N、Zn共掺杂纳米TiO_2光催化剂的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2光催化剂能将一些毒性大、生物难降解的有机污染物彻底催化氧化为H2O和CO2等小分子,且因其光催化活性高、化学性质稳定、无毒无害等特性被广泛研究和应用。但纳米TiO2的禁带宽度大,在实际应用中还存在光响应波长短等问题。开展纳米TiO2掺杂改性研究,拓展TiO2的光谱响应范围,使其光响应波长由紫外区(波长300-400nm)红移至可见光区(波长400-800nm),将有利于光催化氧化技术在废水处理中的推广应用。
     本论文研究N、Zn共掺杂纳米TiO2(简称NZTO)光催化剂的制备及其应用,以TiOSO4和ZnSO4·7H2O为原料,NH3-H2O为沉淀剂,采用化学共沉淀法制备具有可见光催化活性的NZTO纳米粉体,讨论了pH、反应温度、反应时间、超声陈化时间、氨水浓度等对NZTO纳米粉体前躯体性能的影响。通过TG-DTA、XRD、UV-VIS等手段对NZTO纳米粉体进行表征。在本实验条件下,制备NZTO纳米粉体的最佳工艺条件为:pH为8、反应温度为室温、反应时间为30min、超声20min、陈化时间为60min、氨水浓度为7mol/L,剧烈搅拌,缓慢滴定,制得24.5nm的NZTO纳米粉体,其光吸收区域由原来的紫外光区拓展至可见光区,光催化效率比未掺杂的纳米Ti02高,极大程度上提高了对太阳光的利用。
     将制备的NZTO纳米粉体应用于偶氮染料甲基橙为模拟污染物的有机废水,进行了光催化反应研究,并考察了不同条件下的NZTO纳米粉体对甲基橙水溶液的催化降解性能。通过正交设计实验得出降解甲基橙的最佳工艺条件为:光照时间6h,初始浓度5mg/L,pH为1、催化剂投加量1g/L,氧化剂(H2O2)加入量0.8mL/500mL。另外,还采用正交设计实验的方法考察了pH值、Zn掺杂量、煅烧温度等不同条件下所制得的NZTO纳米粉体,在太阳光下的光催化性能研究。实验结果表明:pH值为9,Zn掺杂量为2%,煅烧温度为500℃下制备的纳米粉体的光催化降解率最高。并在最佳条件下做验证实验,得出在太阳光下照射6h,有超声分散、搅拌的条件下降解甲基橙,其降解率高达98.2%,光催化剂重复使用4次后降解率仍可到达74.2%。
Nanometer titanium dioxide (TiO2) can degradated completely toxic organic pollutants into harmless carbon dioxide and water. Due to its high photo-catalytic acitivity, high chemical stability and harmless, the photocatalyst TiO2 has been widely investigated and used. However, the use of this photocatalyst is currently limited for that light irradiation with rather short light wavelength is needed for the occurrence of the photo-catalytic rea-ction. Research on the doping and modification of TiO2, which aims at extending its optical response scope from the ultraviolet light (wavelength-range 300-400nm) to the visible sp-ectral range (wavelegth-range 400-800nm), will promote the photocatalysis technology in practical wastewater treatment.
     In this paper, N, Zn co-doped TiO2 (Abbreviation NZTO) nanometer photocatalysts, which have photo-catalysis in invisible spectral rang, were prepared with TiOSO4 and ZnSO4·7H2O as raw materials, NH3·H2O as precipitant by co-precipitation method. The in-fluence factors on average diameter of NZTO powders were inspects, such as pH, reaction temperature, precipitant concentration, reaction time and so on. It was characterized by TG-DTA, XRD and UV-VIS so on. The results showed that under the optimal condition, pH value of 7, NH3·H2O concentration of 7mol/l,30min reaction time, common temperature, the NZTO powders had 24.5nm average diameter. Its absorption range was extended to the visible rang and photocatalysis ratio was higher than un-doped TiO2 nano-meter powders.
