15:1825-1829.
    [131] Kusama H, Arakawa H. Influence of aminotriazole additives in electrolytic solution ondye-sensitized solar cell performance. J Photochem Photobiol A: Chem,2004,164:103-110.
    [132] Huang S Y, Schlichthorl G, Nozik A J, et al. Charge recombination in dye-sensitizednanocrystalline TiO2solar cells. J Phys Chem B,1997,101:2576-2582.
    [133] Hardin B E, Hoke E T, Armstrong P B, et al. Increased light harvesting in dye-sensitized solarcells with energy relay dyes. Nature Photonics.2009,3:406-411.
    [134] Yum J H, Hardin B E, Moon S J, et al. Panchromatic response in solid-state dye-sensitizedsolar cells containing phosphorescent energy relay dyes. Angew Chem Int Ed,2009,48:9277-9280.
    [135] Hardin B E, Yum J H, Hoke E T, et al. High excitation transfer efficiency from energy relaydyes in dye-sensitized solar cells. Nano Lett,2010,10:3077-3083.
    [136] Sayama K, Tsukagoshi S, Mori T, et al. Efficient sensitization of nanocrystalline TiO2filmswith cyanine and merocyanine organic dyes. Sol Energy Mater Sol Cells,2003,80:47-71.
    [137] Kuang D B, Walter P, Nueesch F, et al. Co-sensitization of organic dyes for efficient ionicliquid electrolyte-based dye-sensitized solar cells. Langmuir,2007,23:10906-10909.
    [138] Saxena V, Veerender P, Chauhan A K, et al. Efficiency enhancement in dye sensitized solarcells through co-sensitization of TiO2nanocrystalline electrodes. App Phys Lett,2012,100:133303.
    [139] Inakazu F, Noma Y, Ogomi Y, et al. Dye-sensitized solar cells consisting of dye-bilayerstructure stained with two dyes for harvesting light of wide range of wavelength. App PhysLett,2008,93:093304.
    [140] Lee K, Park S W, Ko M J,. Selective positioning of organic dyes in a mesoporous inorganicoxide film. Nature Materials,2009,8:665-671.
    [141] Miao Q, Wu L, Cui J, et al. A new type of dye-sensitized solar cell with a multilayeredphotoanode prepared by a film-transfer technique. Adv Mater,2011,23:2764-2768.
    [142] Perera V P S, Pitigala P, Jayaweera P V V, et al. Dye-sensitized solid-state photovoltaic cellsbased on dye multilayer-semiconductor nanostructures. J Phys Chem B,2003,107:13758-13761.
    [143] Clifford J N, Palomares E, Nazeeruddin K, et al. Multistep electron transfer processes on dyeco-sensitized nanocrystalline TiO2films. J Am Chem Soc,2004,126:5670-5671.
    [144] Choi H, Kim S, Kang S O, et al. Stepwise cosensitization of nanocrystalline TiO2filmsutilizing Al2O3layers in dye-sensitized solar cells. Angew Chem Int Ed,2008,47:8259-8263.
    [145] Deng Z, Wang R X, Ning J Q, et al. Radiative recombination of carriers in the Ga xIn1-xP/GaAs double-junction tandem solar cells. Sol Energy Mater Sol Cells,2013,111:102-106.
    [146] Huang N, Lin C, Povinelli M L. Limiting efficiencies of tandem solar cells consisting of III-Vnanowire arrays on silicon. J Appl Phys,2012,112:064321.
    [147] Jovanov V, Planchoke U, Magnus P, et al. Influence of back contact morphology on lighttrapping and plasmonic effects in microcrystalline silicon single junction and micromorphtandem solar cells. Sol Energy Mater Sol Cells,2013,110:49-57.
    [148] Pattnaik S, Teng X, Shinar R, et al. Novel hybrid amorphous/organic tandem junction solarcell. IEEE J Photovolt.2013,3:295-299.
    [149] Ulbrich C, Zahren C, Gerber A, et al. Matching of silicon thin-film tandem solar cells formaximum power output. Int J Photoenergy,2013,314097.
    [150] Zheng T, George Z, Ma Z, et al. Semi-transparent tandem organic solar cells with90%internal quantum efficiency. Adv Energy Mater,2012,2:1467-1476.