     Azo dyes, methyl orange was used as the pollution reactant to evaluate the photo-catalytic activity of the NZTO catalyst samples by orthogonal experiments. The results showed that the optical conditions on degradation of methyl orange is the initial concen-tration of 5mg/L, pH values of 1, NZTO photo-catalyst dosage 1g/L, oxidant dosage(H2O2) 0.8ml/500mL. In addition, influence factors, such as pH, Zn coped weight, calcine temp-erature, were inspected on degradation ratio of the NZTO powders by orthogonal experi-ments. The results showed that the optimum condition is Zn 2wt%, pH values of 7, calcine temperature of 500℃. Verification experiment in the optimum conditions showed that the degradation ratio of methyl orange reached 98.2%, under sunshine for 6h, with ultrasound dispersing and whipping, and it's still 74.2% four times reused.
引文
[1]张立德,解思深.纳米材料与纳米结构[M].北京:化学工业出版社.2004,1-7
    [2]Andrea MaLdotti, Alessandra Molinari, Rossano Amadelli. Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2 [J]. Chem. Rev, 2002,102:3811-3836
    [3]MichaeL R Hofmann, Scot T Martin, Wonyong Choi, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chem. Rev,1995,95:69-96
    [4]Amy L Linsebigler,Guangquan Lu,John T Yates Jr.Photocatalysis on TiO2 Surface[J].Chem.Rev,1995,95:735-758
    [5]陈朝华,刘长河.钛白粉生产及应用技术[M].北京:化学工业出版社.2006,30-35
    [6]Sh.D.Mo, W.Y.Ching. ELectronic and opticaL propreties of three of titanium dioxidemutile, anatase and brookiet, paysical ReviewB,1995,51(19):13024-13032
    [7]TanakaK, Capule MFV, Hisanaga T.Chemphyslett.1991,187:73
    [8]A.Leaustic, F.Babonneau, J.Lirage, Photoreactivity of WO3 dispersions:spin trapping and eLectron spin resonance detection of radicaL inter mediated,J. Phys.Chem.1986, 904193-4198
    [9]廖振华,陈建军,姚可夫等.磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备与表征[J].无机材料通报.2004,4(7):749
    [10]Hoffman M.R., MARTIN s.t.,Choi W.,Bahnemann D.W..Environmental applications of semiconductor photocatalysis[J].Chemical reviews,1995,95(1):69-96
    [11]Linsebigler A.L., Lu G., Yates J.T.JR.. Photocatalysis on TiO2 Surfaces: Principles,mechanisms,and seLected results[J]. ChemicaL reviews,1995,95(3):735-758.
    [12]Fox M.A., Dulay M.T..Heterogeneous photocatalysis[J],ChemicaL reviews,1993, 93(1):341-357