    [151] Ameri T, Dennler G, Lungenschmied C, et al. Organic tandem solar cells: A review. EnergEnviron Sci,2009,2:347-363.
    [152] Bertness K A, Kurtz S R, Friedman D J, et al.29.5-percent-effcient GALNP/GAAS tandemsolar-cells. App Phys Lett,1994,65:989-991.
    [153] Dennler G, Scharber M C, Ameri T, et al. Design rules for donors in bulk-heterojunctiontandem solar cells-towards15%energy-conversion efficiency. Adv Mater,2008,20:579-580.
    [154] Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrally matchedlow-bandgap polymer. Nature Photonics,2012,6:180-185.
    [155] Hadipour A, de Boer B, Wildeman J, et al. Solution-processed organic tandem solar cells. AdvFunct Mater,2006,16:1897-1903.
    [156] Kim J Y, Lee K, Coates N E, et al. Efficient tandem polymer solar cells fabricated byall-solution processing. Science,2007,317:222-225.
    [157] Olson J M, Kurtz S R, Kibbler A E, et al. A27.3-percent efficient Ga0.5In0.5P/GAAS tandemsolar cell. App Phys Lett,1990,56:623-625.
    [158] Rand BP, Peumans P, Forrest SR. Long-range absorption enhancement in organic tandemthin-film solar cells containing silver nanoclusters. J Appl Phys,2004,96:7519-26.
    [159] Takamoto T, Ikeda E, Kurita H, Ohmori M. Over30%efficient InGaP/GaAs tandem solarcells. App Phys Lett,1997,70:381-3.
    [160] Durr M, Bamedi A, Yasuda A, Nelles G. Tandem dye-sensitized solar cell for improved powerconversion efficiencies. App Phys Lett,2004,84:3397-9.
    [161] Murayama M, Mori T. Dye-sensitized solar cell using novel tandem cell structure. J Phys D:Appl Phys,2007,40:1664-1668.
    [162] Liska P, Thampi K R, Gr tzel M, et al. Nanocrystalline dye-sensitized solar cell/copperindium gallium selenide thin-film tandem showing greater than15%conversion efficiency.App Phys Lett,2006,88:203103.
    [163] Zaban A, Chen S G, Chappel S, et al. Bilayer nanoporous electrodes for dye sensitized solarcells. Chem Comm,2000:2231-2232.
    [164] Gr tzel M, Kalyanasundaram K. Artificial photosynthesis-efficient dye-sensitizedphotoelectrochemical cells for direct conversion of visible-light to electricity. Curr Sci,1994,66:706-714.
    [165] Ramanathan K, Contreras M A, Perkins C L, et al. Properties of19.2%efficiencyZnO/CdS/CuInGaSe2thin-film solar cells. Prog Photovolt: Res Appl,2003,11:225-230.
    [166] Hagfeldt A, Gr tzel M. Molecular photovoltaics. Acc Chem Res,2000,33:269-277.
    [167] Duerr M, Yasuda A, Nelles G. On the origin of increased open circuit voltage ofdye-sensitized solar cells using4-tert-butyl pyridine as additive to the electrolyte. App PhysLett,2006,89:061110.
    [168] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline TiO2electrodes. J Am Chem Soc.1993,115:6382-6390.
    [169] Yang H, Liu J, Lin Y, et al. PEO-imidazole ionic liquid-based electrolyte and the influence ofNMBI on dye-sensitized solar cells. Electrochim Acta,2011,56:6271-6276.
    [170] Barbe C J, Arendse F, Comte P, et al. Nanocrystalline titanium oxide electrodes forphotovoltaic applications. J Am Ceram Soc,1997,80:3157-3171.
    [171] Wang Q, Ito S, Gr tzel M, et al. Characteristics of high efficiency dye-sensitized solar cells. JPhys Chem B,2006,110:25210-25221.
    [172] Hoshikawa T, Kikuchi R, Eguchi K. Impedance analysis for dye-sensitized solar cells with areference electrode. J Electroanal Chem,2006,588:59-67.
    [173] Adachi M, Sakamoto M, Jiu J, et al. Determination of parameters of electron transport indye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B,2006,110:13872-13880.
    [174] Fabregat-Santiago F, Bisquert J, Palomares E, et al. Correlation between photovoltaicperformance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids.J Phys Chem C,2007,111:6550-6560.