    [13]Konstaintinou I.K., ALbanis T.A..TiO2-assisted photocataLytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review [J]. Appl. Catal.B-Environ,2004,49(1):1-14
    [14]Fujishima A. Honda K. ELectrochemical Photolysis of Water at a Semiconducting Electrode [J]. Nature,1972,238(5358):37-38
    [15]赵文宽,方佑龄.太阳能光催化降解水面石油的研究[J].武汉大学学报(自然科学版).2008(4):133-136
    [16]唐玉朝,刘少跟,薛莉聘等.水解沉淀法制备N掺杂纳米Ti02光催化剂的活性研究[J].安徽建筑工业学院学报(自然科学版).2005,39(3):56-58
    [17]郭光美,王振川,李景印等.可见光响应纳米TiO2-ZnO光催化性能的研究[J].工业水处理.2007,27(2):43-45
    [18]Zhang Shoumin, Chen Yanyan,Yu Ying.Preparation,Characterization and Photocatalytic Activities of the Nitrogen-doped TiO2[J].Acta Scientiarum Universitis Nankaiensis.2006,39(5):86-90
    [19]刘亮,王小华,宋卫坤等.ZnO-TiO2在三相光催化反应器中降解酸性大红[J].环境科学与技术.2008,31(2):31-34
    [20]Serpone N.Solar Energy Materials and Solar Cells.1995,38:369-379
    [21]李晓娥,祖庸.纳米Ti02光催化剂氧化机理及应用[J].化工进展.1999,4:35-37
    [22]伊藤喜昌.工业材料[M].1997,45(10):59-61
    [23]张爱平,孙彦平,梁镇海等.TiO2薄膜表面分形结构对光催化氯化杀伤胃癌细胞的影响[J].稀有金属材料工程.2005,34(2):279-282
    [24]郝彦忠,蔡生民.Ti02微粒功能化多孔AL203膜的光电化学研究[J].化学学报2005,63(13):1201-1204
    [25]郭家好,何晓英,蔡生民等.甲醇对三甲川菁染料敏化TiO2那你晶电极的影响[J].应用化学.2008,25(3):753-758
    [26]黄佳木,朱小红,蔡小平.铂铬共掺杂纳米TiO2薄膜的制备及其光催化性能[J].重庆大学学报.2008,31(9):1018-1022
    [27]文桂林,高原,刘惠涛.制备方法对纳米TiO2光催化活性的影响[J].环境科学与技术.2006,29(9):19-21
    [28]赵改青,邱克辉,高晓明.化学沉淀法合成纳米TiO2粉体及其应用[J].材料导报.2003,13(11):47-49
    [29]Boer K W.Survey of Semicoductor Physics. [M].New York:Van Nostrand Reinbold,1990:249
    [30]李金田,耿世彬.纳米二氧化钛光催化机理及应用分析[J].洁净与空调技术,2006 (1):23-25
    [31]张文彬,周燕.纳米TiO2光催化剂研究进展[J].钢铁钒钛.2005,26(4):26-33
    [32]Karakitsou K.E., Verykios X.E., et aL, Controlled Supression and Enhancement of the Photoactivity of Titanium Dioxide(Rutie) Pigment[J].J.Phvs.Chem,1989,9 (23): 5987-5991
    [33]Bickley R, Gonzalea-Carreno T,Lees J.A Structural investigation of Titanium Dioxide Photocatalysts[J].SoLid State Chem,1991,92:178
    [34]陈小兵等.纳米TiO2薄膜光催化活性的研究进展[J].中国陶瓷工业.2004,11(3):51-53
    [35]徐松海,高鹏召,石宗利.双元素掺杂改性二氧化钛的研究进展[J].硅酸盐通报.2008,4(27):777-782
    [36]于艳辉,哈尼巴拉,徐传友等.纳米二氧化钛光催化剂研究进展[J].材料导报.2008,5(22) : 54-57
    [37]董娅玮,杨胜科,王文科等.掺杂纳米TiO2光催化氧化处理硝基苯废水研究[J].人民长江,2008,39(18):35-37
    [38]唐建军,邹原,邓爱华等.Zr4+掺杂TiO2光催化剂的制备与表征[J].工程学报.2008,18(5):1026-1029
    [39]赵斯琴,郭敏,张楠等.Eu3+离子掺杂纳米TiO2的制备及发光性能的研究[J].材料工程.2008,10:211-214