    [175] Dloczik L, Ileperuma O, Lauermann I, et al. Dynamic response of dye-sensitizednanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy.J Phys Chem B,1997,101:10281-10289.
    [176] Park K, Zhang Q F, Garcia B B, et al. Effect of annealing temperature on TiO2ZnOcore shell aggregate photoelectrodes of dye-sensitized solar cells. J Phys Chem C,2011,115:4927-4934.
    [177] Wang Q, Moser J E, Gr tzel M. Electrochemical impedance spectroscopic analysis ofdye-sensitized solar cells. J Phys Chem B,2005,109:14945-14953.
    [178] Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, et al. Influence of electrolyte in transportand recombination in dye-sensitized solar cells studied by impedance spectroscopy. SolEnergy Mater Sol Cells,2005,87:117-131.
    [179] Wenger B, Gr tzel M, Moser J E. Rationale for kinetic heterogeneity of ultrafast light-inducedelectron transfer from Ru(II) complex sensitizers to nanocrystalline TiO2. J Am Chem Soc,2005,127:12150-12151.
    [180] Tsunekawa S, Fukuda T, Kasuya A. Blue shift in ultraviolet absorption spectra ofmonodisperse CeO2-xnanoparticles. J Appl Phys,2000,87:1318-1321.
    [181] Zeng J, Xin M, Wang H, et al. Transformation process and photocatalytic activities ofhydrothermally synthesized Zn2SnO4nanocrystals. J Phys Chem C,2008,112:4159-4167.
    [182] Wang Z S, Sugihara H. N3-sensitized TiO2films: In situ proton exchange toward open-circuitphotovoltage enhancement. Langmuir,2006,22:9718-9722.
    [183] Bisquert J. Theory of the impedance of electron diffusion and recombination in a thin layer. JPhys Chem B,2002,106:325-333.
    [184] Kopidakis N, Benkstein K D, van de Lagemaat J, et al. Transport-limited recombination ofphotocarriers in dye-sensitized nanocrystalline TiO2solar cells. J Phys Chem B,2003,107:11307-11315.
    [185] Jun-Ho Y, Hardin B E, Hoke E T, et al. Incorporating multiple energy relay dyes in liquiddye-sensitized solar cells. ChemPhysChem,2011,12:657-661.
    [186] Tang CW, Vanslyke SA. Orgabuc electroluminescent diodes. App Phys Lett,1987,51:913-915.
    [187] Qin D, Zhang Y, Huang S, et al. Ionic liquid/polymer composite electrolytes by in situphotopolymerization and their application in dye-sensitized solar cells. Electrochim Acta,2011,56:8680-8687.
    [188] Forster T.10th spiers memorial lecture-transfer mechanisms of electronic excitation. DiscussFaraday Soc,1959:7-17.
    [189] Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2solar cells:transport, recombination and photovoltaic properties. Coord Chem Rev,2004,248:1165-1179.
    [190] Oekermann T, Zhang D, Yoshida T, et al. Electron transport and back reaction innanocrystalline TiO2films prepared by hydrothermal crystallization. J Phys Chem B,2004,108:2227-2235.
    [191] Cao F, Oskam G, Meyer G J, et al. Electron transport in porous nanocrystalline TiO2photoelectrochemical cells. J Phys Chem,1996,100:17021-17027.
    [192] Kimura M, Nomoto H, Masaki N, et al. Dye Molecules for simple co-sensitization process:fabrication of mixed-dye-sensitized solar cells. Angew Chem Int Ed,2012,51:4371-4374.
    [193] Gao R, Ma B B, Wang L D, et al. Photovoltaic properties and mechanism analysis of adye/Al2O3alternating assembly structure by electrochemical impedance spectroscopy. ActaPhys-Chim Sin,2011,27:413-418.
    [194] Ma B B, Gao R, Wang L D, et al. Alternating assembly structure of the same dye andmodification material in quasi-solid state dye-sensitized solar cell. J Photochem Photobiol A:Chem,2009,202:33-38.
    [195] Koide N, Islam A, Chiba Y, et al. Improvement of efficiency of dye-sensitized solar cellsbased on analysis of equivalent circuit. J Photochem Photobiol A: Chem,2006,182:296-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700