    [40]张海禄,童仕唐,胡新亮.稀土掺杂改性TiO2微晶结构及光催化性能[J].环境科学与技术.2005,28(1):14-16
    [41]何都良,王传海,缪启龙等.膜载Fe3+/TiO2光催化降解4-氟苯甲酸的研究[J].环境科学与技术.2006,29(2):3-6
    [42]CHOI W, TERMIN A, HOFFMANN M R. The role of metalion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics[J]. J Phys Che,1994,98(5):13669—13670
    [43]潘仲巍,郭燕红,张秋君等.掺杂镧铒对纳米二氧化钛薄膜光催化性能的影响[J].商丘师范学院学报.2008,24(9):65-69
    [44]蔡领峰,彭峰,谌春林等.不同方法制备硫掺杂TiO2及其可见光催化性能研究[J].工业催化.2008,16(8):70-74
    [45]王冠,庄惠生,夏慧丽.B掺杂TiO2光催化剂降解两类有机工业废水[J].环保科技.2008,14(3):28-3 1
    [46]袁爱华,唐丽,周虎等.氮掺杂纳米TiO2的制备及其光催化降解酸性红B的研究[J].化工时刊.2008,22(1):1-4
    [47]邢朋飞,王金淑,金建新,等.S、N共掺杂纳米TiO2可见光光催化剂的制备及其性能研究[J].纳米科技.2007,4(2):29—33
    [48]JING Y, HAIZAN B. IR and XPS investigation of visible-light photocatalysis Nitrogen-carbon-doped TiO2 film[J]. Applied Surface Science.2006.253:1988—1994
    [49]李越湘,王添辉,彭绍琴等.Eu3+、Si4+共掺杂TiO2光催化剂的协同效应[J].理化化学学报.2004,20(12):1434-1439
    [51]李银辉,殷德宏,陈赞等.掺杂WO3的SiO2/TiO2的溶胶热液合成及光催化性能[J].影像科学与光化学.2008,26(9):349-357
    [52]崔玉民,王洪涛,二氧化钛光催化技术在污水处理领域中的应用[J].水处理技术.2009,35(4):9-13
    [53]席北斗,孔欣,刘纯新等.加铂修饰型催化剂光催化氧化五氯苯酚[J].环境科学,2001,20:27
    [54]万李,冯嘉猷.Cds/TiO2复合半导体薄膜的制备及其光催化性能[J].环境科学研究.2009,22(1):95-98
    [55]姚炳华,王理明,余晓皎等.RuO/TiO2复合光催化剂的制备及其性能研究[J].光谱学与光谱分析.2005,25(6):934-937
    [56]丘水梁,陈洪龄,徐南平.水热法制备CdS/TiO2及其光催化活性[J].化工学报.2005,56(7):1338-1342
    [57]高尚芬,舒晓红,熊晓莉等.以TiO2/SiO2为载体的联吡啶钌对氧敏感性的研究[J].化学研究与应用.2005,17(6):808-810
    [58]李召好,李法强,马培华.超细粉末团聚机理及其消除方法[J].盐湖研究.2005,13(1) : 31-36
    [59]Alok Maskra,Douglas M.,Smith.Agglomeration during the drying of fine powders,part Ⅱ:The role of particle solubility[J].J Am Ceram Soc.1997,80:1715-1722
    [60]唐浩林,潘牧,赵修建.溶胶-凝胶法制备a-Al2O3纳米材料团聚控制研究新进展[J].材料导报.2002,16(9):44-55
    [61]Jones S L.Dehydration of Hydrous Zireonia[J].J AM Ceram soc1988,71 (4):190-191
    [62]卓蓉晖.ZrO2超细粉体制备过程中粉体团聚的控制方法[J].江苏陶瓷.2002,35(3):32-33
    [63]张喜梅,李琳等.用溶胶-凝胶法制备纳米粉体时聚集现象的讨论[J].化学工业与工程.2000,17(3):155-159
    [64]林书玉.功率超声技术的研究现状及其最新进展[J].陕西师范大学学报(自然科学版).2001,29(1):101-106
    [65]宋宁,戴永年,钟晓林等.超声波-化学共沉淀法制备纳米ITO粉[J].有色金属2008,60(1):11-16
    [66]陈彩凤陈志刚邵美苓.超声辐射在湿法制备AL2O3纳米粉中的作用[J].硅酸盐学报,2006(11):1402-1405
    [67]陈同云.超声波共沉淀法制备SO42/Fe2O3-ZrO2固体超强酸及其性能研究[J].合成化学.2007.15(4):1005-1511
    [68]彭金辉,杨显万.微波能技术新应用[M].云南:科技出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700